21,263 research outputs found
Effects of Differential Rotation on the Maximum Mass of Neutron Stars
The merger of binary neutron stars is likely to lead to differentially
rotating remnants. In this paper we numerically construct models of
differentially rotating neutron stars in general relativity and determine their
maximum allowed mass. We model the stars adopting a polytropic equation of
state and tabulate maximum allowed masses as a function of differential
rotation and stiffness of the equation of state. We also provide a crude
argument that yields a qualitative estimate of the effect of stiffness and
differential rotation on the maximum allowed mass.Comment: 6 pages, to appear in Ap
Effect of Different Types of Physical Activity on Activities of Daily Living in Older Adults : Systematic Review and Meta-Analysis
Peer reviewedPostprin
Efficient transduction of primary vascular cells by the rare adenovirus serotype 49 vector
Neointima formation and vascular remodelling through vascular smooth muscle cell migration and proliferation can limit the long term success of coronary interventions, for example in coronary artery bypass grafting (CABG). Ex vivo gene therapy has the potential to reduce unnecessary cell proliferation and limit neointima formation in vascular pathologies. To date the species C adenovirus serotype 5 (Ad5) has been commonly used for pre-clinical gene therapy, however its suitability is potentially limited by relatively poor tropism for vascular cells and high levels of pre-existing immunity in the population. To avoid these limitations, novel species of adenovirus are being tested; here we investigate the potential of adenovirus 49 (Ad49) for use in gene therapy. Transduction of primary human vascular cells by a range of adenovirus serotypes was assessed; Ad49 demonstrated highest transduction of both vascular smooth muscle and endothelial cells. Gene transfer with Ad49 in vascular smooth muscle and endothelial cells was possible following short exposure times (*lt;1hr) and with low MOI which is clinically relevant. Ex vivo delivery to surplus CABG tissue showed efficient gene transfer with Ad49, consistent with the in vitro findings. Luminal infusion of Ad49GFP into intact CABG samples ex vivo resulted in efficient vessel transduction. In addition, no seroprevelance rates to Ad49 were observed in a Scottish cohort of patients from cardiovascular clinics, thus circumventing issues with pre-existing immunity. Our results show Ad49 has tropism for vascular cells in vitro and ex vivo and demonstrate Ad49 may be an improved vector for local vascular gene therapy compared to current alternatives
Differential Rotation in Neutron Stars: Magnetic Braking and Viscous Damping
Diffferentially rotating stars can support significantly more mass in
equilibrium than nonrotating or uniformly rotating stars, according to general
relativity. The remnant of a binary neutron star merger may give rise to such a
``hypermassive'' object. While such a star may be dynamically stable against
gravitational collapse and bar formation, the radial stabilization due to
differential rotation is likely to be temporary. Magnetic braking and viscosity
combine to drive the star to uniform rotation, even if the seed magnetic field
and the viscosity are small. This process inevitably leads to delayed collapse,
which will be accompanied by a delayed gravitational wave burst and, possibly,
a gamma-ray burst. We provide a simple, Newtonian, MHD calculation of the
braking of differential rotation by magnetic fields and viscosity. The star is
idealized as a differentially rotating, infinite cylinder consisting of a
homogeneous, incompressible conducting gas. We solve analytically the simplest
case in which the gas has no viscosity and the star resides in an exterior
vacuum. We treat numerically cases in which the gas has internal viscosity and
the star is embedded in an exterior, low-density, conducting medium. Our
evolution calculations are presented to stimulate more realistic MHD
simulations in full 3+1 general relativity. They serve to identify some of the
key physical and numerical parameters, scaling behavior and competing
timescales that characterize this important process.Comment: 11 pages. To appear in ApJ (November 20, 2000
ISCCP CX observations during the FIRE/SRB Wisconsin Experiment from October 14 through November 2, 1986
Maps and tables are presented which show 45 satellite derived physical, radiation, or cloud parameters from ISCCP CX tapes during the FIRE/SRB Wisconsin experiment region from October 14 through November 2, 1986. Pixel locations selected for presentation are for an area which coincided with a 100 x 100 km array of evenly spaced ground truth sites. Area-averaged parameters derived from the ISSCP data should be consistent with area averages from the groundtruth stations
Radiation of Angular Momentum by Neutrinos from Merged Binary Neutron Stars
We study neutrino emission from the remnant of an inspiraling binary neutron
star following coalescence. The mass of the merged remnant is likely to exceed
the stability limit of a cold, rotating neutron star. However, the angular
momentum of the remnant may also approach or even exceed the Kerr limit, J/M^2
= 1, so that total collapse may not be possible unless some angular momentum is
dissipated. We find that neutrino emission is very inefficient in decreasing
the angular momentum of these merged objects and may even lead to a small
increase in J/M^2. We illustrate these findings with a post-Newtonian,
ellipsoidal model calculation. Simple arguments suggest that the remnant may
form a bar mode instability on a timescale similar to or shorter than the
neutrino emission timescale, in which case the evolution of the remnant will be
dominated by the emission of gravitational waves.Comment: 12 pages AASTeX, 2 figures, to appear in Ap
Push verse pull:Inventory-leadtime tradeoff for managing system variability
We study a two-stage push–pull system in an assemble-to-order manufacturing environment. Modelling the system as an inventory-queue model, we construct a decision model to determine the optimal stock level of the semifinished base product and the optimal leadtime of the finished products that will minimize the total operational cost. We analytically characterize the structure of the optimal policy. For systems with moderate demand and upstream processing time variabilities, there exists a threshold determined purely by the tradeoff of operational costs so that when the upstream utilization is above the threshold, the push–pull strategy is optimal; otherwise the pure-pull strategy is optimal. When the inter-arrival time or the upstream service time follows a general probability distribution, the optimal policy depends on the demand or process variability at the upstream stage. Our results can be used to guide managers in selecting the right inventory and leadtime strategy to cope with system variability. We find that in comparison of the downstream variability, under some mild condition, the upstream variability has a more significant impact on the choice of the optimal policy, the corresponding inventory, and lead time. Further, the guaranteed/constant downstream processing time does not always benefit the supply chain performance
Merger of white dwarf-neutron star binaries: Prelude to hydrodynamic simulations in general relativity
White dwarf-neutron star binaries generate detectable gravitational
radiation. We construct Newtonian equilibrium models of corotational white
dwarf-neutron star (WDNS) binaries in circular orbit and find that these models
terminate at the Roche limit. At this point the binary will undergo either
stable mass transfer (SMT) and evolve on a secular time scale, or unstable mass
transfer (UMT), which results in the tidal disruption of the WD. The path a
given binary will follow depends primarily on its mass ratio. We analyze the
fate of known WDNS binaries and use population synthesis results to estimate
the number of LISA-resolved galactic binaries that will undergo either SMT or
UMT. We model the quasistationary SMT epoch by solving a set of simple ordinary
differential equations and compute the corresponding gravitational waveforms.
Finally, we discuss in general terms the possible fate of binaries that undergo
UMT and construct approximate Newtonian equilibrium configurations of merged
WDNS remnants. We use these configurations to assess plausible outcomes of our
future, fully relativistic simulations of these systems. If sufficient WD
debris lands on the NS, the remnant may collapse, whereby the gravitational
waves from the inspiral, merger, and collapse phases will sweep from LISA
through LIGO frequency bands. If the debris forms a disk about the NS, it may
fragment and form planets.Comment: 28 pages, 25 figures, 6 table
- …