193,922 research outputs found

    Molecular gas in QSO host galaxies at z>5

    Full text link
    We present observations with the IRAM Plateau de Bure Interferometer of three QSOs at z>5 aimed at detecting molecular gas in their host galaxies as traced by CO transitions. CO (5-4) is detected in SDSSJ033829.31+002156.3 at z=5.0267, placing it amongst the most distant sources detected in CO. The CO emission is unresolved with a beam size of ~1", implying that the molecular gas is contained within a compact region, less than ~3kpc in radius. We infer an upper limit on the dynamical mass of the CO emitting region of ~3x10^10 Msun/sin(i)^2. The comparison with the Black Hole mass inferred from near-IR data suggests that the BH-to-bulge mass ratio in this galaxy is significantly higher than in local galaxies. From the CO luminosity we infer a mass reservoir of molecular gas as high as M(H2)=2.4x10^10 Msun, implying that the molecular gas accounts for a significant fraction of the dynamical mass. When compared to the star formation rate derived from the far-IR luminosity, we infer a very short gas exhaustion timescale (~10^7 yrs), comparable to the dynamical timescale. CO is not detected in the other two QSOs (SDSSJ083643.85+005453.3 and SDSSJ163033.90+401209.6) and upper limits are given for their molecular gas content. When combined with CO observations of other type 1 AGNs, spanning a wide redshift range (0<z<6.4), we find that the host galaxy CO luminosity (hence molecular gas content) and the AGN optical luminosity (hence BH accretion rate) are correlated, but the relation is not linear: L(CO) ~ [lambda*L_lambda(4400A)]^0.72. Moreover, at high redshifts (and especially at z>5) the CO luminosity appears to saturate. We discuss the implications of these findings in terms of black hole-galaxy co-evolution.Comment: Accepted for publication in A&A Letters, 6 pages, 3 figure

    Lyman Break Galaxies at z~5: Rest-frame UV Spectra II

    Full text link
    We present the results of spectroscopy of Lyman Break Galaxies (LBGs) at z~5 in the J0053+1234 field with the Faint Object Camera and Spectrograph on the Subaru telescope. Among 5 bright candidates with z' < 25.0 mag, 2 objects are confirmed to be at z~5 from their Ly alpha emission and the continuum depression shortward of Ly alpha. The EWs of Ly alpha emission of the 2 LBGs are not so strong to be detected as Ly alpha emitters, and one of them shows strong low-ionized interstellar (LIS) metal absorption lines. Two faint objects with z' \geq 25.0 mag are also confirmed to be at z~5, and their spectra show strong Ly alpha emission in contrast to the bright ones. These results suggest a deficiency of strong Ly alpha emission in bright LBGs at z~5, which has been discussed in our previous paper. Combined with our previous spectra of LBGs at z~5 obtained around the Hubble Deep Field-North (HDF-N), we made a composite spectrum of UV luminous (M_1400 \leq -21.5 mag) LBGs at z~5. The resultant spectrum shows a weak Ly alpha emission and strong LIS absorptions which suggests that the bright LBGs at z~5 have chemically evolved at least to ~0.1 solar metallicity. For a part of our sample in the HDF-N region, we obtained near-to-mid infrared data, which constraint stellar masses of these objects. With the stellar mass and the metallicity estimated from LIS absorptions, the metallicities of the LBGs at z~5 tend to be lower than those of the galaxies with the same stellar mass at z \lesssim 2, although the uncertainty is very large.Comment: 17 pages, 5 figures, accepted for publication in PAS

    Star Forming Galaxies at z > 5

    Full text link
    We present recent progress in searching for galaxies at redshift from z = 5 to z = 10. Wide-field and senstive surveys with 8m class telescopes have been providing more than several hundreds of star forming galaxies at z =5 - 7 that are probed in the optical window. These galaxies are used to study the early cosmic star formation activity as well as the early structure formation in the universe. Moreover, near infrared deep imaging and spectropscopic surveys have found probable candidates of galaxies from z = 7 to z = 10. Although these candidates are too faint to be identified unambiguously, we human being are now going to the universe beyond 13 billion light years, close to the epoch of first-generations stars; i.e., Population III stars. We also mention about challanges to find Population III-dominated galaxies in the early universe.Comment: 8 pages, no figure, Proceeding of IAU Symposium 250, in pres
    corecore