3 research outputs found
Correlation tuned cross-over between thermal and nonthermal states following ultrafast transient pumping
We examine electron-electron mediated relaxation following excitation of a
correlated system by an ultrafast electric field pump pulse. The results reveal
a dichotomy in the temporal evolution as one tunes through a Mott
metal-to-insulator transition: in the metallic regime relaxation can be
characterized by evolution toward a steady-state electronic distribution well
described by Fermi-Dirac statistics with an increased effective temperature;
however, in the insulating regime this quasithermal paradigm breaks down with
relaxation toward a nonthermal state with a more complicated electronic
distribution that does not vary monotonically as a function of energy. We
characterize the behavior by studying changes in the energy, photoemission
response, and electronic distribution as functions of time. Qualitatively these
results should be observable on short enough time scales that the electrons
behave like an isolated system not in contact with additional degrees of
freedom which can act as a thermal bath. Importantly, proper modeling used to
analyze experimental findings should account for this behavior, especially when
using strong driving fields or studying materials whose physics may manifest
the effects of strong correlations.Comment: Main Text: 5 pages, 4 figures; Supplementary Material: 3 pages, 5
figure
Examining electron-boson coupling using time-resolved spectroscopy
Nonequilibrium pump-probe time domain spectroscopies can become an important
tool to disentangle degrees of freedom whose coupling leads to broad structures
in the frequency domain. Here, using the time-resolved solution of a model
photoexcited electron-phonon system we show that the relaxational dynamics are
directly governed by the equilibrium self-energy so that the phonon frequency
sets a window for "slow" versus "fast" recovery. The overall temporal structure
of this relaxation spectroscopy allows for a reliable and quantitative
extraction of the electron-phonon coupling strength without requiring an
effective temperature model or making strong assumptions about the underlying
bare electronic band dispersion.Comment: 23 pages, 4 figures + Supplementary Material and movies, to appear in
PR
Real-Time Manifestation of Strongly Coupled Spin and Charge Order Parameters in Stripe-Ordered Nickelate Crystals Using Time-Resolved Resonant X-Ray Diffraction
We investigate the order parameter dynamics of the stripe-ordered nickelate, La1.75Sr0.25NiO4, using time-resolved resonant x-ray diffraction. In spite of distinct spin and charge energy scales, the two order parameters’ amplitude dynamics are found to be linked together due to strong coupling. Additionally, the vector nature of the spin sector introduces a longer reorientation time scale which is absent in the charge sector. These findings demonstrate that the correlation linking the symmetry-broken states does not unbind during the nonequilibrium process, and the time scales are not necessarily associated with the characteristic energy scales of individual degrees of freedom