8 research outputs found

    A mixture of algae and extra virgin olive oils attenuates the cardiometabolic alterations associated with aging in male wistar rats

    Get PDF
    Aging is one of the major risk factors for suffering cardiovascular and metabolic diseases. Due to the increase in life expectancy, there is a strong interest in the search for anti-aging strategies to treat and prevent these aging-induced disorders. Both omega 3 polyunsaturated fatty acids (ω-3 PUFA) and extra virgin olive oil (EVOO) exert numerous metabolic and cardiovascular benefits in the elderly. In addition, EVOO constitutes an interesting ingredient to stabilize ω-3 PUFA and decrease their oxidation process due to its high content in antioxidant compounds. ω-3 PUFA are commonly obtained from fish. However, more ecological and sustainable sources, such as algae oil (AO) can also be used. In this study, we aimed to study the possible beneficial effect of an oil mixture composed by EVOO (75%) and AO (25%) rich in ω-3 PUFA (35% docosahexaenoic acid (DHA) and 20% eicosapentaenoic acid (EPA)) on the cardiometabolic alterations associated with aging. For this purpose; young (three months old) and old (24 months old) male Wistar rats were treated with vehicle or with the oil mixture (2.5 mL/kg) for 21 days. Treatment with the oil mixture prevented the aging-induced increase in the serum levels of saturated fatty acids (SFA) and the aging-induced decrease in the serum concentrations of mono-unsaturated fatty acids (MUFA). Old treated rats showed increased serum concentrations of EPA and DHA and decreased HOMA-IR index and circulating levels of total cholesterol, insulin and IL-6. Treatment with the oil mixture increased the mRNA levels of antioxidant and insulin sensitivity-related enzymes, as well as reduced the gene expression of pro-inflammatory markers in the liver and in cardiac and aortic tissues. In addition, the treatment also prevented the aging-induced endothelial dysfunction and vascular insulin resistance through activation of the PI3K/Akt pathway. Moreover, aortic rings from old rats treated with the oil mixture showed a decreased response to the vasoconstrictor AngII. In conclusion, treatment with a mixture of EVOO and AO improves the lipid profile, insulin sensitivity and vascular function in aged rats and decreases aging-induced inflammation and oxidative stress in the liver, and in the cardiovascular system. Thus, it could be an interesting strategy to deal with cardiometabolic alterations associated with aging.This project was funded by the call “Doctorados Industriales 2017” (IND2017/BIO7701), a grant from Community of Madrid (Spain). This program aims to promote the effective collaboration between Universities and Companies and provides funding for the development of the research project at the University and, to hire a PhD student (Daniel González-Hedström) by the Company (Pharmactive Biotech Products S.L.) over a three-year period. Community of Madrid also funded the contract of María de la Fuente-Fernández through the Youth Employment Program (PEJ-2018-AI/SAL-11315

    Olive Leaf Extract Supplementation to Old Wistar Rats Attenuates Aging-Induced Sarcopenia and Increases Insulin Sensitivity in Adipose Tissue and Skeletal Muscle

    Get PDF
    Aging is associated with increased visceral adiposity and a decrease in the amount of brown adipose tissue and muscle mass, known as sarcopenia, which results in the development of metabolic alterations such as insulin resistance. In this study, we aimed to analyze whether 3-week supplementation with a phenolic-rich olive leaf extract (OLE) to 24 months-old male Wistar rats orally (100 mg/kg) attenuated the aging-induced alterations in body composition and insulin resistance. OLE treatment increased brown adipose tissue and attenuated the aging-induced decrease in protein content and gastrocnemius weight. Treatment with OLE prevented the aging-induced increase in the expression of PPAR-γ in visceral and brown adipose tissues, while it significantly increased the expression of PPAR-α in the gastrocnemius of old rats and reduced various markers related to sarcopenia such as myostatin, HDAC-4, myogenin and MyoD. OLE supplementation increased insulin sensitivity in explants of gastrocnemius and epididymal visceral adipose tissue from aged rats through a greater activation of the PI3K/Akt pathway, probably through the attenuation of inflammation in both tissues. In conclusion, supplementation with OLE prevents the loss of muscle mass associated with aging and exerts anti-inflammatory and insulin-sensitizing effects on adipose tissue and skeletal muscle

    Addition of Olive Leaf Extract to a Mixture of Algae and Extra Virgin Olive Oils Decreases Fatty Acid Oxidation and Synergically Attenuates Age-Induced Hypertension, Sarcopenia and Insulin Resistance in Rats

    Get PDF
    Olive-derived products, such as virgin olive oil (EVOO) and/or olive leaf extracts (OLE), exert anti-inflammatory, insulin-sensitizing and antihypertensive properties and may be useful for stabilizing omega 3 fatty acids (n-3 PUFA) due to their high content in antioxidant compounds. In this study, the addition of OLE 4:0.15 (w/w) to a mixture of algae oil (AO) rich in n-3 PUFA and EVOO (25:75, w/w) prevents peroxides formation after 12 months of storage at 30 °C. Furthermore, the treatment with the oil mixture (2.5 mL/Kg) and OLE (100 mg/Kg) to 24 month old Wistar rats for 21 days improved the lipid profile, increased the HOMA-IR and decreased the serum levels of miRNAs 21 and 146a. Treatment with this new nutraceutical also prevented age-induced insulin resistance in the liver, gastrocnemius and visceral adipose tissue by decreasing the mRNA levels of inflammatory and oxidative stress markers. Oil mixture + OLE also attenuated the age-induced alterations in vascular function and prevented muscle loss by decreasing the expression of sarcopenia-related markers. In conclusion, treatment with a new nutraceutical based on a mixture of EVOO, AO and OLE is a useful strategy for improving the stability of n-3 PUFA in the final product and to attenuate the cardiometabolic and muscular disorders associated with aging

    Effects of Supplementation with the Standardized Extract of Saffron (affron<sup>®</sup>) on the Kynurenine Pathway and Melatonin Synthesis in Rats

    No full text
    Melatonin is a hormone that regulates sleep–wake cycles and is mainly synthesized in the pineal gland from tryptophan after its conversion into serotonin. Under normal conditions, less than 5% of tryptophan is reserved for the synthesis of serotonin and melatonin. The remaining 95% is metabolized in the liver through the kynurenine pathway. Increased levels of proinflammatory cytokines and cortisol increase the metabolism of tryptophan through the kynurenine pathway and reduce its availability for the synthesis of melatonin and serotonin, which may cause alterations in mood and sleep. The standardized saffron extract (affron®) has shown beneficial effects on mood and sleep disorders in humans, but the underlying mechanisms are not well understood. Thus, the aim of this work was to study the effects of affron® supplementation on the kynurenine pathway and the synthesis of melatonin in rats. For this purpose, adult male Wistar rats were supplemented for 7 days with 150 mg/kg of affron® or vehicle (2 mL/kg water) administered by gavage one hour before sleep. Affron® supplementation reduced body weight gain and increased the circulating levels of melatonin, testosterone, and c-HDL. Moreover, animals supplemented with affron® showed decreased serum levels of kynurenine, ET-1, and c-LDL. In the pineal gland, affron® reduced Il-6 expression and increased the expression of Aanat, the key enzyme for melatonin synthesis. In the liver, affron® administration decreased the mRNA levels of the enzymes of the kynurenine pathway Ido-2, Tod-2, and Aadat, as well as the gene expression of Il-1β and Tnf-α. Finally, rats treated with affron® showed increased mRNA levels of the antioxidant enzymes Ho-1, Sod-1, Gsr, and Gpx-3, both in the liver and in the pineal gland. In conclusion, affron® supplementation reduces kynurenine levels and promotes melatonin synthesis in rats, possibly through its antioxidant and anti-inflammatory effects, making this extract a possible alternative for the treatment and/or prevention of mood and sleep disorders

    Beneficial Effects of a Mixture of Algae and Extra Virgin Olive Oils on the Age-Induced Alterations of Rodent Skeletal Muscle: Role of HDAC-4

    No full text
    Aging is associated with a progressive decline in skeletal muscle mass, strength and function (sarcopenia). We have investigated whether a mixture of algae oil (25%) and extra virgin olive oil (75%) could exert beneficial effects on sarcopenia. Young (3 months) and old (24 months) male Wistar rats were treated with vehicle or with the oil mixture (OM) (2.5 mL/kg) for 21 days. Aging decreased gastrocnemius weight, total protein, and myosin heavy chain mRNA. Treatment with the OM prevented these effects. Concomitantly, OM administration decreased the inflammatory state in muscle; it prevented the increase of pro-inflammatory interleukin-6 (IL-6) and the decrease in anti-inflammatory interleukin-10 (IL-10) in aged rats. The OM was not able to prevent aging-induced alterations in either the insulin-like growth factor I/protein kinase B (IGF-I/Akt) pathway or in the increased expression of atrogenes in the gastrocnemius. However, the OM prevented decreased autophagy activity (ratio protein 1A/1B-light chain 3 (LC3b) II/I) induced by aging and increased expression of factors related with muscle senescence such as histone deacetylase 4 (HDAC-4), myogenin, and IGF-I binding protein 5 (IGFBP-5). These data suggest that the beneficial effects of the OM on muscle can be secondary to its anti-inflammatory effect and to the normalization of HDAC-4 and myogenin levels, making this treatment an alternative therapeutic tool for sarcopenia.Comunidad de MadridDepto. de FisiologíaFac. de MedicinaTRUEpu

    Olive leaf extract supplementation improves the vascular and metabolic alterations associated with aging in Wistar rats

    No full text
    Olive leaves are rich in bioactive substances which exert anti-inflammatory, antioxidant, insulin-sensitizing and antihypertensive effects. The aim of this study was to analyze the possible beneficial effects of an olive leaf extract (OLE) rich in secoiridoids and phenolic compounds on the aging-induced metabolic and vascular alterations. Three experimental groups of rats were used: 3-month-old rats, 24-month-old rats and 24-month-old rats supplemented 21 days with OLE (100 mg/kg). Administration of OLE to aged rats decreased the weight of adrenal glands and prevented the aging-induced loss of body weight and muscle mass. In the serum, OLE reduced the circulating levels of LDL-cholesterol and IL-6 and increased the concentrations of leptin and adiponectin. In the liver OLE attenuated the decreased gene expression of SOD-1, GSR, GCK and GSK-3β and reduced the aging-induced overexpression of NOX-4, Alox-5, iNOS and TNF-α. In aorta segments, OLE prevented endothelial dysfunction and vascular insulin resistance and improved vasoconstriction in response to KCl and NA. Improvement in vascular function was associated with the attenuation of the alterations in the gene expression of COX-2, IL-6, GPx, NOX-1 and IL-10. In conclusion, OLE exerts anti-inflammatory and antioxidant effects in aged rats and attenuates the alterations in vascular function associated with aging.Comunidad de MadridDepto. de FisiologíaFac. de MedicinaTRUEpu

    Carob Extract Supplementation Together with Caloric Restriction and Aerobic Training Accelerates the Recovery of Cardiometabolic Health in Mice with Metabolic Syndrome

    No full text
    Carob, the fruit of Ceratonia siliqua L. exerts antidiabetic, anti-inflammatory, and antioxidant effects and could be a useful strategy for the treatment and/or prevention of metabolic syndrome (MetS). The aim of this study was to analyze whether supplementation with a carob fruit extract (CSAT+&reg;), alone or in combination with aerobic training, accelerates the recovery of cardiometabolic health in mice with MetS subjected to a caloric restriction. For this purpose, mice were fed with a high fat (58% kcal from fat)/high sugar diet for 23 weeks to induce MetS. During the next two weeks, mice with MetS were switched to a diet with a lower caloric content (25% kcal from fat) supplemented or not with CSAT+&reg; (4.8%) and/or subjected to aerobic training. Both caloric reduction and aerobic training improved the lipid profile and attenuated MetS-induced insulin resistance measured as HOMA-IR. However, only supplementation with CSAT+&reg; enhanced body weight loss, increased the circulating levels of adiponectin, and lowered the plasma levels of IL-6. Moreover, CSAT+&reg; supplementation was the only effective strategy to reduce the weight of epidydimal adipose tissue and to improve insulin sensitivity in the liver and in skeletal muscle. Although all interventions improved endothelial function in aorta segments, only supplementation with CSAT+&reg; reduced obesity-induced hypertension, prevented endothelial dysfunction in mesenteric arteries, and decreased the vascular response of aorta segments to the vasoconstrictor AngII. The beneficial cardiometabolic effects of CSAT+&reg; supplementation, alone or in combination with aerobic training, were associated with decreased mRNA levels of pro-inflammatory markers such as MCP-1, TNF&alpha;, IL-1&beta;, and IL-6 and with increased gene expression of antioxidant enzymes, such as GSR, GPX-3, and SOD-1 in the liver, gastrocnemius, retroperitoneal adipose tissue, and aorta. In conclusion, supplementation with CSAT+&reg;, alone or in combination with aerobic training, to mice with MetS subjected to caloric restriction for two weeks enhances body weight loss, improves the lipid profile and insulin sensitivity, and exerts antihypertensive effects through its anti-inflammatory and antioxidant properties

    A Nutraceutical Product Based on a Mixture of Algae and Extra Virgin Olive Oils and Olive Leaf Extract Attenuates Sepsis-Induced Cardiovascular and Muscle Alterations in Rats

    No full text
    Nutraceuticals are products of natural origin widely used for the treatment and/or prevention of some chronic diseases that are highly prevalent in Western countries, such as obesity or type II diabetes, among others. However, its possible use in the prevention of acute diseases that can put life at risk has been poorly studied. Sepsis is an acute condition that causes cardiovascular and skeletal muscle damage due to a systemic inflammatory state. The aim of this work was to evaluate the possible beneficial effect of a new nutraceutical based on a mixture of algae oil (AO) and extra virgin olive oil (EVOO) supplemented with an olive leaf extract (OLE) in the prevention of cardiovascular alterations and skeletal muscle disorders induced by sepsis in rats. For this purpose, male Wistar rats were treated with the nutraceutical or with water p.o. for 3 weeks and after the treatment they were injected with 1mg/kg LPS twice (12 and 4 h before sacrifice). Pretreatment with the nutraceutical prevented the LPS-induced decrease in cardiac contractility before and after the hearts were subjected to ischemia-reperfusion. At the vascular level, supplementation with the nutraceutical did not prevent hypotension in septic animals, but it attenuated endothelial dysfunction and the increased response of aortic rings to the vasoconstrictors norepinephrine and angiotensin-II induced by LPS. The beneficial effects on cardiovascular function were associated with an increased expression of the antioxidant enzymes SOD-1 and GSR in cardiac tissue and SOD-1 and Alox-5 in arterial tissue. In skeletal muscle, nutraceutical pretreatment prevented LPS-induced muscle proteolysis and autophagy and significantly increased protein synthesis as demonstrated by decreased expression of MURF-1, atrogin-1, LC3b and increased MCH-I and MCH -IIa in gastrocnemius muscle. These effects were associated with a decrease in the expression of TNFα, HDAC4 and myogenin. In conclusion, treatment with a new nutraceutical based on a mixture of AO and EVOO supplemented with OLE is useful to prevent cardiovascular and muscular changes induced by sepsis in rats. Thus, supplementation with this nutraceutical may constitute an interesting strategy to reduce the severity and mortality risk in septic patients.Comunidad de MadridDepto. de FisiologíaFac. de MedicinaTRUEpu
    corecore