19 research outputs found

    Muon capture for the front end of a muon collider

    Full text link
    We discuss the design of the muon capture front end for a \mu+-\mu- Collider. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then cooled and accelerated to high energy into a storage ring for high-energy high luminosity collisions. Our initial design is based on the somewhat similar front end of the International Design Study (IDS) neutrino factory.Comment: 3 pp. Particle Accelerator, 24th Conference (PAC'11) 28 Mar - 1 Apr 2011: New York, US

    Use of Helical Transport Channels for Bunch Recombination

    No full text
    Cooling scenarios for a high-luminosity Muon Collider require bunch recombination for optimal luminosity. In this report we note that the tunable chronicity property of a helical transport channel (HTC) makes it a desirable component of a bunch recombiner. A large chronicity HTC is desirable for the bunch recombining transport, while more isochronous transport may be preferred for rf manipulations. Scenarios for bunch recombination are presented, with initial 1-D simulations, in order to set the stage for future 3-D simulation and optimization. HTC transports may enable a very compact bunch recombiner
    corecore