8 research outputs found

    Suplatast tosilate alleviates nasal symptoms through the suppression of nuclear factor of activated T-cells-mediated IL-9 gene expression in toluene-2,4-diisocyanate-sensitized rats

    Get PDF
    Histamine H1 receptor (H1R) gene is upregulated in patients with pollinosis; its expression level is highly correlated with the nasal symptom severity. Antihistamines are widely used as allergy treatments because they inhibit histamine signaling by blocking H1R or suppressing H1R signaling as inverse agonists. However, long-term treatment with antihistamines does not completely resolve toluene-2,4-diisocyanate (TDI)-induced nasal symptoms, although it can decrease H1R gene expression to the basal level, suggesting additional signaling is responsible for the pathogenesis of the allergic symptoms. Here, we show that treatment with suplatast tosilate in combination with antihistamines markedly alleviates nasal symptoms in TDI-sensitized rats. Suplatast suppressed TDI-induced upregulation of IL-9 gene expression. Suplatast also suppressed ionomycin/phorbol-12-myristate-13-acetate-induced upregulation of IL-2 gene expression in Jurkat cells, in which calcineurin (CN)/nuclear factor of activated T-cells (NFAT) signaling is known to be involved. Immunoblot analysis demonstrated that suplatast inhibited binding of NFAT to DNA. Furthermore, suplatast suppressed ionomycin-induced IL-9 mRNA upregulation in RBL-2H3 cells, in which CN/NFAT signaling is also involved. These data suggest that suplatast suppressed NFAT-mediated IL-9 gene expression in TDI-sensitized rats and this might be the underlying mechanism of the therapeutic effects of combined therapy of suplatast with antihistamine

    Identification and investigation of osmostress-induced genes in Dictyostelium discoideum

    Get PDF
    D. discoideum is frequently subjected to environmental changes in its natural habitat, the forest soil. In order to survive, the organism had to develop effective mechanisms to sense and respond to such changes. When cells are faced with a hypertonic environment a complex response is triggered. It starts with signal sensing and transduction and leads to changes in cell shape, the cytoskeleton, transport processes, metabolism and gene expression. Certain aspects of the Dictyostelium osmotic stress response have been elucidated, however, no comprehensive picture was available up to now. To better understand the D. discoideum response to hyperosmotic conditions, we applied different methods. We first confirmed that actin is tyrosine phosphorylated, the F-actin cytoskeleton is redistributed, the cell volume is decreased considerably and cell viability is slightly diminished upon sorbitol treatment. Next, gene expression profiling using DNA microarrays was performed. Treatment of Dictyostelium cells with 200 mM sorbitol for 1 hour led to dramatic transcriptional changes, of which some were validated by real time PCR or Northern Blot. The transcriptional profile of cells treated during a 2-hour time course revealed a time-dependent induction or repression of 809 genes, more than 15% of the genes on the array, which peaked 45 to 60 minutes after the hyperosmotic shock. The differentially regulated genes were applied to cluster analysis and functional annotation using gene ontology (GO) terms. Two main responses appear to be the down-regulation of the metabolic machinery and the up-regulation of the stress response system, among them STATc (signal transducer and activator of transcription). Manual annotation revealed that many genes of the major metabolic pathways, including carbohydrate, amino acid and nucleotide metabolism were differentially regulated and could be responsible for the generation of osmolytes. We hypothesize that Dictyostelium uses a mixture of osmolytes to counteract the hyperosmotic stress. Interestingly we also found a number of differentially regulated genes that are involved in development. This is consistent with the notion that the cellular processes that protect amoebae from a hypertonic environment have been adapted for regulatory developmental process. Gene expression profiling with the STATc mutant and appropriate controls showed that STATc is a key regulator of the transcriptional response to hyperosmotic shock. Approximately 20% of the differentially regulated genes that were common between two or three experiments were dependent on the presence of STATc. Our results suggest that at least two signalling pathways are activated in Dictyostelium cells subjected to hypertonicity. STATc is responsible for the transcriptional changes of one of them

    Ferroptosis-Related Gene-Based Prognostic Model and Immune Infiltration in Clear Cell Renal Cell Carcinoma

    Get PDF
    Clear cell renal cell carcinoma (ccRCC) is one of the most common tumors in the urinary system. Ferroptosis plays a vital role in ccRCC development and progression. We did an update of ferroptosis-related multigene expression signature for individualized prognosis prediction in patients with ccRCC. Differentially expressed ferroptosis-related genes in ccRCC and normal samples were screened using The Cancer Genome Atlas. Univariate and multivariate Cox regression analyses and machine learning methods were employed to identify optimal prognosis-related genes. CARS1, CD44, FANCD2, HMGCR, NCOA4, SLC7A11, and ACACA were selected to establish a prognostic risk score model. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these genes were mainly enriched in immune-related pathways; single-sample Gene Set Enrichment Analysis revealed several immune cells potentially related to ferroptosis. Kaplan–Meier survival analysis demonstrated that patients with high-risk scores had significantly poor overall survival (log-rank P = 7.815 × 10–11). The ferroptosis signature was identified as an independent prognostic factor. Finally, a prognostic nomogram, including the ferroptosis signature, age, histological grade, and stage status, was constructed. Analysis of The Cancer Genome Atlas-based calibration plots, C-index, and decision curve indicated the excellent predictive performance of the nomogram. The ferroptosis-related seven-gene risk score model is useful as a prognostic biomarker and suggests therapeutic targets for ccRCC. The prognostic nomogram may assist in individualized survival prediction and improve treatment strategies
    corecore