30 research outputs found

    A Hard X-Ray View of Two Distant VHE Blazars: 1ES 1101-232 and 1ES 1553+113

    Get PDF
    TeV blazars are known as prominent nonthermal emitters across the entire electromagnetic spectrum with their photon power peaking in the X-ray and TeV bands. If distant, absorption of gamma-ray photons by the extragalactic background light (EBL) alters the intrinsic TeV spectral shape, thereby affecting the overall interpretation. Suzaku observations for two of the more distant TeV blazars known to date, 1ES 1101-232 and 1ES 1553+113, were carried out in 2006 May and July, respectively, including a quasi-simultaneous coverage with the state-of-the-art Cerenkov telescope facilities. We report on the resulting data sets with emphasis on the X-ray band and set in context to their historical behavior. During our campaign, we did not detect any significant X-ray or gamma-ray variability. 1ES 1101-232 was found in a quiescent state with the lowest X-ray flux ever measured. The combined XIS and HXD PIN data for 1ES 1101-232 and 1ES 1553+113 clearly indicate spectral curvature up to the highest hard X-ray data point (~30 keV), manifesting as softening with increasing energy. We describe this spectral shape by either a broken power law or a log-parabolic fit with equal statistical goodness of fits. The combined 1ES 1553+113 very high energy spectrum (90-500 GeV) did not show any significant changes with respect to earlier observations. The resulting contemporaneous broadband spectral energy distributions of both TeV blazars are discussed in view of implications for intrinsic blazar parameter values, taking into account the gamma-ray absorption in the EBL.Comment: 9 pages, 10 figure

    Fermi-LAT Detection of a Break in the Gamma-Ray Spectrum of the Supernova Remnant Cassiopeia A

    Full text link
    We report on observations of the supernova remnant Cassiopeia A in the energy range from 100 MeV to 100 GeV using 44 months of observations from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. We perform a detailed spectral analysis of this source and report on a low-energy break in the spectrum at 1.720.89+1.351.72^{+1.35}_{-0.89} GeV. By comparing the results with models for the gamma-ray emission, we find that hadronic emission is preferred for the GeV energy range.Comment: 18 pages, 5 figures, 2 tables, to be published in Ap

    Gravitomagnetism and spinor quantum mechanics

    Full text link
    We give a systematic treatment of a spin 1/2 particle in a combined electromagnetic field and a weak gravitational field that is produced by a slowly moving matter source. This paper continues previous work on a spin zero particle, but it is largely self-contained and may serve as an introduction to spinors in a Riemann space. The analysis is based on the Dirac equation expressed in generally covariant form and coupled minimally to the electromagnetic field. The restriction to a slowly moving matter source, such as the earth, allows us to describe the gravitational field by a gravitoelectric (Newtonian) potential and a gravitomagnetic (frame-dragging) vector potential, the existence of which has recently been experimentally verified. Our main interest is the coupling of the orbital and spin angular momenta of the particle to the gravitomagnetic field. Specifically we calculate the gravitational gyromagnetic ratio as gsubg=1 ; this is to be compared with the electromagnetic gyromagnetic ratio of gsube=2 for a Dirac electron.Comment: 12 pages, 1 figur
    corecore