19,668 research outputs found

    Development and Validation of Credit-Scoring Models

    Get PDF
    Accurate credit-granting decisions are crucial to the efficiency of the decentralized capital allocation mechanisms in modern market economies. Credit bureaus and many .nancial institutions have developed and used credit-scoring models to standardize and automate, to the extent possible, credit decisions. We build credit scoring models for bankcard markets using the Office of the Comptroller of the Currency, Risk Analysis Division (OCC/RAD) consumer credit database (CCDB). This unusu- ally rich data set allows us to evaluate a number of methods in common practice. We introduce, estimate, and validate our models, using both out-of-sample contempora- neous and future validation data sets. Model performance is compared using both separation and accuracy measures. A vendor-developed generic bureau-based score is also included in the model performance comparisons. Our results indicate that current industry practices, when carefully applied, can produce models that robustly rank-order potential borrowers both at the time of development and through the near future. However, these same methodologies are likely to fail when the the objective is to accurately estimate future rates of delinquency or probabilities of default for individual or groups of borrowers.

    Semiparametric Bayesian inference in multiple equation models

    Get PDF
    This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure valid posterior inference despite the fact that the number of parameters is greater than the number of observations. We develop an empirical Bayesian approach that allows us to estimate the prior smoothing hyperparameters from the data. An advantage of our semiparametric model is that it is written as a seemingly unrelated regressions model with independent normal-Wishart prior. Since this model is a common one, textbook results for posterior inference, model comparison, prediction and posterior computation are immediately available. We use this model in an application involving a two-equation structural model drawn from the labour and returns to schooling literatures

    Introducing COZIGAM: An R Package for Unconstrained and Constrained Zero-Inflated Generalized Additive Model Analysis

    Get PDF
    Zero-inflation problem is very common in ecological studies as well as other areas. Nonparametric regression with zero-inflated data may be studied via the zero-inflated generalized additive model (ZIGAM), which assumes that the zero-inflated responses come from a probabilistic mixture of zero and a regular component whose distribution belongs to the 1-parameter exponential family. With the further assumption that the probability of non-zero-inflation is some monotonic function of the mean of the regular component, we propose the constrained zero-inflated generalized additive model (COZIGAM) for analyzingzero-inflated data. When the hypothesized constraint obtains, the new approach provides a unified framework for modeling zero-inflated data, which is more parsimonious and efficient than the unconstrained ZIGAM. We have developed an R package COZIGAM which contains functions that implement an iterative algorithm for fitting ZIGAMs and COZIGAMs to zero-inflated data basedon the penalized likelihood approach. Other functions included in the packageare useful for model prediction and model selection. We demonstrate the use ofthe COZIGAM package via some simulation studies and a real application.

    Warranty Data Analysis: A Review

    Get PDF
    Warranty claims and supplementary data contain useful information about product quality and reliability. Analysing such data can therefore be of benefit to manufacturers in identifying early warnings of abnormalities in their products, providing useful information about failure modes to aid design modification, estimating product reliability for deciding on warranty policy and forecasting future warranty claims needed for preparing fiscal plans. In the last two decades, considerable research has been conducted in warranty data analysis (WDA) from several different perspectives. This article attempts to summarise and review the research and developments in WDA with emphasis on models, methods and applications. It concludes with a brief discussion on current practices and possible future trends in WDA
    corecore