437 research outputs found

    Critical region of the random bond Ising model

    Full text link
    We describe results of the cluster algorithm Special Purpose Processor simulations of the 2D Ising model with impurity bonds. Use of large lattices, with the number of spins up to 10610^6, permitted to define critical region of temperatures, where both finite size corrections and corrections to scaling are small. High accuracy data unambiguously show increase of magnetization and magnetic susceptibility effective exponents β\beta and γ\gamma, caused by impurities. The MM and χ\chi singularities became more sharp, while the specific heat singularity is smoothed. The specific heat is found to be in a good agreement with Dotsenko-Dotsenko theoretical predictions in the whole critical range of temperatures.Comment: 11 pages, 16 figures (674 KB) by request to authors: [email protected] or [email protected], LITP-94/CP-0

    Effect of Random Impurities on Fluctuation-Driven First Order Transitions

    Full text link
    We analyse the effect of quenched uncorrelated randomness coupling to the local energy density of a model consisting of N coupled two-dimensional Ising models. For N>2 the pure model exhibits a fluctuation-driven first order transition, characterised by runaway renormalisation group behaviour. We show that the addition of weak randomness acts to stabilise these flows, in such a way that the trajectories ultimately flow back towards the pure decoupled Ising fixed point, with the usual critical exponents alpha=0, nu=1, apart from logarithmic corrections. We also show by examples that, in higher dimensions, such transitions may either become continuous or remain first order in the presence of randomness.Comment: 13 pp., LaTe

    Replica Symmetry Breaking and the Renormalization Group Theory of the Weakly Disordered Ferromagnet

    Full text link
    We study the critical properties of the weakly disordered pp-component ferromagnet in terms of the renormalization group (RG) theory generalized to take into account the replica symmetry breaking (RSB) effects coming from the multiple local minima solutions of the mean-field equations. It is shown that for p<4p < 4 the traditional RG flows at dimensions D=4ϵD=4-\epsilon, which are usually considered as describing the disorder-induced universal critical behavior, are unstable with respect to the RSB potentials as found in spin glasses. It is demonstrated that for a general type of the Parisi RSB structures there exists no stable fixed points, and the RG flows lead to the {\it strong coupling regime} at the finite scale Rexp(1/u)R_{*} \sim \exp(1/u), where uu is the small parameter describing the disorder. The physical concequences of the obtained RG solutions are discussed. In particular, we argue, that discovered RSB strong coupling phenomena indicate on the onset of a new spin glass type critical behaviour in the temperature interval τ<τexp(1/u)\tau < \tau_{*} \sim \exp(-1/u) near TcT_{c}. Possible relevance of the considered RSB effects for the Griffith phase is also discussed.Comment: 32 pages, Late

    The Unusual Universality of Branching Interfaces in Random Media

    Full text link
    We study the criticality of a Potts interface by introducing a {\it froth} model which, unlike its SOS Ising counterpart, incorporates bubbles of different phases. The interface is fractal at the phase transition of a pure system. However, a position space approximation suggests that the probability of loop formation vanishes marginally at a transition dominated by {\it strong random bond disorder}. This implies a linear critical interface, and provides a mechanism for the conjectured equivalence of critical random Potts and Ising models.Comment: REVTEX, 13 pages, 3 Postscript figures appended using uufile

    Critical behavior of disordered systems with replica symmetry breaking

    Full text link
    A field-theoretic description of the critical behavior of weakly disordered systems with a pp-component order parameter is given. For systems of an arbitrary dimension in the range from three to four, a renormalization group analysis of the effective replica Hamiltonian of the model with an interaction potential without replica symmetry is given in the two-loop approximation. For the case of the one-step replica symmetry breaking, fixed points of the renormalization group equations are found using the Pade-Borel summing technique. For every value pp, the threshold dimensions of the system that separate the regions of different types of the critical behavior are found by analyzing those fixed points. Specific features of the critical behavior determined by the replica symmetry breaking are described. The results are compared with those obtained by the ϵ\epsilon-expansion and the scope of the method applicability is determined.Comment: 18 pages, 2 figure

    Non-perturbative phenomena in the three-dimensional random field Ising model

    Full text link
    The systematic approach for the calculations of the non-perturbative contributions to the free energy in the ferromagnetic phase of the random field Ising model is developed. It is demonstrated that such contributions appear due to localized in space instanton-like excitations. It is shown that away from the critical region such instanton solutions are described by the set of the mean-field saddle-point equations for the replica vector order parameter, and these equations can be formally reduced to the only saddle-point equation of the pure system in dimensions (D-2). In the marginal case, D=3, the corresponding non-analytic contribution is computed explicitly. Nature of the phase transition in the three-dimensional random field Ising model is discussed.Comment: 12 page

    On Vertex Operator Construction of Quantum Affine Algebras

    Full text link
    We describe the construction of the quantum deformed affine Lie algebras using the vertex operators in the free field theory. We prove the Serre relations for the quantum deformed Borel subalgebras of affine algebras, namely the case of sl^2\hat{\it sl}_{2} is considered in detail. We provide some formulas for generators of affine algebra.Comment: LaTeX, 9 pages; typos corrected, references adde

    On chaos in mean field spin glasses

    Full text link
    We study the correlations between two equilibrium states of SK spin glasses at different temperatures or magnetic fields. The question, presiously investigated by Kondor and Kondor and V\'egs\"o, is approached here constraining two copies of the same system at different external parameters to have a fixed overlap. We find that imposing an overlap different from the minimal one implies an extensive cost in free energy. This confirms by a different method the Kondor's finding that equilibrium states corresponding to different values of the external parameters are completely uncorrelated. We also consider the Generalized Random Energy Model of Derrida as an example of system with strong correlations among states at different temperatures.Comment: 19 pages, Late

    Numerical study on Schramm-Loewner Evolution in nonminimal conformal field theories

    Get PDF
    The Schramm-Loewner evolution (SLE) is a powerful tool to describe fractal interfaces in 2D critical statistical systems. Yet the application of SLE is well established for statistical systems described by quantum field theories satisfying only conformal invariance, the so called minimal conformal field theories (CFTs). We consider interfaces in Z(N) spin models at their self-dual critical point for N=4 and N=5. These lattice models are described in the continuum limit by non-minimal CFTs where the role of a Z_N symmetry, in addition to the conformal one, should be taken into account. We provide numerical results on the fractal dimension of the interfaces which are SLE candidates for non-minimal CFTs. Our results are in excellent agreement with some recent theoretical predictions.Comment: 4 pages, 2 figures, v2: typos corrected, published versio
    corecore