33 research outputs found

    Efficient continuous-wave nonlinear frequency conversion in high-Q Gallium Nitride photonic crystal cavities on Silicon

    Full text link
    We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG) and third harmonic generation (THG) in suspended gallium nitride slab photonic crystal (PhC) cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4×104\times10^{4}, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving normalized conversion efficiency of 2.4×10−3\times10^{-3} W−1W^{-1}, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.Comment: 5 pages, 5 figure

    Bright Room-Temperature Single Photon Emission from Defects in Gallium Nitride

    Full text link
    Single photon emitters play a central role in many photonic quantum technologies. A promising class of single photon emitters consists of atomic color centers in wide-bandgap crystals, such as diamond silicon carbide and hexagonal boron nitride. However, it is currently not possible to grow these materials as sub-micron thick films on low-refractive index substrates, which is necessary for mature photonic integrated circuit technologies. Hence, there is great interest in identifying quantum emitters in technologically mature semiconductors that are compatible with suitable heteroepitaxies. Here, we demonstrate robust single photon emitters based on defects in gallium nitride (GaN), the most established and well understood semiconductor that can emit light over the entire visible spectrum. We show that the emitters have excellent photophysical properties including a brightness in excess of 500x10^3 counts/s. We further show that the emitters can be found in a variety of GaN wafers, thus offering reliable and scalable platform for further technological development. We propose a theoretical model to explain the origin of these emitters based on cubic inclusions in hexagonal gallium nitride. Our results constitute a feasible path to scalable, integrated on-chip quantum technologies based on GaN

    Gallium nitride L3 photonic crystal cavities with an average quality factor of 16,900 in the near infrared

    Get PDF
    Photonic crystal point-defect cavities were fabricated in a GaN free-standing photonic crystal slab. The cavities are based on the popular L3 design, which was optimized using an automated process based on a genetic algorithm, in order to maximize the quality factor. Optical characterization of several individual cavity replicas resulted in an average unloaded quality factor Q = 16,900 at the resonant wavelength {\lambda} ∼1.3\sim 1.3 {\mu}m, with a maximal measured Q value of 22,500. The statistics of both the quality factor and the resonant wavelength are well explained by first-principles simulations including fabrication disorder and background optical absorption.Comment: 3 figure

    Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum

    Full text link
    Second harmonic generation in nonlinear materials can be greatly enhanced by realizing doubly-resonant cavities with high quality factors. However, fulfilling such doubly resonant condition in photonic crystal (PhC) cavities is a long-standing challenge, because of the difficulty in engineering photonic bandgaps around both frequencies. Here, by implementing a second-harmonic bound state in the continuum (BIC) and confining it with a heterostructure design, we show the first doubly-resonant PhC slab cavity with 2.4×10−22.4\times10^{-2} W−1^{-1} conversion efficiency under continuous wave excitation. We also report the confirmation of highly normal-direction concentrated far-field emission pattern with radial polarization at the second harmonic frequency. These results represent a solid verification of previous theoretical predictions and a cornerstone achievement, not only for nonlinear frequency conversion but also for vortex beam generation and prospective nonclassical sources of radiation.Comment: revtex4-2, 7 pages, 5 figures, conference CLE
    corecore