2 research outputs found

    Desarrollo de modelos experimentales de LGMDD2 y rastreo de fármacos

    Get PDF
    La distrofia muscular de cinturas tipo D2 (Limb-girdle muscular dystrophy type D2, LGMDD2) es una enfermedad genética ultra rara para la cual no existe tratamiento. Las principales características clínicas de la LGMDD2 son la debilidad y degeneración muscular progresiva que afecta a las cinturas pélvica y escapular de forma predominante. En 2013 se identificó la LGMDD2 como una miopatía autosómica dominante causada por una mutación en el gen de la transportina 3 (TNPO3), dando como resultado una proteína mutante con una extensión de 15 aminoácidos adicionales: TNPO3mut. TNPO3 es una β-importina responsable de la importación nuclear de proteínas ricas en serina/arginina (proteínas SR), involucradas principalmente en el splicing y metabolismo del RNA. Además, TNPO3 es una proteína esencial para la infección por el virus de la inmunodeficiencia humana tipo 1. Al inicio de este trabajo apenas había información sobre la LGMDD2 y se desconocía el papel de TNPO3mut en el músculo esquelético de los pacientes. Esto se debía, en gran parte, a la inexistencia de modelos experimentales que permitieran profundizar sobre la enfermedad y los mecanismos involucrados en la degeneración muscular. Por ello, nos planteamos desarrollar modelos de LGMDD2 con los que identificar qué desencadena los síntomas de esta miopatía y sobre los que poder testar posibles terapias efectivas. En este trabajo hemos desarrollado dos modelos experimentales de LGMDD2, en mosca y mioblastos inmortalizados, este último en colaboración con el grupo de Patología Neuromuscular y Ataxias del Instituto de Investigación Sanitaria La Fe, dirigido por el Dr. Vílchez. El estudio de ambos modelos ha demostrado que la mutación causante de LGMDD2 provoca un aumento de los niveles de TNPO3, degeneración muscular y capacidad locomotora reducida en la mosca y afecta a la diferenciación de los mioblastos derivados de paciente. Además, este trabajo aporta evidencias de que hay un exceso de activación de las vías catabólicas que desregulan la homeostasis muscular y de que hay una alteración del splicing alternativo y constitutivo en LGMDD2 que podría estar contribuyendo a la degeneración del músculo. Por otro lado, los modelos han sido utilizados para testar fármacos a gran escala y poder seleccionar 6 compuestos para su reposicionamiento contra la LGMDD2. Asimismo, se proporciona una prueba de concepto del potencial de la edición de TNPO3 mediada por CRISPR-Cas9 como enfoque terapéutico contra la LGMDD2. A su vez, la edición génica de la mutación de TNPO3 ha servido para identificar alteraciones claves a nivel del transcriptoma en LGMDD2 que también podrían estar contribuyendo a la patología. Con todo, la presente tesis aporta información sobre los mecanismos moleculares involucrados en la LGMDD2 que servirá para entender mejor cómo se desencadena la degeneración muscular en los pacientes y permite avanzar en la búsqueda de terapias válidas contra esta distrofia.Limb-girdle muscular dystrophy type D2 (LGMDD2) is an ultra-rare genetic disease for which there is no treatment. The main clinical features of LGMDD2 are weakness and progressive muscle wasting that predominantly affects the pelvic and shoulder girdles. In 2013, LGMDD2 was identified as an autosomal dominant myopathy caused by a mutation in the transportin 3 (TNPO3) gene, resulting in a mutant protein with an extension of 15 additional amino acids: TNPO3mut. TNPO3 is a β-importin responsible for the nuclear import of serine/arginine-rich proteins (SR proteins), mainly involved in RNA splicing and metabolism. In addition, TNPO3 is an essential protein for human immunodeficiency virus type 1 infection. At the beginning of this work, there was little information on LGMDD2 and the role of TNPO3mut in the skeletal muscle of patients was unknown. This was due, in large part, to the lack of experimental models that would allow us to delve into the disease and the mechanisms involved in muscle degeneration. For this reason, we considered developing LGMDD2 models with which to identify what triggers the symptoms of this myopathy and on which to test possible effective therapies. In this work, we have developed two experimental models of LGMDD2, in flies and immortalized myoblasts, the latter in collaboration with the Neuromuscular Pathology and Ataxias group of the Instituto de Investigación Sanitaria La Fe, directed by Dr. Vílchez. The study of both models has shown that the causative mutation of LGMDD2 causes an increase in TNPO3 levels, muscle degeneration, and reduced locomotor capacity in the fly and affects the differentiation of patient-derived myoblasts. In addition, this work provides evidence that there is an excess activation of catabolic pathways that deregulate muscle homeostasis and that there is an alteration of alternative and constitutive splicing in LGMDD2 that could be contributing to muscle degeneration. On the other hand, the models have been used to test drugs on a large scale and to be able to select 6 compounds for their repositioning against LGMDD2. Furthermore, proof-of-concept of the potential of CRISPR-Cas9-mediated editing of TNPO3 as a therapeutic approach against LGMDD2 is provided. In turn, gene editing of the TNPO3 mutation has served to identify key alterations at the transcriptome level in LGMDD2 that also could be contributing to the pathology. All in all, this thesis provides information on the molecular mechanisms involved in LGMDD2 that will serve to better understand how muscle degeneration is triggered in patients and allows progress in the search for valid therapies against this dystrophy

    CRISPR-Cas9 editing of a TNPO3 mutation in a muscle cell model of limb-girdle muscular dystrophy type D2

    No full text
    A single-nucleotide deletion in the stop codon of the nuclear import receptor transportin-3 (TNPO3), also involved in human immunodeficiency virus type 1 (HIV-1) infection, causes the ultrarare autosomal dominant disease limb-girdle muscular dystrophy D2 (LGMDD2) by extending the wild-type protein. Here, we generated a patient-derived in vitro model of LGMDD2 as an immortalized myoblast cell line carrying the TNPO3 mutation. The cell model reproduced critical molecular alterations seen in patients, such as TNPO3 overexpression, defects in terminal muscle markers, and autophagy overactivation. Correction of the TNPO3 mutation via CRISPR-Cas9 editing caused a significant reversion of the pathological phenotypes in edited cells, including a complete absence of the mutant TNPO3 protein, as detected with a polyclonal antibody specific against the abnormal 15-aa peptide. Transcriptomic analyses found that 15% of the transcriptome was differentially expressed in model myotubes. CRISPR-Cas9-corrected cells showed that 44% of the alterations were rescued toward normal levels. MicroRNAs (miRNAs) analyses showed that around 50% of miRNAs with impaired expression because of the disease were recovered on the mutation edition. In summary, this work provides proof of concept of the potential of CRISPR-Cas9-mediated gene editing of TNPO3 as a therapeutic approach and describes critical reagents in LGMDD2 research
    corecore