2,054 research outputs found

    A star disrupted by a stellar black hole as the origin of the cloud falling toward the Galactic center

    Full text link
    We propose that the cloud moving on a highly eccentric orbit near the central black hole in our Galaxy, reported by Gillessen et al., is formed by a photoevaporation wind originating in a disk around a star that is tidally perturbed and shocked at every peribothron passage. The disk is proposed to have formed when a stellar black hole flew by the star, tidally disrupted its envelope, and placed the star on its present orbit with some of the tidal debris forming a disk. A disrupting encounter at the location of the observed cloud is most likely to be caused by a stellar black hole because of the expected dynamical mass segregation; the rate of these disk-forming encounters may be as high as ∼10−6\sim 10^{-6} per year. The star should also be spun up by the encounter, so the disk may subsequently expand by absorbing angular momentum from the star. Once the disk expands up to the tidal truncation radius, the tidal perturbation of the outer disk edge at every peribothron may place gas streams on larger orbits which can give rise to a photoevaporation wind that forms the cloud at every orbit. This model predicts that, after the cloud is disrupted at the next peribothron passage in 2013, a smaller unresolved cloud will gradually grow around the star on the same present orbit. An increased infrared luminosity from the disk may also be detectable when the peribothron is reached. We also note that this model revives the encounter theory for planet formation.Comment: To be published in Ap

    Soft X-ray Absorption by High-Redshift Intergalactic Helium

    Get PDF
    The Lyman alpha absorption from intergalactic, once-ionized helium (HeII) has been measured with HST in four quasars over the last few years, over the redshift range 2.4 < z < 3.2. These observations have indicated that the HeII reionization may not have been completed until z\simeq 2.8, and that large fluctuations in the intensity of the HeII-ionizing background were present before this epoch. The detailed history of HeII reionization at higher redshifts is, however, model-dependent and difficult to determine from these observations, because the IGM can be completely optically thick to Lya photons when only a small fraction of the helium remains as HeII. In addition, finding quasars in which the HeII Lya absorption can be observed becomes increasingly difficult at higher redshift, owing to the large abundance of hydrogen Lyman limit systems. It is pointed out here that HeII in the IGM should also cause detectable continuum absorption in the soft X-rays. The spectrum of a high-redshift source seen behind the IGM when most of the helium was HeII should recover from the HeII Lyman continuum absorption at an observed energy \sim 0.1 keV. Galactic absorption will generally be stronger, but not by a large factor; the intergalactic HeII absorption can be detected as an excess over the expected Galactic absorption from the 21cm HI column density. In principle, this method allows a direct determination of the fraction of helium that was singly ionized as a function of redshift, if the measurement is done on a large sample of high-redshift sources over a range of redshift.Comment: accepted to The Astrophysical Journal Letter

    `First Light' in the Universe; What Ended the "Dark Age"?

    Full text link
    The universe would have been completely dark between the epoch of recombination and the development of the first non-linear structure. But at redshifts beyond 5 -- perhaps even beyond 20 -- stars formed within `subgalaxies' and created the first heavy elements; these same systems (together perhaps with `miniquasars') generated the UV radiation that ionized the IGM, and maybe also the first significant magnetic fields. Although we can already probe back to z≃5z \simeq 5, these very first objects may be so faint that their detection must await next-generation optical and infrared telescopes. Observations in other wavebands may offer indirect clues to when reionization occurred. Despite the rapid improvements in numerical simulations, the processes of star formation and feedback are likely to remain a challenge for the next decade.Comment: For ``Physics Reports'' special issue in memory of D.N. Schram

    Gravitational Lensing in Clusters of Galaxies: New Clues Regarding the Dynamics of Intracluster Gas

    Full text link
    Long arcs in clusters of galaxies, produced by gravitational lensing, can be used to estimate the mass interior to the arcs and therefore, constrain the cluster mass distribution. The radial density distribution of the intracluster gas (ICM) can be extracted from the X-ray surface brightness observations. If the gas temperature is also known, it is then possible to probe the dynamical state of the gas and test whether the ICM is in hydro- static equilibrium within the gravitational potential of the cluster as a result of thermal pressure support. We analyze three clusters that exhibit large arcs, whose X-ray surface brightness profiles have been observed, and whose gas temperatures have been determined. In two of the clusters, A2218 and A1689, the central mass implied by lensing is a factor of 22--2.52.5 too large for the gas at the observed temperature to be in hydrostatic equilibrium solely due to thermal pressure support. In other words, if we accept the mass estimate derived from the lensing analysis and demand that the X-ray surface brightness profile be consistent with the observations, the required gas temperature is a factor of 22--2.52.5 higher than observed. The results for the third cluster, A2163 (the most luminous and the hottest cluster known), are more ambiguous. The discrepancy between the X-ray and the lensing mass estimates arise because the presence of arcs imply a highly concentrated cluster mass distribution whereas the observed X-ray profiles imply a more extended mass distribution. The large X-ray core radii are not the result of the limited resolution of the X-ray detectors. We consider various possibilities that could account for the discrepancy.Comment: 20 pages, uuencoded compressed postscript, CITA/93/3

    Images of Bursting Sources of High-Energy Cosmic Rays. I: Effects of Magnetic Fields

    Full text link
    It has recently been shown that the highest energy cosmic rays (CRs) may originate in the same cosmological objects producing γ\gamma-ray bursts. This model requires the presence of intergalactic magnetic fields (IGMF) to delay the arrival times of ∼1020\sim 10^{20} eV CRs by 50 years or longer relative to the γ\gamma-rays, of an amplitude that is consistent with other observational constraints. Sources of CRs coming from individual bursts should be resolved with the planned ``Auger'' experiment, with as many as hundreds of CRs for the brightest sources. We analyze here the apparent angular and energy distribution of CRs from bright sources below the pion production threshold (in the energy range 1019eV<E<4×1019eV10^{19}{\rm eV} < E < 4\times10^{19}{\rm eV}) expected in this model. This observable distribution depends on the structure of the IGMF: the apparent spectral width ΔE\Delta E is small, ΔE/E≲1%\Delta E/E\lesssim1\%, if the intergalactic field correlation length λ\lambda is much larger than 1Mpc1{\rm Mpc}, and large, ΔE/E=0.3\Delta E/E=0.3, in the opposite limit λ≪1Mpc\lambda\ll 1{\rm Mpc}. The apparent angular size is also larger for smaller λ\lambda. If the sources of CRs we predict are found, they will corroborate the bursting model and they will provide us with a technique to investigate the structure of the IGMF.Comment: Submitted to the ApJL; 10 pages AASTeX, including 2 PostScript figure
    • …
    corecore