3,686 research outputs found

    Community sewage sensors towards evaluation of drug use trends: detection of cocaine in wastewater with DNA-directed immobilization aptamer sensors

    Get PDF
    Illicit drug use has a global concern and effective monitoring and interventions are highly required to combat drug abuse. Wastewater-based epidemiology (WBE) is an innovative and cost-effective approach to evaluate community-wide drug use trends, compared to traditional population surveys. Here we report for the first time, a novel quantitative community sewage sensor (namely DNA-directed immobilization of aptamer sensors, DDIAS) for rapid and cost-effective estimation of cocaine use trends via WBE. Thiolated single-stranded DNA (ssDNA) probe was hybridized with aptamer ssDNA in solution, followed by co-immobilization with 6-mercapto-hexane onto the gold electrodes to control the surface density to effectively bind with cocaine. DDIAS was optimized to detect cocaine at as low as 10 nM with a dynamic range from 10 nM to 5 μM, which were further employed for the quantification of cocaine in wastewater samples collected from a wastewater treatment plant in seven consecutive days. The concentration pattern of the sampling week is comparable with that from mass spectrometry. Our results demonstrate that the developed DDIAS can be used as community sewage sensors for rapid and cost-effective evaluation of drug use trends, and potentially implemented as a powerful tool for on-site and real-time monitoring of wastewater by un-skilled personnel

    Label-Free, Highly Sensitive Electrochemical Aptasensors Using Polymer-Modified Reduced Graphene Oxide for Cardiac Biomarker Detection

    Get PDF
    Acute myocardial infarction (AMI), also recognized as a ???heart attack,??? is one leading cause of death globally, and cardiac myoglobin (cMb), an important cardiac biomarker, is used for the early assessment of AMI. This paper presents an ultrasensitive, label-free electrochemical aptamer-based sensor (aptasensor) for cMb detection using polyethylenimine (PEI)-functionalized reduced graphene oxide (PEI???rGO) thin films. PEI, a cationic polymer, was used as a reducing agent for graphene oxide (GO), providing highly positive charges on the rGO surface and allowing direct immobilization of negatively charged single-strand DNA aptamers against cMb via electrostatic interaction without any linker or coupling chemistry. The presence of cMb was detected on Mb aptamer-modified electrodes using differential pulse voltammetry via measuring the current change due to the direct electron transfer between the electrodes and cMb proteins (Fe3+/Fe2+). The limits of detection were 0.97 pg mL???1 (phosphate-buffered saline) and 2.1 pg mL???1 (10-fold-diluted human serum), with a linear behavior with logarithmic cMb concentration. The specificity and reproducibility of the aptasensors were also examined. This electrochemical aptasensor using polymer-modified rGO shows potential for the early assessment of cMb in point-of-care testing applications

    Real-time, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors

    Get PDF
    Aptamer functionalized addressable SWNT-film arrays between cantilever electrodes were successfully developed for biosensor applications. Dielectrophoretically aligned SWNT suspended films made possible highly specific and rapid detection of target proteins with a large binding surface area. Thrombin aptamer immobilized SWNT-film FET biosensor resulted in a real-time, label-free, and electrical detection of thrombin molecules down to a concentration of ca. 7 pM with a step-wise rapid response time of several seconds.X113338sciescopu

    Nanomaterials for Healthcare Biosensing Applications

    Get PDF
    In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing

    Electrochemical Aptasensor for Detection of Dopamine

    Get PDF
    This work presents a proof of concept of a novel, simple, and sensitive method of detection of dopamine, a neurotransmitter within the human brain. We propose a simple electrochemical method for the detection of dopamine using a dopamine-specific aptamer labeled with an electrochemically active ferrocene tag. Aptamers immobilized on the surface of gold screen-printed gold electrodes via thiol groups can change their secondary structure by wrapping around the target molecule. As a result, the ferrocene labels move closer to the electrode surface and subsequently increase the electron transfer. The cyclic voltammograms and impedance spectra recorded on electrodes in buffer solutions containing different concentration of dopamine showed, respectively, the increase in both the anodic and cathodic currents and decrease in the double layer resistance upon increasing the concentration of dopamine from 0.1 to 10 nM L-1. The high affinity of aptamer-dopamine binding (KD ≈ 5 nM) was found by the analysis of the binding kinetics. The occurrence of aptamer-dopamine binding was directly confirmed with spectroscopic ellipsometry measurements

    Applications of Graphene Quantum Dots in Biomedical Sensors

    Get PDF
    Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz

    Electrochemical aptasensor array for multiple detection of human osteopontin

    Get PDF
    Electrochemical aptasensor arrays have been recently used to detect several proteins reported as disease biomarkers, mainly due to their known advantages, that include high affinity, sensitivity, specificity and low costs, among others. This study describes the development of a label-free electrochemical multi-aptasensor array, for the simultaneous detection of human osteopontin (OPN), using two specific aptamers. To enable multiplexed protein assay, RNA and DNA aptamers were immobilized in the dual-screen-printed gold working electrodes via streptavidin-biotin interaction, and using the [Fe(CN)6]3-/4- as the redox probe for cyclic voltammetry measurements. The multi-aptasensor array herein developed exhibited a good response and selectivity to detect human OPN in the presence of other interfering proteins. Considering these preliminary results, the DNA/RNA dual aptasensor array could potentially be used as an analytical tool for the specific detection of human OPN, and for cancer diagnosis overall. © 2018, Sociedade Portuguesa de Electroquimica.The authors acknowledge the financial support from the Strategic funding of UID/BIO/04469/2013 and from project ref. RECI/BBB-EBI/ 0179/2012 (project number FCOMP-01-0124-FEDER-027462). This work was also financially supported by Project POCI-01–0145-FEDER-006984 – Associate Laboratory LSRE-LCM and by Project UID/QUI/00616/2013 – CQ-VR, both funded by FEDER - Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT - Fundação para a Ciência e a Tecnologia, Portugal. S. Meirinho also acknowledges the doctoral grant (ref SFRH/BD/65021/2009) funded by FCT.info:eu-repo/semantics/publishedVersio

    Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX

    Get PDF
    A DNA aptamer with affinity and specificity for human osteopontin (OPN), a potential breast cancer biomarker, was selected using the SELEX process, considering its homology rate and the stability of its secondary structures. This aptamer exhibited a satisfactory affinity towards OPN, showing dissociation constants lower than 2.5 nM. It was further used to develop a simple, label-free electrochemical aptasensor against OPN. The aptasensor showed good sensitivity towards OPN in standard solutions, being the square wave voltammetry (SWV), compared to the cyclic voltammetry, the most sensitive technique with detection and quantification limits of 1.4 ± 0.4 nM and 4.2 ± 1.1 nM, respectively. It showed good reproducibility and acceptable selectivity, exhibiting low signal interferences from other proteins, as thrombin, with 2.610 times lower current signals-off than for OPN. The aptasensor also successfully detected OPN in spiked synthetic human plasma. Using SWV, detection and quantification limits (1.3 ± 0.1 and 3.9 ± 0.4 nM) within the OPN plasma levels reported for patients with breast cancer (0.44.5 nM) or with metastatic or recurrent breast cancer (0.98.4 nM) were found. Moreover, preliminary assays, using a sample of human plasma, showed that the aptasensor and the standard ELISA method quantified similar OPN levels (2.2 ± 0.7 and 1.7 ± 0.1 nM, respectively). Thus, our aptasensor coupled with SWV represents a promising alternative for the detection of relevant breast cancer biomarkers.The authors acknowledge the financial support from the Strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), and from project BioTecNorte (project number NORTE-01-0145-FEDER-000004). This work was also financially supported by Project POCI-01–0145-FEDER-006984 – Associate Laboratory LSRE-LCM and by Project UID/QUI/00616/2013 – CQ-VR both funded by FEDER - Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT - Fundação para a Ciência e a Tecnologia, Portugal. S. Meirinho also acknowledges the research grant provided by Project UID/EQU/50020/2013.info:eu-repo/semantics/publishedVersio

    Label free aptasensor for lysozyme detection : a comparison of the analytical performance of two aptamers

    Get PDF
    This work presents a comparison of two different aptamers (COX and TRAN) for the detection of the ubiquitous protein lysozyme using aptamer-based biosensors. The detection is based on the specific recognition by the aptamer immobilized on screen printed carbon electrodes (SPCEs) via diazonium coupling reaction. The quantitative detection of lysozyme protein was achieved by electrochemical impedance spectroscopy (EIS). Very good linear ranges and detection limits for the lysozyme detection were obtained, from 0.025 to 1 μM and 725nM using aptamer COX and from 0.025 to 1 μM and 31.7nM using aptamer TRAN. The obtained results showed that the developed aptasensors exhibit good specificity, stability and reproducibility for lysozyme detection. The aptasensors were also tested in wine samples; very good recovery rates were obtained in the range from 96.4 to 102% for lysozyme detection. The recovery rates confirm the reliability and suitability of the developed method in wine matrix. The developed method could be a useful and promising platform for detection of lysozyme in different applications

    Voltammetric aptasensors for protein disease biomarkers detection: a review

    Get PDF
    "Available online 24 May 2016"An electrochemical aptasensor is a compact analytical device where the bioreceptor (aptamer) is coupled to a transducer surface to convert a biological interaction into a measurable signal (current) that can be easily processed, recorded and displayed. Since the discovery of the Systematic Evolution of Ligands by Enrichment (SELEX) methodology, the selection of aptamers and their application as bioreceptors has become a promising tool in the design of electrochemical aptasensors. Aptamers present several advantages that highlight their usefulness as bioreceptors such as chemical stability, cost effectiveness and ease of modification towards detection and immobilization at different transducer surfaces. In this review, a special emphasis is given to the potential use of electrochemical aptasensors for the detection of protein disease biomarkers using voltammetry techniques. Methods for the immobilization of aptamers onto electrode surfaces are discussed, as well as different electrochemical strategies that can be used for the design of aptasensors.The authors acknowledge the financial support from the Strategic funding of UID/BIO/04469/2013 unit, from Project POCI-01-0145- FEDER-006984 – Associate Laboratory LSRE-LCM funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT - Fundação para a Ciência e a Tecnologia and project ref. RECI/BBB-EBI/ 0179/2012 (project number FCOMP-01-0124-FEDER-027462) and S. Meirinhos's doctoral grant (ref SFRH/BD/65021/2009) funded by Fundação para a Ciência e a Tecnologia
    corecore