73 research outputs found

    Recent and Future Observations in the X-ray and Gamma-ray Bands: Chandra, Suzaku, GLAST, and NuSTAR

    Get PDF
    This paper presents a brief overview of the accomplishments of the Chandra satellite that are shedding light on the origin of high energy particles in astrophysical sources, with the emphasis on clusters of galaxies. It also discusses the prospects for the new data to be collected with instruments recently launched - such as Suzaku - or those to be deployed in the near future, and this includes GLAST and NuSTAR.Comment: To appear in "Astrophysical Sources of High Energy Particles and Radiation", eds. T. Bulik, B. Rudak, and G. Madejski, AIP Conference Proceedings, vol 801 (2005), proc. conf. in Torun, Poland, 20-24 June 200

    Rhapsody. II. Subhalo Properties and the Impact of Tidal Stripping From a Statistical Sample of Cluster-Size Halos

    Full text link
    We discuss the properties of subhalos in cluster-size halos, using a high-resolution statistical sample: the Rhapsody simulations introduced in Wu et al. (2012). We demonstrate that the criteria applied to select subhalos have significant impact on the inferred properties of the sample, including the scatter in the number of subhalos, the correlation between the subhalo number and formation time, and the shape of subhalos' spatial distribution and velocity structure. We find that the number of subhalos, when selected using the peak maximum circular velocity in their histories (a property expected to be closely related to the galaxy luminosity), is uncorrelated with the formation time of the main halo. This is in contrast to the previously reported correlation from studies where subhalos are selected by the current maximum circular velocity; we show that this difference is a result of the tidal stripping of the subhalos. We also find that the dominance of the main halo and the subhalo mass fraction are strongly correlated with halo concentration and formation history. These correlations are important to take into account when interpreting results from cluster samples selected with different criteria. Our sample also includes a fossil cluster, which is presented separately and placed in the context of the rest of the sample.Comment: 15 pages, 10 figures; Paper I: arXiv:1209.3309; replaced to match published versio

    Rhapsody. I. Structural Properties and Formation History From a Statistical Sample of Re-simulated Cluster-size Halos

    Full text link
    We present the first results from the Rhapsody cluster re-simulation project: a sample of 96 "zoom-in" simulations of dark matter halos of 10^14.8 +- 0.05 Msun/h, selected from a 1 (Gpc/h)^3 volume. This simulation suite is the first to resolve this many halos with ~5x10^6 particles per halo in the cluster-mass regime, allowing us to statistically characterize the distribution of and correlation between halo properties at fixed mass. We focus on the properties of the main halos and how they are affected by formation history, which we track back to z=12, over five decades in mass. We give particular attention to the impact of the formation history on the density profiles of the halos. We find that the deviations from the Navarro-Frenk-White (NFW) model and the Einasto model depend on formation time. Late-forming halos tend to have considerable deviations from both models, partly due to the presence of massive subhalos, while early-forming halos deviate less but still significantly from the NFW model and are better described by the Einasto model. We find that the halo shapes depend only moderately on formation time. Departure from spherical symmetry impacts the density profiles through the anisotropic distribution of massive subhalos. Further evidence of the impact of subhalos is provided by analyzing the phase-space structure. A detailed analysis of the properties of the subhalo population in Rhapsody is presented in a companion paper.Comment: 20 pages, 13 figures, replaced to match published versio

    Optical spectroscopic observations of blazars and gamma-ray blazar candidates in the Sloan Digital Sky Survey Data Release Nine

    Full text link
    We present an analysis of the optical spectra available in the Sloan Digital Sky survey data release nine (SDSS DR9) for the blazars listed in the ROMA-BZCAT and for the gamma-ray blazar candidates selected according to their IR colors. First, we adopt a statistical approach based on MonteCarlo simulations to find the optical counterparts of the blazarslisted in the ROMA-BZCAT catalog. Then we crossmatched the SDSS spectroscopic catalog with our selected samples of blazars and gamma-ray blazar candidates searching for those with optical spectra available to classify our blazar-like sources and, whenever possible, to confirm their redshifts. Our main objectives are determining the classification of uncertain blazars listed in the ROMA-BZCAT and discovering new gamma-ray blazars. For the ROMA-BZCAT sources we investigated a sample of 84 blazars confirming the classification for 20 of them and obtaining 18 new redshift estimates. For the gamma-ray blazars, indicated as potential counterparts of unassociated Fermi sources or with uncertain nature, we established the blazar-like nature of 8 out the 27 sources analyzed and confirmed 14 classifications.Comment: 7 pages, 2 figures, 4 tables, AJ published in 2014 (pre-proof version

    Constraining Emission Models of Luminous Blazar Sources

    Full text link
    Many luminous blazars which are associated with quasar-type active galactic nuclei display broad-band spectra characterized by a large luminosity ratio of their high-energy (gamma-ray) and low-energy (synchrotron) spectral components. This large ratio, reaching values up to 100, challenges the standard synchrotron self-Compton models by means of substantial departures from the minimum power condition. Luminous blazars have also typically very hard X-ray spectra, and those in turn seem to challenge hadronic scenarios for the high energy blazar emission. As shown in this paper, no such problems are faced by the models which involve Comptonization of radiation provided by a broad line-region, or dusty molecular torus. The lack or weakness of bulk Compton and Klein-Nishina features indicated by the presently available data favors production of gamma-rays via up-scattering of infrared photons from hot dust. This implies that the blazar emission zone is located at parsec-scale distances from the nucleus, and as such is possibly associated with the extended, quasi-stationary reconfinement shocks formed in relativistic outflows. This scenario predicts characteristic timescales for flux changes in luminous blazars to be days/weeks, consistent with the variability patterns observed in such systems at infrared, optical and gamma-ray frequencies. We also propose that the parsec-scale blazar activity can be occasionally accompanied by dissipative events taking place at sub-parsec distances and powered by internal shocks and/or reconnection of magnetic fields. These could account for the multiwavelength intra-day flares occasionally observed in powerful blazars sources.Comment: 34 pages, accepted for publication in the Astrophysical Journa

    Upper Bound on the First Star Formation History

    Full text link
    Our understanding of the nature of the extragalactic background light (EBL) has improved with the recent development of gamma-ray observation techniques. An open subject in the context of the EBL is the reionization epoch, which is an important probe of the formation history of first stars, the so-called Population III (Pop III) stars. Although the mechanisms for the formation of Pop III stars are rather well understood on theoretical grounds, their formation history is still veiled in mystery because of their faintness. To shed light into this matter, we study jointly the gamma-ray opacity of distant objects and the reionization constraints from studies of intergalactic gas. By combining these studies, we obtain a sensitive upper bound on the Pop III star formation rate density as ρ˙(z)<0.01[(1+z)/(1+7.0)]3.4(fesc/0.2)1(C/3.0) Myr1 Mpc3\dot\rho_{*}(z)<0.01[(1+z)/{(1+7.0)}]^{3.4}({f_{\rm esc}}/{0.2})^{-1}({C}/{3.0})\ {\rm M}_{\odot} {\rm yr}^{-1}\ {\rm Mpc}^{-3} at z7z\ge7, where fescf_{\rm esc} and CC are the escape fraction of ionizing photons from galaxies and the clumping factor of the intergalactic hydrogen gas. This limit is a 10\sim10 times tighter constraint compared with previous studies that take into account gamma-ray opacity constraints only. Even if we do not include the current gamma-ray constraints, the results do not change. This is because the detected gamma-ray sources are still at z4.35z\le4.35 where the reionization has already finished.Comment: 5 pages, 2 figures, accepted for publication in ApJ

    A Hard X-Ray View of Two Distant VHE Blazars: 1ES 1101-232 and 1ES 1553+113

    Get PDF
    TeV blazars are known as prominent nonthermal emitters across the entire electromagnetic spectrum with their photon power peaking in the X-ray and TeV bands. If distant, absorption of gamma-ray photons by the extragalactic background light (EBL) alters the intrinsic TeV spectral shape, thereby affecting the overall interpretation. Suzaku observations for two of the more distant TeV blazars known to date, 1ES 1101-232 and 1ES 1553+113, were carried out in 2006 May and July, respectively, including a quasi-simultaneous coverage with the state-of-the-art Cerenkov telescope facilities. We report on the resulting data sets with emphasis on the X-ray band and set in context to their historical behavior. During our campaign, we did not detect any significant X-ray or gamma-ray variability. 1ES 1101-232 was found in a quiescent state with the lowest X-ray flux ever measured. The combined XIS and HXD PIN data for 1ES 1101-232 and 1ES 1553+113 clearly indicate spectral curvature up to the highest hard X-ray data point (~30 keV), manifesting as softening with increasing energy. We describe this spectral shape by either a broken power law or a log-parabolic fit with equal statistical goodness of fits. The combined 1ES 1553+113 very high energy spectrum (90-500 GeV) did not show any significant changes with respect to earlier observations. The resulting contemporaneous broadband spectral energy distributions of both TeV blazars are discussed in view of implications for intrinsic blazar parameter values, taking into account the gamma-ray absorption in the EBL.Comment: 9 pages, 10 figure
    corecore