107 research outputs found

    Upper Bound on the First Star Formation History

    Full text link
    Our understanding of the nature of the extragalactic background light (EBL) has improved with the recent development of gamma-ray observation techniques. An open subject in the context of the EBL is the reionization epoch, which is an important probe of the formation history of first stars, the so-called Population III (Pop III) stars. Although the mechanisms for the formation of Pop III stars are rather well understood on theoretical grounds, their formation history is still veiled in mystery because of their faintness. To shed light into this matter, we study jointly the gamma-ray opacity of distant objects and the reionization constraints from studies of intergalactic gas. By combining these studies, we obtain a sensitive upper bound on the Pop III star formation rate density as ρ˙(z)<0.01[(1+z)/(1+7.0)]3.4(fesc/0.2)1(C/3.0) Myr1 Mpc3\dot\rho_{*}(z)<0.01[(1+z)/{(1+7.0)}]^{3.4}({f_{\rm esc}}/{0.2})^{-1}({C}/{3.0})\ {\rm M}_{\odot} {\rm yr}^{-1}\ {\rm Mpc}^{-3} at z7z\ge7, where fescf_{\rm esc} and CC are the escape fraction of ionizing photons from galaxies and the clumping factor of the intergalactic hydrogen gas. This limit is a 10\sim10 times tighter constraint compared with previous studies that take into account gamma-ray opacity constraints only. Even if we do not include the current gamma-ray constraints, the results do not change. This is because the detected gamma-ray sources are still at z4.35z\le4.35 where the reionization has already finished.Comment: 5 pages, 2 figures, accepted for publication in ApJ

    On the influence of the cosmological constant on gravitational lensing in small systems

    Full text link
    The cosmological constant Lambda affects gravitational lensing phenomena. The contribution of Lambda to the observable angular positions of multiple images and to their amplification and time delay is here computed through a study in the weak deflection limit of the equations of motion in the Schwarzschild-de Sitter metric. Due to Lambda the unresolved images are slightly demagnified, the radius of the Einstein ring decreases and the time delay increases. The effect is however negligible for near lenses. In the case of null cosmological constant, we provide some updated results on lensing by a Schwarzschild black hole.Comment: 8 pages, 1 figure; v2: extended discussion on the lens equation, references added, results unchanged, in press on PR
    corecore