7 research outputs found

    Review of failure modes in supercritical geothermal drilling projects

    No full text
    Abstract Supercritical geothermal resources located close to the transition between the brittle–ductile zone have been proven to exist at drillable depths. This was demonstrated by several deep geothermal drilling campaigns throughout the years, starting in the late 1970s. The interest in exploring supercritical resources is particularly strong, as it was revealed that one such well might significantly increase the production output and simultaneously decrease the need for drilling operations within a particular geothermal field. Deep drilling projects exploring supercritical resources such as these carried out in Iceland, Italy or Japan, where temperatures went significantly above the critical point and hostile geothermal fluids were produced, faced a variety of challenges during drilling operations and fluid production. The most critical of these exerted major thermally driven loads upon the cemented casing strings, leading to serious damages and eventually to well abandonment. This research presents an extensive literature search on failure modes of 20 wells from different high-enthalpy geothermal fields around the world, experiencing temperatures greater than the critical point of pure water and gives an overview of areas of improvements and potential solutions in regards to the drilling and well completion technology

    Utilizing supercritical geothermal systems: a review of past ventures and ongoing research activities

    No full text
    Abstract Supercritical geothermal systems are very high-temperature geothermal systems that are located at depths near or below the brittle–ductile transition zone in the crust where the reservoir fluid is assumed to be in the supercritical state, that is for pure water, temperature and pressure are, respectively, in excess of 374 °C and 221 bar. These systems have garnered attention in recent years as a possible type of unconventional geothermal resource due to their very high enthalpy fluids. Supercritical conditions are often found at the roots of volcanic-hosted hydrothermal systems. More than 25 deep wells drilled in geothermal fields such as The Geysers, Salton Sea, and on Hawaii (USA), Kakkonda (Japan), Larderello (Italy), Krafla (Iceland), Los Humeros (Mexico), and Menengai (Kenya) have encountered temperatures in excess of 374 °C, and in some cases have encountered magma. Although fluid entries were documented for some of these wells, it remains an open question if permeability can be maintained at high enthalpy conditions. The IDDP-1 well at Krafla encountered magma, and ended up producing very high enthalpy fluids; however, these fluids were very corrosive and abrasive. Innovative drilling and well completion techniques are therefore needed to deal with the extreme temperatures and aggressive fluid chemistry compositions of these systems. New efforts are underway in Japan (northern Honshu), Italy (Larderello), Iceland (Reykjanes peninsula and Krafla), Mexico (Los Humeros), USA (Newberry), and New Zealand (Taupo Volcanic Zone) to investigate supercritical systems. Here, we review past studies, describe current research efforts, and outline the challenges and potential opportunities that these systems provide for international collaboration to ultimately utilize supercritical geothermal systems as a geothermal energy resource
    corecore