3,942 research outputs found

    Evidence for a distant ( 8700 R sub J) Jovian magnetotail: Voyager 2 observations

    Get PDF
    A correlative survey of magnetometer (MAG) and Planetary Radio Astronomy (PRA) 1.2 kHz continuum radiation measurements from Voyager 2 provide evidence for at least eight distant Jovian magnetotail sightings occurring about once a month over the first 2/3 of 1981 at distances of approximately 5,000 to 9,000 R sub J. The occurrences of these events are in good agreement with prior Plasma Wave Science and Plasma Science identifications. Observations of these distant magnetotail, or tail filament, encounters appear most prevalent in both MAC and PRA data sets when the spacecraft was closest to the Jupiter-Sun axis at approximately 6,500 R sub J from the planet; the PRA events are also most intense during those times. A specific tail encounter occurring in mid-February 1981 is analyzed and shown to possess a remarkably symmetric magnetic field signature and to have a bipolar field structure in the central region. The bipolarity is characteristic of most of the eight events

    Saturn as a radio source

    Get PDF
    Magnetospheric radio emissions, Saturn electrostatic discharges, inferred source locations, and emission theories are addressed

    Radio Jupiter after Voyager: An overview of the Planetary Radio Astronomy observations

    Get PDF
    Jupiter's low frequency radio emission morphology as observed by the Planetary Radio Astronomy (PRA) instrument onboard the Voyager spacecraft is reviewed. The PRA measurement capabilities and limitations are summarized following over two years of experience with the instrument. As a direct consequence of the PRA spacecraft observations, unprecedented in terms of their sensitivity and frequency coverage, at least three previous unrecognized emission components were discovered: broadband and narrow band kilometric emission and the lesser arc decametric emission. Their properties are reviewed. In addition, the fundamental structure of the decameter and hectometer wavelength emission, which is believed to be almost exclusively in the form of complex but repeating arc structures in the frequency time domain, is described. Dramatic changes in the emission morphology of some components as a function of Sun-Jupiter-spacecraft angle (local time) are described. Finally, the PRA in suit measurements of the Io plasma torus hot to cold electron density and temperature ratios are summarized

    Voyager spacecraft radio observations of Jupiter: Initial cruise results

    Get PDF
    Jupiter's low-frequency radio emission were detected by the planetary radio astronomy instruments onboard the two Voyager spacecraft. The emission is surprisingly similar in morphology but opposite in polarization to the high-frequency Jovian radio noise that were observed with ground-based telescopes for more than two decades. Several possible explanations for the behavior of the low-frequency emission are examined, but none of them is completely satisfactory

    Planetary radio astronomy observations from Voyager-2 near Saturn

    Get PDF
    Voyager-2 planetry radio astronomy measurements obtained near Saturn are discussed. They indicate that Saturnian kilometric radiation is emitted by a strong, dayside source at auroral latitudes in the northern hemisphere and by a weaker (by more than an order of magnitude) source at complementary latitudes in the southern hemisphere. These emissions are variable both due to Saturn's rotation and, on longer time scales, probably due to influences of the solar wind and the satellite Dione. The Saturn electrostatic discharge bursts first discovered by Voyager-1 and attributed to emissions from the B-ring were again observed with the same broadband spectral properties and a 10(h)11(m) + or - 5(m) episodic recurrence period but with an occurrence frequency of only of about 30 percent of that detected with Voyager-1. During the crossing of the ring plane at a distance of 2.88 R sub S, an intense noise event is interpreted to be consequence of the impact/vaporization/ionization of charged micron-size G-ring particles distributed over a total vertical thickness of about 1500 km

    Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    Get PDF
    Results are reported from the first low frequency radio receiver to be transported into the Jupiter magnetosphere. Dramatic new information was obtained both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio arcs, from above 30 MHz to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Studies in progress are outlined briefly

    Combined LHC/ILC analysis of a SUSY scenario with heavy sfermions

    Get PDF
    We discuss the potential of combined analyses at the Large Hadron Collider and the planned International Linear Collider to explore low-energy supersymmetry in a difficult region of the parameter space characterized by masses of the scalar SUSY particles around 2 TeV. Precision analyses of cross sections for light chargino production and forward--backward asymmetries of decay leptons and hadrons at the ILC, together with mass information on chi^0_2 and squarks from the LHC, allow us to determine the underlying fundamental gaugino/higgsino MSSM parameters and to constrain the masses of the heavy, kinematically inaccessible sparticles. No assumptions on a specific SUSY-breaking mechanism are imposed. For this analysis the complete spin correlations between production and decay processes are taken into account.Comment: new figure added, updated to match the published versio

    Space VLBI at Low Frequencies

    Full text link
    At sufficiently low frequencies, no ground-based radio array will be able to produce high resolution images while looking through the ionosphere. A space-based array will be needed to explore the objects and processes which dominate the sky at the lowest radio frequencies. An imaging radio interferometer based on a large number of small, inexpensive satellites would be able to track solar radio bursts associated with coronal mass ejections out to the distance of Earth, determine the frequency and duration of early epochs of nonthermal activity in galaxies, and provide unique information about the interstellar medium. This would be a "space-space" VLBI mission, as only baselines between satellites would be used. Angular resolution would be limited only by interstellar and interplanetary scattering.Comment: To appear in "Astrophysical Phenomena Revealed by Space VLBI", ed. H. Hirabayashi, P. Edwards, and D. Murphy (ISAS, Japan

    LHC / ILC / Cosmology Interplay

    Get PDF
    There is a strong and growing interplay between particle physics and cosmology. In this talk, I discuss some aspects of this interplay concerning dark matter candidates put forth by theories beyond the Standard Model. In explaining the requirements for collider tests of such dark matter candidates, I focus in particular on the case of the lightest neutralino in the MSSM.Comment: 7 pages, contribution to the proceedings of the IX Workshop on High Energy Physics Phenomenology (WHEPP-9), 3-14 Jan 2006, Bhubaneswar, Indi

    Testing the Higgs Mechanism in the Lepton Sector with multi-TeV e+e- Collisions

    Full text link
    Multi-TeV e+e- collisions provide with a large enough sample of Higgs bosons to enable measurements of its suppressed decays. Results of a detailed study of the determination of the muon Yukawa coupling at 3 TeV, based on full detector simulation and event reconstruction, are presented. The muon Yukawa coupling can be determined with a relative accuracy of 0.04 to 0.08 for Higgs bosons masses from 120 GeV to 150 GeV, with an integrated luminosity of 5 inverse-ab. The result is not affected by overlapping two-photon background.Comment: 6 pages, 2 figures, submitted to J Phys G.: Nucl. Phy
    corecore