2,070,765 research outputs found

    Interpretations of Association Rules by Granular Computing

    Get PDF
    We present interpretations for association rules. We first introduce Pawlak's method, and the corresponding algorithm of finding decision rules (a kind of association rules). We then use extended random sets to present a new algorithm of finding interesting rules. We prove that the new algorithm is faster than Pawlak's algorithm. The extended random sets are easily to include more than one criterion for determining interesting rules. We also provide two measures for dealing with uncertainties in association rules

    FP-tree and COFI Based Approach for Mining of Multiple Level Association Rules in Large Databases

    Full text link
    In recent years, discovery of association rules among itemsets in a large database has been described as an important database-mining problem. The problem of discovering association rules has received considerable research attention and several algorithms for mining frequent itemsets have been developed. Many algorithms have been proposed to discover rules at single concept level. However, mining association rules at multiple concept levels may lead to the discovery of more specific and concrete knowledge from data. The discovery of multiple level association rules is very much useful in many applications. In most of the studies for multiple level association rule mining, the database is scanned repeatedly which affects the efficiency of mining process. In this research paper, a new method for discovering multilevel association rules is proposed. It is based on FP-tree structure and uses cooccurrence frequent item tree to find frequent items in multilevel concept hierarchy.Comment: Pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS, Vol. 7 No. 2, February 2010, USA. ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules

    Full text link
    Association rules are among the most widely employed data analysis methods in the field of Data Mining. An association rule is a form of partial implication between two sets of binary variables. In the most common approach, association rules are parameterized by a lower bound on their confidence, which is the empirical conditional probability of their consequent given the antecedent, and/or by some other parameter bounds such as "support" or deviation from independence. We study here notions of redundancy among association rules from a fundamental perspective. We see each transaction in a dataset as an interpretation (or model) in the propositional logic sense, and consider existing notions of redundancy, that is, of logical entailment, among association rules, of the form "any dataset in which this first rule holds must obey also that second rule, therefore the second is redundant". We discuss several existing alternative definitions of redundancy between association rules and provide new characterizations and relationships among them. We show that the main alternatives we discuss correspond actually to just two variants, which differ in the treatment of full-confidence implications. For each of these two notions of redundancy, we provide a sound and complete deduction calculus, and we show how to construct complete bases (that is, axiomatizations) of absolutely minimum size in terms of the number of rules. We explore finally an approach to redundancy with respect to several association rules, and fully characterize its simplest case of two partial premises.Comment: LMCS accepted pape

    Temporal fuzzy association rule mining with 2-tuple linguistic representation

    Get PDF
    This paper reports on an approach that contributes towards the problem of discovering fuzzy association rules that exhibit a temporal pattern. The novel application of the 2-tuple linguistic representation identifies fuzzy association rules in a temporal context, whilst maintaining the interpretability of linguistic terms. Iterative Rule Learning (IRL) with a Genetic Algorithm (GA) simultaneously induces rules and tunes the membership functions. The discovered rules were compared with those from a traditional method of discovering fuzzy association rules and results demonstrate how the traditional method can loose information because rules occur at the intersection of membership function boundaries. New information can be mined from the proposed approach by improving upon rules discovered with the traditional method and by discovering new rules

    Performance analysis of modified algorithm for finding multilevel association rules

    Full text link
    Multilevel association rules explore the concept hierarchy at multiple levels which provides more specific information. Apriori algorithm explores the single level association rules. Many implementations are available of Apriori algorithm. Fast Apriori implementation is modified to develop new algorithm for finding multilevel association rules. In this study the performance of this new algorithm is analyzed in terms of running time in seconds

    Towards a semantic and statistical selection of association rules

    Full text link
    The increasing growth of databases raises an urgent need for more accurate methods to better understand the stored data. In this scope, association rules were extensively used for the analysis and the comprehension of huge amounts of data. However, the number of generated rules is too large to be efficiently analyzed and explored in any further process. Association rules selection is a classical topic to address this issue, yet, new innovated approaches are required in order to provide help to decision makers. Hence, many interesting- ness measures have been defined to statistically evaluate and filter the association rules. However, these measures present two major problems. On the one hand, they do not allow eliminating irrelevant rules, on the other hand, their abun- dance leads to the heterogeneity of the evaluation results which leads to confusion in decision making. In this paper, we propose a two-winged approach to select statistically in- teresting and semantically incomparable rules. Our statis- tical selection helps discovering interesting association rules without favoring or excluding any measure. The semantic comparability helps to decide if the considered association rules are semantically related i.e comparable. The outcomes of our experiments on real datasets show promising results in terms of reduction in the number of rules
    corecore