22,023 research outputs found

    Tapping Thermodynamics of the One Dimensional Ising Model

    Full text link
    We analyse the steady state regime of a one dimensional Ising model under a tapping dynamics recently introduced by analogy with the dynamics of mechanically perturbed granular media. The idea that the steady state regime may be described by a flat measure over metastable states of fixed energy is tested by comparing various steady state time averaged quantities in extensive numerical simulations with the corresponding ensemble averages computed analytically with this flat measure. The agreement between the two averages is excellent in all the cases examined, showing that a static approach is capable of predicting certain measurable properties of the steady state regime.Comment: 11 pages, 5 figure

    Effective diffusion constant in a two dimensional medium of charged point scatterers

    Full text link
    We obtain exact results for the effective diffusion constant of a two dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure

    Dynamic Matrix Factorization with Priors on Unknown Values

    Full text link
    Advanced and effective collaborative filtering methods based on explicit feedback assume that unknown ratings do not follow the same model as the observed ones (\emph{not missing at random}). In this work, we build on this assumption, and introduce a novel dynamic matrix factorization framework that allows to set an explicit prior on unknown values. When new ratings, users, or items enter the system, we can update the factorization in time independent of the size of data (number of users, items and ratings). Hence, we can quickly recommend items even to very recent users. We test our methods on three large datasets, including two very sparse ones, in static and dynamic conditions. In each case, we outrank state-of-the-art matrix factorization methods that do not use a prior on unknown ratings.Comment: in the Proceedings of 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining 201

    Continuum Derrida Approach to Drift and Diffusivity in Random Media

    Full text link
    By means of rather general arguments, based on an approach due to Derrida that makes use of samples of finite size, we analyse the effective diffusivity and drift tensors in certain types of random medium in which the motion of the particles is controlled by molecular diffusion and a local flow field with known statistical properties. The power of the Derrida method is that it uses the equilibrium probability distribution, that exists for each {\em finite} sample, to compute asymptotic behaviour at large times in the {\em infinite} medium. In certain cases, where this equilibrium situation is associated with a vanishing microcurrent, our results demonstrate the equality of the renormalization processes for the effective drift and diffusivity tensors. This establishes, for those cases, a Ward identity previously verified only to two-loop order in perturbation theory in certain models. The technique can be applied also to media in which the diffusivity exhibits spatial fluctuations. We derive a simple relationship between the effective diffusivity in this case and that for an associated gradient drift problem that provides an interesting constraint on previously conjectured results.Comment: 18 pages, Latex, DAMTP-96-8

    Mutual phase-locking in high frequency microwave nanooscillators as function of field angle

    Full text link
    We perform a qualitative analysis of phase locking in a double point-contact spinvalve system by solving the Landau-Lifshitz-Gilbert-Slonzewski equation using a hybrid-finite-element method. We show that the phase-locking behaviour depends on the applied field angle. Starting from a low field angle, the locking-current difference between the current through contact A and B increases with increasing angle up to a maximum of 14 mA at 30 degree and it decreases thereafter until it reaches a minimum of 1 mA at 75 degree. The tunability of the phase-lock frequency with current decreases linearly with increasing out of plane angle from 45 to 21 MHz/mA.Comment: 11 pages, 3 figures, submitted to AP

    Perturbation theory for the effective diffusion constant in a medium of random scatterer

    Full text link
    We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random media. The random media contains point scatterers of density ρ\rho uniformly distributed through out the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalisation group approach based on thinning out the scatterers, this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme its predictions are confronted with results obtained by numerical simulation.Comment: 22 pages, 6 figures, IOP (J. Phys. A. style

    Metastable configurations of spin models on random graphs

    Full text link
    One-flip stable configurations of an Ising-model on a random graph with fluctuating connectivity are examined. In order to perform the quenched average of the number of stable configurations we introduce a global order-parameter function with two arguments. The analytical results are compared with numerical simulations.Comment: 11 pages Revtex, minor changes, to appear in Phys. Rev.

    Analytical solution of a one-dimensional Ising model with zero temperature dynamics

    Full text link
    The one-dimensional Ising model with nearest neighbour interactions and the zero-temperature dynamics recently considered by Lefevre and Dean -J. Phys. A: Math. Gen. {\bf 34}, L213 (2001)- is investigated. By introducing a particle-hole description, in which the holes are associated to the domain walls of the Ising model, an analytical solution is obtained. The result for the asymptotic energy agrees with that found in the mean field approximation.Comment: 6 pages, no figures; accepted in J. Phys. A: Math. Gen. (Letter to the Editor

    Equilibrium solutions of the shallow water equations

    Get PDF
    A statistical method for calculating equilibrium solutions of the shallow water equations, a model of essentially 2-d fluid flow with a free surface, is described. The model contains a competing acoustic turbulent {\it direct} energy cascade, and a 2-d turbulent {\it inverse} energy cascade. It is shown, nonetheless that, just as in the corresponding theory of the inviscid Euler equation, the infinite number of conserved quantities constrain the flow sufficiently to produce nontrivial large-scale vortex structures which are solutions to a set of explicitly derived coupled nonlinear partial differential equations.Comment: 4 pages, no figures. Submitted to Physical Review Letter

    Fluctuations in the Site Disordered Traveling Salesman Problem

    Full text link
    We extend a previous statistical mechanical treatment of the traveling salesman problem by defining a discrete "site disordered'' problem in which fluctuations about saddle points can be computed. The results clarify the basis of our original treatment, and illuminate but do not resolve the difficulties of taking the zero temperature limit to obtain minimal path lengths.Comment: 17 pages, 3 eps figures, revte
    corecore