21,796 research outputs found

    Guide to the Networked Minds Social Presence Inventory v. 1.2

    Get PDF
    This document introduces the Networked\ud Minds Social Presence Inventory. The\ud inventory is a self-report measure of social\ud presence, which is commonly defined as the\ud sense of being together with another in a\ud mediated environment. The guidelines\ud provide background on the use of the social\ud presence scales in studies of users’ social\ud communication and interaction with other\ud humans or with artificially intelligent agents\ud in virtual environments

    Łukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems

    Get PDF
    A novel approach to self-organizing, highly-complex systems (HCS), such as living organisms and artificial intelligent systems (AIs), is presented which is relevant to Cognition, Medical Bioinformatics and Computational Neuroscience. Quantum Automata (QAs) were defined in our previous work as generalized, probabilistic automata with quantum state spaces (Baianu, 1971). Their next-state functions operate through transitions between quantum states defined by the quantum equations of motion in the Schroedinger representation, with both initial and boundary conditions in space-time. Such quantum automata operate with a quantum logic, or Q-logic, significantly different from either Boolean or Łukasiewicz many-valued logic. A new theorem is proposed which states that the category of quantum automata and automata--homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines) are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R)--Systems which are open, dynamic biosystem networks with defined biological relations that represent physiological functions of primordial organisms, single cells and higher organisms

    Networked Minds Social Presence Inventory:\ud |(Scales only, Version 1.2)\ud Measures of co-presence, social presence,\ud subjective symmetry, and intersubjective symmetry

    Get PDF
    This document includes all the items that comprise the Networked Minds Social Presence Inventory. For more information on the scale, please consult the Guide to the Networked Minds Inventory on this repository

    Internal Consistency and Reliability of the Networked Minds\ud Measure of Social Presence

    Get PDF
    This study sought to develop and test a measure\ud of social presence. Based on review of current\ud definitions and measures, a synthesis of the\ud theoretical construct that meets the criteria and\ud dimensions [1] is proposed for a broad successful\ud measure of social presence. An experiment was\ud conducted to test the internal consistency and\ud criterion validity of the measures as determined by\ud theory, specifically the ability of the measure to\ud distinguish levels of social presence that almost all\ud theories suggest exist between (1) face-to-face\ud interaction and mediated interaction, and (2)\ud different levels of mediated interaction

    Egocentric Spatial Representation in Action and Perception

    Get PDF
    Neuropsychological findings used to motivate the “two visual systems” hypothesis have been taken to endanger a pair of widely accepted claims about spatial representation in visual experience. The first is the claim that visual experience represents 3-D space around the perceiver using an egocentric frame of reference. The second is the claim that there is a constitutive link between the spatial contents of visual experience and the perceiver’s bodily actions. In this paper, I carefully assess three main sources of evidence for the two visual systems hypothesis and argue that the best interpretation of the evidence is in fact consistent with both claims. I conclude with some brief remarks on the relation between visual consciousness and rational agency

    Nonlinear Models of Neural and Genetic Network Dynamics:\ud \ud Natural Transformations of Łukasiewicz Logic LM-Algebras in a Łukasiewicz-Topos as Representations of Neural Network Development and Neoplastic Transformations \ud

    Get PDF
    A categorical and Łukasiewicz-Topos framework for Algebraic Logic models of nonlinear dynamics in complex functional systems such as Neural Networks, Cell Genome and Interactome Networks is introduced. Łukasiewicz Algebraic Logic models of both neural and genetic networks and signaling pathways in cells are formulated in terms of nonlinear dynamic systems with n-state components that allow for the generalization of previous logical models of both genetic activities and neural networks. An algebraic formulation of variable next-state/transfer functions is extended to a Łukasiewicz Topos with an N-valued Łukasiewicz Algebraic Logic subobject classifier description that represents non-random and nonlinear network activities as well as their transformations in developmental processes and carcinogenesis.\u

    Representational information: a new general notion and measure\ud of information

    Get PDF
    In what follows, we introduce the notion of representational information (information conveyed by sets of dimensionally defined objects about their superset of origin) as well as an\ud original deterministic mathematical framework for its analysis and measurement. The framework, based in part on categorical invariance theory [Vigo, 2009], unifies three key constructsof universal science – invariance, complexity, and information. From this unification we define the amount of information that a well-defined set of objects R carries about its finite superset of origin S, as the rate of change in the structural complexity of S (as determined by its degree of categorical invariance), whenever the objects in R are removed from the set S. The measure captures deterministically the significant role that context and category structure play in determining the relative quantity and quality of subjective information conveyed by particular objects in multi-object stimuli

    Complexity over Uncertainty in Generalized Representational\ud Information Theory (GRIT): A Structure-Sensitive General\ud Theory of Information

    Get PDF
    What is information? Although researchers have used the construct of information liberally to refer to pertinent forms of domain-specific knowledge, relatively few have attempted to generalize and standardize the construct. Shannon and Weaver(1949)offered the best known attempt at a quantitative generalization in terms of the number of discriminable symbols required to communicate the state of an uncertain event. This idea, although useful, does not capture the role that structural context and complexity play in the process of understanding an event as being informative. In what follows, we discuss the limitations and futility of any generalization (and particularly, Shannon’s) that is not based on the way that agents extract patterns from their environment. More specifically, we shall argue that agent concept acquisition, and not the communication of\ud states of uncertainty, lie at the heart of generalized information, and that the best way of characterizing information is via the relative gain or loss in concept complexity that is experienced when a set of known entities (regardless of their nature or domain of origin) changes. We show that Representational Information Theory perfectly captures this crucial aspect of information and conclude with the first generalization of Representational Information Theory (RIT) to continuous domains

    Towards a Law of Invariance in Human Concept Learning

    Get PDF
    Invariance principles underlie many key theories in modern science. They provide the explanatory and predictive framework necessary for the rigorous study of natural phenomena ranging from the structure of crystals, to magnetism, to relativistic mechanics. Vigo (2008, 2009)introduced a new general notion and principle of invariance from which two parameter-free (ratio and exponential) models were derived to account for human conceptual behavior. Here we introduce a new parameterized \ud exponential “law” based on the same invariance principle. The law accurately predicts the subjective degree of difficulty that humans experience when learning different types of concepts. In addition, it precisely fits the data from a large-scale experiment which examined a total of 84 category structures across 10 category families (R-Squared =.97, p < .0001; r= .98, p < .0001). Moreover, it overcomes seven key challenges that had, hitherto, been grave obstacles for theories of concept learning

    Abortion and Moral Repugnancy

    Get PDF
    Most arguments concerning abortion center around the issue of rights. This short essay argues that there can be important considerations regarding the matter that have nothing whatsoever to do with rights. In general, the issue of moral decency has never been entirely settled by reference to rights. It can be morally repugnant to do some thing even if one would be acting perfectly within one's rights. I argue that with advances in technology this will turn out to be the case with abortion, given the possibility of transferring a fetus from one womb to another
    corecore