723 research outputs found

    Chemical Consequences of Chicxulub Impact Ejecta Reentry

    Get PDF
    The Chicxulub impact 66.0 million years ago initiated the second biggest extinction in the Phanerozoic Eon. The global reentry of material ejected by the impact generated a strong pulse of thermal radiation that wiped out much of the terrestrial biota. The cause of the marine extinction, however, has remained elusive. This report shows that reentering ejecta produces enough NOx to acidify the upper ocean and cause a massive marine extinction. Using non-equilibrium chemically reacting flow simulations coupled with atmospheric transport modeling, it is determined that enough NOx reached the stratosphere and precipitated to overpower the carbonate buffer and acidify the upper ocean down to a pH of 6.7, causing most organisms to perish

    Factors and methods in industrial plant location

    Full text link
    Thesis (M.B.A.)--Boston Universit

    Simulation of Beam Dynamics for MEMS Devices

    Get PDF
    Microelectromechanical Systems (MEMS) are systems made up of small components to complete a bigger goal. Some of these components can be modeled as small beams, which are anchored at both sides, or as cantilever beams. These beams can be subjected to various forces such as Knudsen Forces, Electrostatic Forces as well as G-loading. These devices have many applications such as sensors, actuators and even as accelerometers for airbags, smart phones and game controllers. Modeling the dynamics of these beams is an important task for the MEMS community, consisting of researchers, fabricators, and designers working on one of the many applications of MEMS, and they will benefit from having a tool that can model this. These beam dynamics were simulated on naohub.org by using the RAPPTURE tool, created by Michael Mclennan et. al. to help create graphical user interfaces with different codes to perform analyses, in order to design the graphical user interface for the modeling program. This tool uses a nondimensional, explicit solver to analyze the dynamics of the beams. The results of this are a tool that has been incorporated onto nanoHub.org that is able to simulate the dynamics of microbeams that are subjected to one of many forces. This tool is able to simulate the dynamics of cantilever microbeams with acceleration, electrostatic and Knudsen Forces acting on it, and some more work needs to be done in order to include the effects of these forces on microbeams that are anchored at both sides

    Signal from the noise: model‐based interpretation of variable correspondence between active and passive samplers

    Get PDF
    Combining information from active and passive sampling of mobile animals is challenging because active‐sampling data are affected by limited detection of rare or sparse taxa, while passive‐sampling data reflect both density and movement. We propose that a model‐based analysis allows information to be combined between these methods to interpret variation in the relationship between active estimates of density and passive measurements of catch per unit effort to yield novel information on activity rates (distance/time). We illustrate where discrepancies arise between active and passive methods and demonstrate the model‐based approach with seasonal surveys of fish assemblages in the Florida Everglades, where data are derived from concurrent sampling with throw traps, an enclosure‐type sampler producing point estimates of density, and drift fences with unbaited minnow traps that measure catch per unit effort (CPUE). We compared incidence patterns generated by active and passive sampling, used hierarchical Bayesian modeling to quantify the detection ability of each method, characterized interspecific and seasonal variation in the relationship between density and passively measured CPUE, and used a predator encounter‐rate model to convert variable CPUE–density relationships into ecological information on activity rates. Activity rate information was used to compare interspecific responses to seasonal hydrology and to quantify spatial variation in non‐native fish activity. Drift fences had higher detection probabilities for rare and sparse species than throw traps, causing discrepancies in the estimated spatial distribution of non‐native species from passively measured CPUE and actively measured density. Detection probability of the passive sampler, but not the active sampler, varied seasonally with changes in water depth. The relationship between CPUE and density was sensitive to fluctuating depth, with most species not having a proportional relationship between CPUE and density until seasonal declines in depth. Activity rate estimates revealed interspecific differences in response to declining depths and identified locations and species with high rates of activity. We propose that variation in catchability from methods that passively measure CPUE can be sources of ecological information on activity. We also suggest that model‐based combining of data types could be a productive approach for analyzing correspondence of incidence and abundance patterns in other applications

    Factors Influencing Largemouth Bass Recruitment: Implications for the Illinois Management and Stocking Program

    Get PDF
    Annual Progress Report issued August 2002; NOTE: Two different reports numbered 02/06 were issued from the CAE.Report issued on: August 2002INHS Technical Report prepared for Division of Fisheries Illinois Department of Natural Resource

    CubeSat Sensor Platform for Reentry Aerothermodynamics

    Get PDF
    Even with over 50 years of flying to and returning from Earth orbit, scientists and engineers still lack sufficient data to validate chemical reaction rate models for nonequilibrium reentry flows. This leads to increased mission weight and cost due to the need for more substantial thermal protection system margins. Reaction rates are more accurately determined with flight data than with ground-based testing due to the difficulties in reproducing high enthalpy, low-density flows on the ground. Of the handful of missions that have attempted to gather the necessary information, none have successfully provided science-grade data for a non-ablative vehicle at orbital velocities. Deorbiting CubeSats are ideally suited to collect the uncontaminated reentry data needed to validate atmospheric reentry models. A student team at Purdue University, as part of the Student Aerothermal Spectrometer of Illinois and Indiana (SASSI2) project, has developed a CubeSat sensor platform to take advantage of the natural reentry experienced by all CubeSats. The sensor platform will measure bulk flow properties as well as ambient conditions. Once combined with chemical species information from onboard spectrometers, this data will enable scientists and engineers to determine the chemical reaction rates needed to validate their models

    Climatic effects of the Chicxulub impact ejecta

    Get PDF
    Examining the short and long term effects of the Chicxulub impact is critical for understanding how life developed on Earth. While the aftermath of the initial impact would have produced harmful levels of radiation sufficient for eradicating a large portion of terrestrial life, this process does not explain the concurrent marine extinction. Following the primary impact, a large quantity of smaller spherules would de-orbit and re-enter the earths atmosphere, dispersed nearly uniformly across the planet. This secondary wave of debris would re-enter at high velocities, altering the chemical composition of the atmosphere. Furthermore, the combined surface area for the spherules would be much larger than for the original asteroid, resulting in considerably more potential reactions. For this reason, a new method was developed for predicting the total amount of toxic species produced by the spherule re-entry phase of the Chicxulub event. Using non-equilibrium properties obtained from direct simulation Monte Carlo (DSMC) methods coupled with spherule trajectory integration, the most likely cause of the observed marine extinction was determined

    Light May Have Triggered a Period of Net Heterotrophy in Lake Superior

    Get PDF
    Recent studies of Lake Superior, the Earth\u27s largest freshwater lake by surface area, describe it as net heterotrophic (primary production \u3c community respiration), making it a net source of carbon dioxide (CO2) to the atmosphere. This conclusion is largely based on measurements made between 1998 and 2001. We present a long‐term (1968–2016) analysis of ice‐free (April–November) surface oxygen (O2) saturation data collected by monitoring agencies. These data indicate that Lake Superior\u27s surface waters are typically supersaturated with dissolved O2 from May to September (May–September mean is 103.5% ± 0.6%; pooled mean from April, October, and November is 97.6% ± 1.1%, standard error of the mean). However, these data also support prior studies which describe a state of net heterotrophy from 1998 to 2001. We investigated potential triggers for a transient heterotrophic period and discuss the sources of organic carbon necessary to fuel net heterotrophy in a large oligotrophic lake. We conclude that net heterotrophy likely resulted from an increase in light period and penetration driven by declines in cloud cover, increases in water clarity, and a reduction of winter ice cover following the 1997–1998 El Niño. Together, these could have depleted a pre‐existing pool of dissolved organic carbon (DOC) via photomineralization and/or photochemical degradation. Our results indicate that Lake Superior is typically net autotrophic (calculated annual CO2 influx = ∌ 0.4 Tg C). These results highlight how water clarity and aquatic DOC pools may interact to induce net metabolic shifts in large oligotrophic aquatic ecosystems

    Microtubules regulate disassembly of epithelial apical junctions

    Get PDF
    BACKGROUND: Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. RESULTS: Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. CONCLUSION: Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins

    Regulation of neutrophil function by selective targeting of glycan epitopes expressed on the integrin CD11b/CD18

    Full text link
    Polymorphonuclear neutrophils (PMNs) play a critical role in the innate immune response to invading pathogens. However, dysregulated mucosal trafficking of PMNs and associated epithelial tissue damage is a pathological hallmark of numerous inflammatory conditions including inflammatory bowel disease. The glycoprotein CD11b/CD18 plays a well‐described role in regulating PMN transepithelial migration and PMN inflammatory functions. Previous studies have demonstrated that targeting of the N‐linked glycan Lewis X on CD11b blocks PMN transepithelial migration (TEpM). Given evidence of glycosylation‐dependent regulation of CD11b/CD18 function, we performed MALDI TOF Mass Spectrometry (MS) analyses on CD11b/CD18 purified from human PMNs. Unusual glycan epitopes identified on CD11b/CD18 included high Mannose oligosaccharides recognized by the Galanthus Nivalis lectin and biantennary galactosylated N‐glycans recognized by the Phaseolus Vulgaris erythroagglutinin lectin. Importantly, we show that selective targeting of glycans on CD11b with such lectins results in altered intracellular signaling events that inhibit TEpM and differentially affect key PMN inflammatory functions including phagocytosis, superoxide release and apoptosis. Taken together, these data demonstrate that discrete glycan motifs expressed on CD11b/CD18 such as biantennary galactose could represent novel targets for selective manipulation of CD11b function and reduction of PMN‐associated tissue damage in chronic inflammatory diseases.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/1/fsb220152-sup-0003-FigS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/2/fsb220152_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/3/fsb220152-sup-0004-TableS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/4/fsb220152-sup-0001-FigS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/5/fsb220152.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154461/6/fsb220152-sup-0002-FigS2.pd
    • 

    corecore