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Abstract

Zero-inflation problem is very common in ecological studies as well as other areas.
Nonparametric regression with zero-inflated data may be studied via the zero-inflated gen-
eralized additive model (ZIGAM), which assumes that the zero-inflated responses come
from a probabilistic mixture of zero and a regular component whose distribution belongs
to the 1-parameter exponential family. With the further assumption that the probability
of non-zero-inflation is some monotonic function of the mean of the regular component,
we propose the constrained zero-inflated generalized additive model (COZIGAM) for an-
alyzing zero-inflated data. When the hypothesized constraint obtains, the new approach
provides a unified framework for modeling zero-inflated data, which is more parsimonious
and efficient than the unconstrained ZIGAM. We have developed an R package COZIGAM
which contains functions that implement an iterative algorithm for fitting ZIGAMs and
COZIGAMs to zero-inflated data based on the penalized likelihood approach. Other
functions included in the package are useful for model prediction and model selection. We
demonstrate the use of the COZIGAM package via some simulation studies and a real
application.

Keywords: EM algorithm, model selection, penalized likelihood, proportionality constraints.

1. Introduction

Generalized additive models (GAMs, Hastie and Tibshirani 1990; Wood 2006) are widely
used in applied statistics, especially for modeling nonlinear effects of the covariates in sci-
entific and quantitative studies. See, for instance, Ciannelli, Fauchald, Chan, Agostini, and
Dingsør (2007b) and the references therein in ecological analysis. GAMs can be estimated by
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maximizing the penalized likelihood which, in general, equals

L(η)− λ2J2(η), (1)

where η is the unknown regression function on the link scale, L(η) is the log-likelihood func-
tional, J2(η) is some roughness penalty, and λ is the smoothing parameter that controls the
trade-off between the goodness-of-fit and the smoothness of the function. The estimated re-
gression functions are smoothing splines under mild regularity conditions. See Wahba (1990),
Green and Silverman (1994), Wood (2000) and Gu (2002) for details on the penalized likeli-
hood approach and smoothing splines.

Zero-inflated data abound in ecological studies as well as in other scientific and quantitative
fields, where the data contain an excess of zero responses. The problem is known as zero-
inflation. For example, fisheries trawl survey data often contain a large number of zero catches,
due to the fact that fish swim in schools influenced by food availability and irregular current
pattern, see Ciannelli et al. (2007b). Zero-inflated data are often analyzed via a mixture
model specifying that the response variable comes from a probabilistic mixture of zero and a
regular component whose distribution (referred to as the regular distribution below) belongs
to the 1-parameter exponential family distribution. See Mullahy (1986), Lambert (1992) and
Heilbron (1994) for discussions in the parametric setting. Nonparametric regression analysis
of zero-inflated data can be studied via the zero-inflated generalized additive model (ZIGAM)
(Chiogna and Gaetan 2007), where the mean of the regular component and the probability of
non-zero-inflation are each modeled as some nonparametric smooth predictors, say, sµ(T ) and
sp(T ) respectively with T as the covariate. An alternative approach to modeling zero-inflated
data proceeds in two stages: (i) model the presence/absence pattern by a GAM and (ii)
model the response given it is non-zero by another GAM (Barry and Welsh 2002). When the
response variable has a continuous regular distribution, the two-stage approach is equivalent
to the ZIGAM, otherwise the two approaches are generally different. In stage (ii), the two-
stage approach generally specifies the conditional response distribution given it is non-zero to
belong to a zero-truncated 1-parameter exponential family, and hence its fitting involves very
complex link functions and variance functions. Here, we mainly focus on the ZIGAM and its
constrained versions.

If the process generating the non-zero-inflated responses and the zero-inflation process con-
stitute distinct mechanisms, the functional forms of the two smooth predictors sµ(T ) and
sp(T ) in a ZIGAM are unconstrained. However, in many ecological data, the two processes
are coupled and bear some systematic relationship. For example, in trawl survey studies,
zero-inflation often arises from the spatio-temporal aggregation of fish due to their schooling
behavior. For such data, the probability of positive catch is positively correlated to the volume
occupied by the schools of fish which generally increases with the mean (local) abundance
of the fish. Therefore, in the situation involving spatio-temporally aggregated subjects, the
probability of positive catch is likely a monotonic function of the mean (local) abundance of
the study population. Liu and Chan (2008) considered the case of imposing a proportional-
ity constraint on sµ(T ) and sp(T ) up to an additive constant, which leads to a constrained
zero-inflated generalized additive model (COZIGAM); see below. The imposed constraint
in a COZIGAM reflects the mechanistic nature of the zero-inflation process. Moreover, it
promotes estimation efficiency by effectively reducing the number of model parameters. The
ZIP(τ) model proposed by Lambert (1992) in the parametric Poisson regression setting is
a harbinger of our new approach. Here, the proportionality constraint may be relaxed by
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letting the proportionality constants be component-specific, which allows the non-zero-data
generating process and the zero-inflation process to be partially coupled. This relaxation is
practically important, as illustrated by the following argument. If there are several covariates,
some may influence zero-inflation in one direction and the severity mean in the other: for ex-
ample, in the study of cigarette consumption, age may have a positive influence on the binary
event smoker/non-smoker and on the number of cigarettes consumed by a smoker ‘yesterday’.
Whether the test person was ill the day before the survey may affect the number of smoked
cigarettes but is irrelevant for the smoker/non-smoker event. The component-specific con-
straint formulation is appropriate for modeling such situations assuming component-specific
proportionality. If the latter assumption fails, then imposing component-specific porportion-
ality will result in bias. On the other hand, unconstrained ZIGAM adds probably many
parameters to the model required by the smooth function and decreases the accuracy of pa-
rameter estimation, even though it may improve the modeling of the covariates influence on
the responses. Thus, to constraint or not to constraint hinges on the trade-off between bias
and variance. Below, we shall review a BIC-type model selection criterion proposed by Liu
and Chan (2008) for aiding such a decision, by assessing the validity of the proportionality
constraint imposed by the COZIGAM against the (unconstrained) ZIGAM. The model selec-
tion approach can be readily extended for the purpose of choosing between a ZIGAM and a
GAM, which we do here.

To implement the regression analysis via the ZIGAM and the COZIGAM in real applications,
we have developed an R (R Development Core Team 2010) package COZIGAM, which can be
downloaded from the Comprehensive R Archive Network at http://CRAN.R-project.org/

package=COZIGAM. The purpose of this paper is to introduce the COZIGAM and describe
how to use this package. The structure of this paper is as follows. We introduce the model
formulation of both the constrained and unconstrained ZIGAMs, and briefly discuss the model
estimation and the proposed model selection criterion in Section 2. The use of the COZIGAM
package is illustrated by both Monte Carlo studies and a real data application in Section 3.
We briefly conclude in Section 4.

2. Model formulation and estimation

In this section we briefly outline the model formulations of the constrained and the uncon-
strained ZIGAMs, see Liu and Chan (2008) for details. Next, we summarize a model estima-
tion procedure which may involve the expectation-maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977). Then, we will review the Bayesian model selection criterion developed
by Liu and Chan (2008) for choosing between the constrained and the unconstrained ZIGAMs,
and extend it for choosing between a ZIGAM and a GAM, i.e., without zero-inflation.

2.1. Model formulation

Let Y = (Y1, Y2, . . . , Yn)> be the responses and T = (T 1,T 2, . . . ,T n) be the covariates
where Yi is univariate and T i consists of m sub-vectors: T i = (T1i, T2i, . . . , Tmi)

>. Assume
that given the covariates T i = ti, Yi’s are independent. A GAM (Wood 2006, Chapter 3)
relating the response Yi to the covariate ti has the general form:

gµ(µi) = η(ti),

http://CRAN.R-project.org/package=COZIGAM
http://CRAN.R-project.org/package=COZIGAM
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where µi = E(Yi), gµ is a monotonic link function, and η is some unknown smooth function
to be estimated. Assume further that η is additive in the m covariates:

η(ti) = β0 + s1(t1i) + s2(t2i) + · · ·+ sm(tmi), (2)

where each sj , j = 1, · · · ,m, is a centered unknown smooth function, and β0 is the intercept.
Moreover, the conditional distribution of the response variable Yi is assumed to belong to
the 1-parameter exponential family, as in a generalized linear model (GLM), see Nelder and
Wedderburn (1972). In particular,

Yi|ti ∼ f(yi|ϑi), i = 1, . . . , n, (3)

where f(yi|ϑi) is the probability density (mass) function of some 1-parameter exponential
family distribution, which has the form:

f(yi|ϑi) = exp

{
ωi(yiϑi − b(ϑi))

φ
+ ci(yi, φ)

}
, (4)

where ϑi is the canonical parameter, ωi is known constant denoting the weight of the data
case which is often equal to 1, and φ is the dispersion parameter. GAMs can be estimated by
the penalized likelihood approach, see Wood (2006, Chapter 4) for details.

Due to its flexibility, GAMs have become widely used in various fields. Unfortunately, GAMs
cannot be directly applicable for regression analysis with zero-inflated data due to the excess
of zeroes. Instead, nonparametric regression with zero-inflated responses may be studied
via the zero-inflated generalized additive models (ZIGAMs). The ZIGAM assumes that the
response variable follows a probabilistic mixture distribution of a zero atom and a regular
component whose distribution belongs to the 1-parameter exponential family:

Yi|ti ∼ h(yi) =

{
0 with probability 1− pi
f(yi|ϑi) with probability pi,

(5)

where the zero atom models the zero-inflation explicitly and f is defined in (4). Below we
refer to f in the mixture model (5) as the regular pdf and its corresponding distribution the
regular distribution, and µi = Ef (Yi) as the regular mean which is assumed to link to the
covariates as given by (2). The non-zero-inflation probability pi is linked to the covariate as
follows:

gp(pi) = ξ(ti), (6)

where gp is another link function, for instance, the logit function, and ξ is an unknown
smooth function. If η and ξ are independent (infinite-dimensional) parameters, the model
is an unconstrained ZIGAM in which case zero-inflation could be caused by a mechanism
different from that underlying the non-zero-inflated responses. On the other hand, if the
zero-inflation process is coupled with the process generating the non-zero-inflated data, we
may expect some monotonic relationship between η and ξ. In particular, we consider the case
that ξ is constrained to be a linear function of η:

ξ = α+ δ · η, (7)

where α and δ are two unknown coefficients. We will refer to the zero-inflated model (5) with
constraint (7) as the constrained zero-inflated generalized additive model (COZIGAM).
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In some cases, the non-zero-inflated data generating process and the zero-inflation process are
partially coupled so that the latter process may only depend on a subset of the smooth com-
ponents affecting the non-zero-inflated response. In addition, these smooth components may
affect the zero-inflation differently. Thus, the proportionality constraint (7) in the COZIGAM
may be relaxed to allow possibly different proportionality coefficients for different covariates
in the zero-inflation process. Specifically, we consider the component-specific proportionality
constraint:

ξ(ti) = α+ δ1s1(t1i) + δ2s2(t2i) + · · ·+ δmsm(tmi), (8)

where α and δ = (δ1, . . . , δm)> are unknown parameters. In constraint (8) we assign a specific
proportionality coefficient for each additive component so that different smooth components
may possibly have different effects on the zero-inflation process. Furthermore, in some appli-
cations, it may be desirable to fix some proportionality coefficients to be zero, which enforces
that the corresponding component covariates do not affect the zero-inflation process. In Sec-
tion 3 we will illustrate the use of the COZIGAM package for fitting ZIGAMs, and COZIGAMs
with both constraints (7) and (8).

2.2. Model estimation

We now briefly outline the method of penalized likelihood for estimating a COZIGAM, with
constraint (7), that is proposed by Liu and Chan (2008). The method can be readily modified
for estimating a COZIGAM with component-specific constraint (8) or fitting an unconstrained
ZIGAM. According to the reproducing kernel Hilbert space theory, under some mild conditions
and for finite sample size, we can reparametrize the infinite-dimensional parameter η by a
vector parameter β = (β0,β

>
1 ,β

>
2 , · · · ,β>m)>, so that

sj(tji) = Xijβj , j = 1, · · · ,m,

where Xij is the i-th row of the design matrix Xj of the basis functions related to the j-th
smooth component sj . Furthermore, the roughness penalty J2(sj) can often be expressed as
a quadratic form β>j Sjβj/2, where Sj is a penalty matrix, see Gu (2002) and Wood (2006).
Define the binary variables Ei, i = 1, . . . , n, with

Ei =

{
1 if Yi 6= 0
0 if Yi = 0.

If the underlying regular exponential family distribution is continuous, for instance, Gaussian
or Gamma, the penalized log-likelihood then equals

lp(α, δ,β) =
n∑
i=1

[
ei log{pif(yi|ϑi)}+ (1− ei) log (1− pi)

]
− 1

2

m∑
j=1

λ2jβ
>
j Sjβj , (9)

where λj is the smoothing parameter associated with sj .

If the regular distribution assigns positive probability to zero, which is the case for many
discrete distributions including Poisson and binomial, the penalized log-likelihood function
becomes somewhat complex:

lp(α, δ,β) =

n∑
i=1

[
ei log pif(yi|ϑi) + (1− ei) log (1− pi + pif(0|ϑi))

]
− 1

2

m∑
j=1

λ2jβ
>
j Sjβj . (10)
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Below, a COZIGAM will be referred to as a continuous (discrete) COZIGAM if its penalized
likelihood function is given by Equation 9 (Equation 10). Liu and Chan (2008) proposed an
iterative algorithm for maximizing (9) or (10) with respect to the parameter θ = (α, δ,β>)>

for the case of known smoothing parameter, which is motivated by the Penalized Iteratively
Re-weighted Least Squares (PIRLS) method (Wood 2006, p. 169) and the Penalized Quasi-
Likelihood (PQL) method (see, for instance, Green 1987; Breslow and Clayton 1993).

Direct maximization of (9) could be done via a modified PIRLS algorithm, and the smoothing
parameter could be determined by generalized cross validation (GCV) or unbiased risk esti-
mation (UBRE); see Wood (2006, Chapter 4) for further discussions about GCV and UBRE.
However, for a discrete COZIGAM, direct optimization of the penalized likelihood (10) is
challenging because it complicates the use of GCV or UBRE for choosing the smoothing pa-
rameter. In this case, if we augment the data by the binary variables Zi, i = 1, . . . , n, which
are defined by

Zi =

{
1 if Yi ∼ f(yi|ϑi)
0 if Yi ∼ 0,

(11)

the complete-data penalized log-likelihood equals

lcp(α, δ,β) =
n∑
i=1

[
zi log{pif(yi|ϑi)}+ (1− zi) log (1− pi)

]
− 1

2

m∑
j=1

λ2jβ
>
j Sjβj ,

which has the same form as (9) and can be optimized through the modified PIRLS. Note that
the variable Zi defined by (11) is latent so that the EM algorithm is employed for estimating a
discrete COZIGAM. The covariance matrix of the estimator can be approximately computed
by inverting the observed Fisher information. See Liu and Chan (2008) for details.

2.3. Model selection

In statistical analysis, one important issue is model selection or model comparison among
multiple competing models. One of the widely used model selection criteria is the Bayesian
information criterion (BIC, Schwarz 1978), which selects the model with maximum posterior
model probability. In the Bayesian framework, the posterior probability of model Mi equals

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
,

where P (Mi) is the prior probability of model Mi, D denotes the data, and

P (D) =
∑
i

P (D|Mi)P (Mi)

is the normalizing constant. P (D|Mi) is the marginal likelihood (also known as the evidence)
of the model Mi, and it equals

P (D|Mi) =

∫
P (D|θ,Mi)P (θ|Mi)dθ, (12)

where P (D|θ,Mi) is the likelihood of the parameter θ under the model Mi, and P (θ|Mi)
is the prior probability of θ under Mi. Assume a flat prior that P (Mi) ∝ constant , the
posterior model probability P (Mi|D) is proportional to the marginal likelihood P (D|Mi).
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Just like the BIC, we will use the marginal likelihood as the model selection criterion that
maximizes the posterior model probability, which is applicable for choosing among nested
or non-nested models; see Busemeyer and Wang (2000). Preference will be given to models
with larger marginal likelihoods. For the unconstrained ZIGAM and the COZIGAM, there is
generally no closed-form solution for the integral on the right side of (12). Laplace method
(see, for example, Tierney and Kadane 1986) is used to approximately compute the marginal
likelihood.

Liu and Chan (2008) gave the following approximate formula of the logarithmic marginal
likelihood for the COZIGAM:

logE ≈ lp(α̂, δ̂, β̂)− K + 2

2
log n− 1

2
log
∣∣H∣∣+

K + 2−B
2

log 2π +
1

2

m∑
j=1

log
∣∣λ2jSj+∣∣, (13)

where θ̂ = (α̂, δ̂, β̂
>

)> is the maximum penalized likelihood estimator, K = dim(β), Sj+ is a
diagonal matrix of dimension bj with all the strictly positive eigenvalues of the penalty matrix
Sj arranged in descending order on the leading diagonal, B =

∑m
j=1 bj , and H is the negative

Hessian matrix of lp/n evaluated at θ̂.

For the ZIGAM, Liu and Chan (2008) provided the following approximation:

logE ≈ lp(β̂, γ̂)− K +K∗

2
log n− 1

2
log
∣∣H∣∣

+
K +K∗ − (B +B∗)

2
log 2π +

1

2

m∑
j=1

log
∣∣λ2jSj+∣∣+

1

2

m∗∑
j=1

log
∣∣ϕ2
jS
∗
j+

∣∣,
where the unconstrained infinite-dimensional parameter ξ (defined in Equation 6) can be

reparametrized by a parameter vector γ = (γ0,γ
>
1 ,γ

>
2 , · · · ,γ>m∗)>, (β̂

>
, γ̂>)> is the maxi-

mum penalized likelihood estimator, K∗ = dim(γ), S∗j+ of dimensions b∗j is a diagonal ma-
trix consisting of the strictly positive eigenvalues of the penalty matrix associated with γj ,

B∗ =
∑m∗

j=1 b
∗
j , ϕj , j = 1, · · · ,m∗, are the smoothing parameters associated with ξ, and H is

the negative Hessian matrix of the normalized penalized likelihood function evaluated at the
maximizer.

Here, we extend the model selection approach of Liu and Chan (2008) for assessing the
presence of zero-inflation. This can be done by fitting a ZIGAM and a GAM to the data, and
then compare their marginal likelihoods. Following Liu and Chan (2008), it can be shown
that the logarithmic marginal likelihood of a GAM (without zero-inflation) is given by

logE ≈ lp(β̂)− K

2
log n− 1

2
log
∣∣H∣∣+

K −B
2

log 2π +
1

2

m∑
j=1

log
∣∣λ2jSj+∣∣. (14)

Note that the difference between (13) and (14) is that lp(α, δ,β) in (13) is the penalized log-
likelihood of a COZIGAM; furthermore the COZIGAM adds two more degrees of freedom
to the GAM, while lp(β) in (14) is the penalized log-likelihood of a GAM, and accordingly
the negative Hessian matrices in the two formulas are different. A higher marginal likelihood
from the ZIGAM would indicate that there is zero-inflation in the count data. Otherwise,
fitting the data by a GAM instead of a ZIGAM is appropriate.
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3. The COZIGAM package

The R package COZIGAM facilitates the fitting of a ZIGAM or a COZIGAM to zero-inflated
data. It requires the installation of the mgcv package (Wood 2008) whose magic() function
is made use of in the implementation of the maximum penalized likelihood estimation algo-
rithm. Some features of the mgcv package are also shared by the COZIGAM package. In
this section, we illustrate the use of the COZIGAM package. First we demonstrate the use
by fitting discrete COZIGAMs to simulated data. Then a real data analysis will be studied
where the response variable follows a zero-inflated lognormal distribution. The main function
for fitting a COZIGAM is cozigam(), which calls the COZIGAM.dis() or PCOZIGAM.dis()

function (depending on the type of constraint imposed) if it is a discrete COZIGAM. Other-
wise COZIGAM.cts() or PCOZIGAM.cts() function is used for model estimation of continuous
COZIGAMs. Similarly, the zigam() function which calls ZIGAM.dis() or ZIGAM.cts() is
used for fitting a ZIGAM. Some other useful functions including visualizing and summarizing
a fitted COZIGAM will be discussed. In addition, the model selection criterion for choosing
between an unconstrained ZIGAM and a COZIGAM will be illustrated. The key R commands
as well as outputs will be provided with associated graphics. All numerical illustrations re-
ported below were computed using a PC with a CPU of 2.40×2 GHz and 3 GB RAM.

Several alternative R packages are available for fitting various models with zero-inflated data.
For example, gamlss (Stasinopoulos and Rigby 2007) fits a GAM with zero-inflated data
based on a different model framework; pscl (Zeileis, Kleiber, and Jackman 2008) provides
standard parametric hurdle and zero-inflated model fitting; MCMCglmm (Hadfield 2010) uses
a Bayesian approach for estimating mixed models, including functionality for zero-inflated
Poisson data. Further information about these models and their R implementations can be
found in these references.

3.1. Simulated data

The simulations are based on two test functions, denoted by s1 and s2, which are taken from
Wood (2006, p. 197). The test function s1 has a 1-dimensional argument, while s2 has a
2-dimensional argument (see Figure 1).

s1(t) = 0.2t11(10(1− t))6 + 10(10t)3(1− t)10, 0 ≤ t ≤ 1

s2(t1, t2) = 0.3× 0.4π
{

1.2e−(t1−0.2)
2/0.32−(t2−0.3)2+

0.8e−(t1−0.7)
2/0.32−(t2−0.8)2/0.42

}
, 0 ≤ t1, t2 ≤ 1.

In the COZIGAM package, the two test functions are named f0 and test respectively. We
will simulate some Poisson and binomial count data based on these functions and then use the
simulated data to fit COZIGAMs and ZIGAMs. As mentioned earlier, because the underlying
regular distributions in these examples are discrete, the EM algorithm is used to find the

maximizer of the penalized log-likelihood function (10), with initial values µ
[0]
i = max(yi, 0.01),

p
[0]
i = 0.7 for all i = 1, · · · , n, and α[0] = 0, δ[0] = 1.

Example 1: Zero-inflated Poisson data

The first example is a constrained zero-inflated Poisson model with the regular mean response
given by µi = exp(η0(ti)), where η0(ti) = s1(t1i)/5 + 2s2(t2i, t3i), and the non-zero-inflation
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Figure 1: Test functions used in simulation studies.

probability given by pi = logit−1{α0 + δ0η0(ti)}, where α0 = −0.5, δ0 = 1.0; the covariate
(T1, T2, T3) is assumed to be independent and uniformly distributed over [0, 1]3. Data from
this model can be simulated in steps. In an R session, the following set of codes loads the
COZIGAM package and generates 500 cases of covariate values.

R> library("COZIGAM")

R> set.seed(8)

R> n <- 500

R> t1 <- runif(n, 0, 1)

R> t2 <- runif(n, 0, 1)

R> t3 <- runif(n, 0, 1)

Next, we simulate the latent Poisson count data without zero-inflation:

R> eta0 <- f0(t1) / 5 + 2 * test(t2, t3)

R> mu0 <- exp(eta0)

R> y <- rpois(rep(1, n), mu0)

Finally, the Poisson variates are then set to zero with probability 1 − pi. The zero-inflated
Poisson data may be saved in a data frame, say named data1:

R> alpha0 <- -0.5

R> delta0 <- 1.0

R> p0 <- .Call("logit_linkinv", alpha0 + delta0 * eta0, PACKAGE = "stats")

R> z <- rbinom(rep(1,n), 1, p0)

R> y[z == 0] <- 0

R> data1 <- data.frame(y = y, t1 = t1, t2 = t2, t3 = t3)
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Figure 2: Histogram of the simulated zero-inflated Poisson responses.

Note that in the process of simulating the data, we actually have the information of the latent
indicator variable Zi (defined by Equation 11). However, in model fitting, we will not use this
information but treat the Zi’s as missing.

The simulated zero-inflated dataset comprises of 200 zero responses out of 500 observations
(40%), see Figure 2. Among the 200 zero responses, some are due to zero-inflation and the
rest are the zero realizations of the Poisson distribution (and we cannot tell them apart).

To fit a COZIGAM to the simulated zero-inflated Poisson data, simply call the cozigam()

function in the COZIGAM package:

R> res1 <- cozigam(y ~ s(t1) + s(t2,t3), constraint = "proportional",

+ conv.crit.out = 1e-3, family = poisson, data = data1)

iteration = 2 norm = 0.9125572

iteration = 3 norm = 0.4334777

iteration = 4 norm = 0.3359116

iteration = 5 norm = 0.3083645

iteration = 6 norm = 0.2004221

iteration = 7 norm = 0.1152472

iteration = 8 norm = 0.06296885

iteration = 9 norm = 0.03366744

iteration = 10 norm = 0.01782503

iteration = 11 norm = 0.009393632

iteration = 12 norm = 0.004939645

iteration = 13 norm = 0.00259332
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iteration = 14 norm = 0.001360528

iteration = 15 norm = 0.0007138289

==========================================

estimated alpha = -0.4963178 ( 0.3005424 )

estimated delta = 0.8134658 ( 0.2017702 )

==========================================

Here y ~ s(t1,t2)+s(t3) is a GAM formula (see the gam() function in the mgcv pack-
age) specifying the response and predictor variables structure; the argument constraint

= "proportional" specifies the proportionality constraint (7); conv.crit.out is the pre-
selected stopping criterion for the iterative estimation procedure (see below); the distribution
of the regular component (the non-zero-inflated data) is specified via the argument family,
which is similar to the family argument of the glm() function for fitting a GLM; the data

argument points to the dataset where the responses and covariates are saved. For a full list of
the arguments as well as the object returned by the cozigam() function, see its help manual
by running the command ?cozigam.

At the end of each iteration, the iteration number and the maximum norm of the difference
between the current estimate and the previous one is displayed on the console, which lets the
user keep track of the progress of the estimation procedure. The maximum norm is defined
as

norm = max
(
|α̂− α̂old|, |δ̂ − δ̂old|

)
,

where α̂, δ̂ are the current parameter estimates and α̂old, δ̂old are the estimates from the
previous iteration. The iteration procedure is considered to have successfully converged if
the maximum norm is sufficiently small, i.e., it is less than the value specified by the argu-
ment conv.crit.out, at which iterate the estimation algorithm stops. For this example, the
estimation algorithm converged after 15 iterations which took less than 10 seconds. Further-
more, the function outputs the parameter estimates α̂, δ̂, with their standard errors enclosed
in parentheses. The generic function summary() presents further useful information about
the fitted COZIGAM:

R> summary(res1)

Family: poisson

Link function: log

Formula:

y ~ s(t1) + s(t2, t3)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.31622 0.03636 36.198 < 2e-16 ***

alpha -0.49632 0.30054 -1.651 0.0987 .

delta1 0.81347 0.20177 4.032 5.54e-05 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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Approximate significance of smooth terms:

edf Est.rank Chi.sq p-value

s(t1) 7.435 9 377.2 <2e-16 ***

s(t2,t3) 11.744 24 132.9 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Scale est. = 1 n = 500

The above summary consists of two parts: the first part reports the parametric estimation
results which includes the estimate of the intercept term β0 in (2), as well as those of the
constraint parameters α and δ. The corresponding standard errors of the estimators and the
Wald test results for testing whether the parameters are individually equal to 0 are also given.
The second part reports the estimation results of the nonparametric smooth components,
which lists the efficient degrees of freedom (edf) for each smooth term and the approximate
F tests for significance. See Wood (2006) for relevant discussions in the context of GAM.
The last line in the summary reports the scale (dispersion) parameter estimate of the regular
distribution or its true value (if it is known), and the sample size as well; for example, the
scale parameter is known and equals 1 for Poisson distributions. The users can check the help
manual on the object returned by the cozigam() function (in this example saved as res1)
for more information of the fitted COZIGAM.

The smooth function estimates can be displayed using the generic function plot(). The
commands

R> par(mfrow = c(1, 2))

R> plot(res1, shade.ci = TRUE, Rug = TRUE)

produce two figures, one for each of two smooth components in the model res1, as shown in
Figure 3. The plotting convention depends on the dimension of the argument of the function.
For the case of 1-dimensional argument, the function estimate is plotted as a smooth function
by connecting the point estimates over a grid by lines in the plot, with a 95% pointwise
confidence band. Setting the argument shade.ci to TRUE shades the confidence band in grey
but otherwise the confidence band is unshaded except that its upper and lower boundaries
are drawn as dashed lines. The covariate values of each data case are drawn as a short stick
on the bottom of the x-axis if Rug = TRUE.

For the 2-dimensional case, the function estimate is displayed in a contour plot by default,
with the covariate values of each data case plotted as a dot if Rug = TRUE (the right panel of
Figure 3). Alternatively, the function estimate can be drawn in a perspective plot by setting
the argument plot.2d = "persp". We could also require only the second smooth component
s2 to be plotted by letting select = 2. The command to produce Figure 4 is listed below.
Note that the test functions are scaled in the model and the estimated smooth functions are
centered at 0.

R> plot(res1, select = 2, plot.2d = "persp")
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Figure 3: Plots of fitted smooth functions in Example 1. The left panel depicts the estimate
of s1, and the right panel displays the estimated s2.

Given a new set of covariates, we can use the generic function predict() to make predictions
for the new data. Suppose we have two new observations with predictors t̃1 = (0.5, 0.2, 0.3)>

and t̃2 = (0.8, 0.1, 0.7)>. To predict the response values at those two points, we first create a
data frame named newdata containing the new data:

R> newdata <- data.frame(t1 = c(0.5, 0.8), t2 = c(0.2, 0.1),

+ t3 = c(0.3, 0.7))

R> newdata

t1 t2 t3

1 0.5 0.2 0.3

2 0.8 0.1 0.7

The names of the covariates in the new data set must match those in the fitted model. In
the case of missing values in the covariate or if there is a mis-match in the covariate names,
the predict() function will return an error message. Next, we call the function predict()

to make predictions for the new observations:

R> pred <- predict(res1, newdata = newdata, se.fit = TRUE, type = "response")

R> pred

fit se p

1 6.112847 0.6563248 0.7263883

2 2.327128 0.2841570 0.5475469
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x2

x3
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Figure 4: Perspective plot of the estimated s2(t2, t3) in Example 1.

With the option se.fit = TRUE, the standard errors of the point predictors are computed
and reported in the output. The argument type = "response" specifies that predictions
are done on the original scale of the response, whereas if type = "link", predictions on the
link scale are returned. The returned object is a data frame that consists of three columns:
the column fit gives the predicted response for each observation; the column se gives the
standard errors of the point predictors; and the last column p gives the predicted non-zero-
inflation probability.

Example 2: Zero-inflated binomial data

In the second example, we fit a zero-inflated binomial model with the component-specific
constraint (8). We first generate the latent binomial count data with probability of success
µ0(ti) = logit−1{s̄1(t1i)/5+3s̄2(t2i, t3i)−0.6}, where s̄ denotes the function centered over the
sampling points and N is the number of trials:

R> set.seed(23)

R> n <- 800

R> N <- as.integer(runif(n, 3, 11))

R> t1 <- runif(n, 0, 1)

R> t2 <- runif(n, 0, 1)

R> t3 <- runif(n, 0, 1)

R> eta.p10 <- (f0(t1) - mean(f0(t1)))/5
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R> eta.p20 <- (test(t2, t3) - mean(test(t2, t3))) * 3

R> eta0 <- eta.p10 + eta.p20 - 0.6

R> mu0 <- binomial()$linkinv(eta0)

R> y <- rbinom(n, N, mu0)

Then the binomial responses are set to zero with probability 1− pi, where pi = logit−1{0.8 +
1.2s̄1(t1i)}, i.e., the true constraint coeffients are α0 = 0.8, δ10 = 1.2 and δ20 = 0:

R> alpha0 <- 0.8

R> delta10 <- 1.2

R> delta20 <- 0

R> p0 <- .Call("logit_linkinv", alpha0 + delta10*eta.p10 + delta20 * eta.p20,

+ PACKAGE = "stats")

R> z <- rbinom(p0, 1, p0)

R> y[z == 0] <- 0

R> data2 <- data.frame(y = y, t1 = t1, t2 = t2, t3 = t3, N = N)

Note that in this example the zero-inflation process is in fact partially coupled with the
regular binomial data generating process, because we set δ20 = 0 so that the non-zero-
inflation probability only depends on the first smooth component s(t1). We can fit a CO-
ZIGAM with component-specific constraint to the data by setting the argument constraint
= "component" in the cozigam() function:

R> res2 <- cozigam(y/N ~ s(t1) + s(t2,t3), constraint = "component",

zero.delta = c(NA, NA), size = data2$N, family = binomial, data = data2)

iteration = 2 norm = 2.024079

iteration = 3 norm = 0.5581407

iteration = 4 norm = 0.3056323

iteration = 5 norm = 0.1603028

iteration = 6 norm = 0.1344999

iteration = 7 norm = 0.1180119

iteration = 8 norm = 0.0928619

iteration = 9 norm = 0.06900769

iteration = 10 norm = 0.04951595

iteration = 11 norm = 0.03471060

iteration = 12 norm = 0.02394276

iteration = 13 norm = 0.01632966

iteration = 14 norm = 0.01104894

iteration = 15 norm = 0.007433903

iteration = 16 norm = 0.004981663

iteration = 17 norm = 0.003328833

iteration = 18 norm = 0.002219848

iteration = 19 norm = 0.001478151

iteration = 20 norm = 0.0009832362

==========================================
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estimated alpha = 0.740801 ( 0.09779283 )

estimated delta1 = 1.287182 ( 0.2679535 )

estimated delta2 = -0.02485902 ( 0.2285234 )

==========================================

The argument zero.delta can be used to fix some proportionality coefficients to be 0 in order
to exclude the corresponding covariates (smooth components) from the zero-inflation process.
For example, if the model has two smooth components s(t1i) and s(t2i), zero.delta = c(NA,

0) would include only the first smooth component in the zero-inflation constraint, so that,
gp(pi) = α + δ1s(t1i). In the above example, we initially did not fix δ2, but let the data tell
us which covariate may affect the zero-inflation process, as, in practice, there may be little
information on which factors affects zero-inflation. Instead, we fitted a COZIGAM with all
constraint coefficients being free parameters. The fitted model yields that δ̂2 = −0.025 with
standard error 0.229, which is not significant. Hence, we fitted another COZIGAM with δ2
fixed to be 0 (unreported). In practice we can use similar strategy or some prior information
to determine which smooth components should be included in the zero-inflation constraint.

The use of model selection criterion

In Section 2 we have discussed the proposed model selection criterion for choosing between an
unconstrained ZIGAM and a COZIGAM. We demonstrate its use here. Let us revisit the first
example with zero-inflated Poisson responses. We have fitted a COZIGAM with the fitted
model saved as res1. The validity of the proportionality constraint (7) can be checked via
model comparison between the fitted COZIGAM and an unconstrained ZIGAM, the latter of
which can be fitted by the zigam() function:

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

t1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t2

t3

 0.1 

 0.2 

 0.2 

 0.2 
 0.3 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 

Figure 5: Plots of the smooth function components of the non-zero-inflation probability, on
the logit scale, of the fitted ZIGAM with the data of Example 1. The left panel depicts the
estimate of s1, and the right panel displays the estimated s2.
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Figure 6: Plots of fitted non-zero-inflation probabilities vs. the true from both the COZIGAM
(left) and ZIGAM (right).

R> res1.un <- zigam(y ~ s(t1) + s(t2,t3), family = poisson, data = data1)

We can then compare the (approximate) logarithmic marginal likelihoods of the two models:

R> res1$logE; res1.un$logE

[1] -962.3233

[1] -969.3942

The COZIGAM has a greater marginal likelihood (−962.32) than the unconstrained ZIGAM
(−969.39), which suggests that the more parsimonious COZIGAM is preferred by the model
selection criterion. It is instructive to compare the non-zero-probability functions from the
two model fits. Because the ZIGAM assumes no constraint on the smooth function of non-
zero-inflation probability ξ, its estimated smooth components have much wider confidence
intervals (Figure 3) as compared to their counterparts of the COZIGAM (Figure 3). Figure 6
plots the estimated non-zero-inflation probabilities versus their true counterpart with the left
diagram for the fitted COZIGAM and the right digram for the fitted (unconstrained) ZIGAM,
which shows that the ZIGAM results in much more variable estimates than the COZIGAM.
The larger variablility in the ZIGAM estimates owes to the fact that the ZIGAM estimate
of the non-zero-inflation probability function is based on the presence/absence binary data,
which is generally less informative than the non-zero-inflated data. This confirms that fitting
a COZIGAM gains efficiency when the constraint obtains (Liu and Chan 2008).

Furthermore, we can use the model selection criterion to check the presence of zero-inflation.
The function disgam() can be used to fit discrete GAMs and calculate their corresponding
logarithmic marginal likelihoods:
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Figure 7: Histogram of the simulated non-zero-inflated Poisson responses.

R> res1.gam <- disgam(y ~ s(t1) + s(t2,t3), family = poisson, data = data1)

R> res1.gam$logE

[1] -1245.787

The logarithmic marginal likelihood of the fitted GAM (−1245.79) which does not incorporate
zero-inflation is much lower than that of the (unconstrained) ZIGAM model, revealing the
presence of zero-inflation.

Consider another example in which we simulated Poisson data that are not zero-inflated
and the Poisson mean equals exp{s1(t1)/3 − 1} with sample size n = 300. The simulated
Poisson responses have 98 zeroes. The histogram of the non-zero-inflated Poisson responses
in Figure 7 looks very similar to Figure 2 where zero-inflation does exist. Therefore, in this
case, we cannot easily tell whether zero-inflation is present in the data. However, the model
selection approach provides a convenient way to assessing the presence of zero-inflation.

The Poisson data were generated by the following R codes:

R> set.seed(1)

R> n <- 300

R> t1 <- runif(n, 0, 1)

R> eta0 <- f0(t1)/3 - 1

R> mu0 <- exp(eta0)

R> y <- rpois(rep(1, n), mu0)

R> data3 <- data.frame(y = y, t1 = t1)

We fitted a GAM and a ZIGAM to the data respectively and then compared their logarithmic
marginal likelihoods:
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Figure 8: Proportions of choosing the true model under different sample sizes. The simulation
results are based on 1000 replications for each case.

R> res3.gam <- disgam(y ~ s(t1), family = poisson, data = data3)

R> res3.un <- zigam(y ~ s(t1), family = poisson, data = data3)

R> res3.gam$logE; res3.un$logE

[1] -460.9531

[1] -476.6719

The higher logarithmic marginal likelihood of the fitted GAM (−460.95) suggests that there
is no zero-inflation in the data.

We could also compare the marginal likelihood of a GAM with that of a COZIGAM for
checking the presence for zero-inflation. However, because the COZIGAM adds only two
more degrees of freedom to the parameter space, the model selection criterion tends to choose
the COZIGAM over the GAM even though the true model is non-zero-inflated, for relatively
small sample size. We study the relative frequency of detecting the presence of zero-inflation
by choosing between a GAM and a COZIGAM, via simulations using the above model setting
and with different sample sizes. The simulation results are summarized in Figure 8, which
suggests that, for small to medium sample sizes, the model selection criterion is not so powerful
in picking the true (non-zero-inflated) model. However, for large sample sizes, the proportion
of choosing the true model increases from 80.2% when n = 600 to 94.5% when n = 1200.
On the other hand, our limited simulation experience suggests that if the model comparison
is restricted to between the GAM and the ZIGAM, the model selection approach was found
to yield very high probability (above 90%) of choosing the true model even with relatively
small sample size (e.g., n = 200), whether the true model is zero-inflated or not. Therefore, in
order to use the model selection approach to detect zero-inflation in the data, our suggestion
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is to compare the marginal likelihood of the GAM with that of the (unconstrained) ZIGAM,
unless the sample size is sufficiently large, in which case we can also compare the GAM with
the COZIGAM.

3.2. Real data application

Now we illustrate the use of the COZIGAM package with a real data application; see Liu
and Chan (2008) for further discussion. The data analyzed in this example is part of an
extensive survey data on walleye pollock egg density (numbers 10m−2) collected during the
ichthyoplankton surveys of the Alaska Fisheries Science Center (AFSC, Seattle) in the Gulf of
Alaska (GOA) from 1972 to 2000. Ciannelli, Bailey, Chan, and Stenseth (2007a) showed that
the spatial-temporal distribution of the pollock egg in the GOA underwent a change around
1989–90. However, their analysis was confined to positive catch data and information from
the zero catches were ignored. Here, we illustrate the use of the COZIGAM for extracting
information from all data including zero catches. For simplicity, we only analyze the data
from 1987 which contain 274 observations sampled from the 93rd to the 116th Julian day over
sites with bottom depth in the range of 28–5200m. This dataset is included in the COZIGAM
package with name eggdata.

Figure 9: Raw data plot of pollock egg density. Blue circles denote zero catches; positive
catches are displayed by red dots, whose sizes are proportional to logarithmic responses.
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To load the dataset into an R session, type

R> data("eggdata")

The first 6 observations are all zero catches:

R> head(eggdata)

bottom lon lat catch j.day year

1 170 -147.7500 59.33333 0 99 1987

2 620 -147.7500 59.01333 0 100 1987

3 160 -148.3000 59.03333 0 100 1987

4 135 -148.3167 59.35000 0 100 1987

5 175 -149.0000 59.00000 0 101 1987

6 115 -149.0333 58.33333 0 101 1987

The dataset contains six variables: bottom records the bottom depth (in meters) for each
observation; lon and lat represent longitude and latitude respectively, i.e., the geographical
location of each sampling site; the catch column contains the observed pollock egg abundance
which is measured by CPUE (catch per unit effort); j.day is the Julian day information; and
the last variable is year.

There are totally 274 observations in the year of 1987, among which 84 are zero catches making
up over 30% of the data (see Figure 9). Because the survey in 1987 took place in a relatively
short period (93rd to 116th Julian day), preliminary analysis showed that the sampling day
is not significant and hence it could be dropped from the analysis. Here, the main goal is to
explore the spatial distribution of pollock spawning aggregations in the GOA. The response
variable is the CPUE, and the covariates include location (longitude and latitude) and (log-
transformed) bottom depth. Consider the model that the CPUE follows a COZIGAM with
a zero-inflated lognormal distribution. Specifically, for the i-th observation, i = 1, . . . , 274,

CPUE i|ti ∼
{

0 with probability 1− pi
Lognormal(µi, σ

2) with probability pi.

The mean response µi of the (log) non-zero-inflated data is assumed to be additive in the
covariates:

µi = β0 + s(loni, lat i) + s(log(bottomi)), (15)

with the following constraint on the non-zero-inflation probability pi:

logit(pi) = α+ δ · µi, (16)

where β0, α, δ are parameters, s are assumed to be distinct smooth functions if they have
distinct arguments; for model identifiability, the smooth functions are constrained to be of
zero mean and hence the corresponding function estimates are centered over the data.

The function cozigam() was called to fit a COZIGAM to the pollock egg data:

R> egg.res <- cozigam(catch ~ s(lon, lat) + s(log(bottom)),

+ log.tran = TRUE, family = gaussian, data = eggdata)
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iteration = 2 norm = 1.665588

iteration = 3 norm = 0.1355504

iteration = 4 norm = 0.01318743

iteration = 5 norm = 0.001327496

iteration = 6 norm = 0.0001342566

==========================================

estimated alpha = -1.815788 ( 0.3471865 )

estimated delta = 0.4894744 ( 0.0635757 )

==========================================

The argument log.tran = TRUE effects the log-transformation to all positive responses so
that the normal family is specified in the model fit.

Before accepting the fitted COZIGAM, we need to assess the validity of the contraint on the
non-zero-inflation probability. We do this by fitting an unconstrained ZIGAM to the data
and comparing its logarithmic marginal likelihood with that of the COZIGAM:

R> egg.res.un <- zigam(catch ~ s(lon,lat) + s(log(bottom)),

+ log.tran = TRUE, family = gaussian, data = eggdata)

R> egg.res$logE; egg.res.un$logE

[1] -454.6639

[1] -463.1898

which provides some justification for constraining the non-zero-inflation probability specified
by (16). The fitted model is summarized as follows:

R> summary(egg.res)

Family: gaussian

Link function: identity

Formula:

catch ~ s(lon, lat) + s(log(bottom))

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.26022 0.10811 57.904 < 2e-16 ***

alpha -1.81579 0.34719 -5.230 3.64e-07 ***

delta1 0.48947 0.06358 7.699 3.39e-13 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Approximate significance of smooth terms:

edf Est.rank F p-value

s(lon,lat) 24.067 29 13.971 < 2e-16 ***

s(log(bottom)) 4.468 9 4.779 7.05e-06 ***
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Figure 10: Effects of location and bottom depth: The left diagram shows the contour plot of
s(lon, lat) on the right side of Equation 15; the right diagram depicts the bottom depth effect
s(log(bottom)) with 95% pointwise confidence band.
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Figure 11: Model diagnostics based on the non-zero pollock egg data.

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Scale est. = 1.0723 n = 274

The parameter estimates for Equation 16 are α̂ = −1.816 (0.347) and δ̂ = 0.489 (0.064),
which is significantly positive. Recall the non-zero-inflation probability p is the probability
of positive catch. Because logit(p) = α + δµ, δ̂ > 0 implies that less egg density (smaller µ)
will result in less positive catch (smaller p), and hence more zero-inflation. Thus, there is
strong evidence indicating that zero-inflation is more likely to occur at locations with less egg
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density. Approximate F tests show that the two smooth functions are highly significant. See
Figure 10 for the plots of the estimated functions.

The validity of the lognormal regression assumption for the positive data may be explored
with the model fit using only the residuals of the non-zero data. The model diagnostic
plots including the Q-Q normal score plot of the residuals and the plot of residuals vs. fitted
values (Figure 11) suggest that the model assumptions for the positive data are generally
valid. Therefore the lognormal regression assumption is reasonable according to the model
diagnostics.

4. Conclusion

In summary, we have presented a new approach for analyzing zero-inflated data, and intro-
duced a corresponding package COZIGAM of R routines for fitting constrained and uncon-
strained zero-inflated generalized additive models. Some simulation studies and a real data
application were used to illustrate the use of the COZIGAM package. Future work includes
incorporating more general form of constraints on the non-zero-inflation probability, develop-
ing methods of model diagnostics for zero-inflated models using all data, and extending the
package to fit threshold COZIGAM that can account for nonstationarity or nonlinearity. We
plan to incorporate some of these features into later versions of the COZIGAM package.

Acknowledgments

We thank an Associate Editor and two referees for helpful comments and suggestions including
the cigarette consumption example. We gratefully acknowledge partial support from the US
National Science Foundation (CMG-0620789) and North Pacific Research Board (Project 709;
Publication No. 217).

References

Barry SC, Welsh AH (2002). “Generalized Additive Modelling and Zero Inflated Count Data.”
Ecological Modelling, 157(2-3), 179–188.

Breslow NE, Clayton DG (1993). “Approximate Inference in Generalized Linear Mixed Mod-
els.” Journal of the American Statistical Association, 88(421), 9–25.

Busemeyer JR, Wang YM (2000). “Model Comparisons and Model Selections Based on Gen-
eralization Criterion Methodology.” Journal of Mathematical Psychology, 44, 171–189.

Chiogna M, Gaetan C (2007). “Semiparametric Zero-Inflated Poisson Models with Application
to Animal Abundance Studies.” Environmetrics, 18, 303–314.

Ciannelli L, Bailey K, Chan KS, Stenseth NC (2007a). “Phenological and Geographical Pat-
terns of Walleye Pollock Spawning in the Gulf of Alaska.” Canadian Journal of Aquatic
and Fisheries Sciences, 64, 713–722.

Ciannelli L, Fauchald P, Chan KS, Agostini VN, Dingsør GE (2007b). “Spatial Fisheries
Ecology: Recent Progress and Future Prospects.” Journal of Marine Systems, 71, 223–236.



Journal of Statistical Software 25

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data via
the EM Algorithm (with Discussion).” Journal of the Royal Statistical Society B, 39, 1–38.

Green PJ (1987). “Penalized Likelihood for General Semi-Parametric Regression Models.”
International Statistical Review, 55, 245–259.

Green PJ, Silverman BW (1994). Nonparametric Regression and Generalized Linear Models.
Chapman and Hall, London.

Gu C (2002). Smoothing Spline ANOVA Models. Springer-Verlag, New York.

Hadfield JD (2010). “MCMC Methods for Multi-Response Generalized Linear Mixed Models:
The MCMCglmm R Package.” Journal of Statistical Software, 33(2), 1–22. URL http:

//www.jstatsoft.org/v33/i02/.

Hastie TJ, Tibshirani RJ (1990). Generalized Additive Models. Chapman and Hall, London.

Heilbron D (1994). “Zero-Altered and Other Regression Models for Count Data with Added
Zeros.” Biometrical Journal, 36, 531–547.

Lambert D (1992). “Zero-Inflated Poisson Regression, with an Application to Defects in
Manufacturing.” Technometrics, 34(1), 1–14.

Liu H, Chan KS (2008). “Constrained Generalized Additive Model with Zero-Inflated Data.”
Technical Report 388, The University of Iowa, Department of Statistics and Actuarial Sci-
ence.

Mullahy J (1986). “Specification and Testing of Some Modified Count Data Models.” Journal
of Econometrics, 33, 341–365.

Nelder JA, Wedderburn RWM (1972). “Generalized Linear Models.” Journal of the Royal
Statistical Society A, 135, 370–384.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464.

Stasinopoulos DM, Rigby RA (2007). “Generalized Additive Models for Location Scale and
Shape (GAMLSS) in R.” Journal of Statistical Software, 23(7), 1–46. URL http://www.

jstatsoft.org/v23/i07/.

Tierney L, Kadane JB (1986). “Accurate Approximations for Posterior Moments and Marginal
Densities.” Journal of the American Statistical Association, 18(393), 82–86.

Wahba G (1990). Spline Models for Observational Data. Volume 59 of CBMS-NSF Regional
Conference Series in Applied Mathematics, Philadelphia, SIAM.

Wood SN (2000). “Modelling and Smoothing Parameter Estimation with Multiple Quadratic
Penalties.” Journal of the Royal Statistical Society B, 62, 413–428.

http://www.jstatsoft.org/v33/i02/
http://www.jstatsoft.org/v33/i02/
http://www.R-project.org/
http://www.jstatsoft.org/v23/i07/
http://www.jstatsoft.org/v23/i07/


26 COZIGAM: Constrained Zero-Inflated GAMs in R

Wood SN (2006). Generalized Additive Models: An Introduction with R. Chapman and Hall,
London.

Wood SN (2008). mgcv: GAMs with GCV Smoothness Estimation and GAMMs by
REML/PQL. R package version 1.3-31, URL http://CRAN.R-project.org/package=

mgcv.

Zeileis A, Kleiber C, Jackman S (2008). “Regression Models for Count Data in R.” Journal
of Statistical Software, 27(8), 1–25. URL http://www.jstatsoft.org/v27/i08/.

Affiliation:

Hai Liu
Division of Biostatistics
Indiana University School of Medicine
Indianapolis, IN 46202, United States of America
E-mail: liuhai@iupui.edu
URL: http://www.biostat.iupui.edu/Faculty/HaiLiu.aspx

Kung-Sik Chan
Department of Statistics and Actuarial Science
The University of Iowa
Iowa City, IA 52245, United States of America
E-mail: kung-sik-chan@uiowa.edu
URL: http://www.stat.uiowa.edu/~kchan/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 35, Issue 11 Submitted: 2009-02-25
July 2010 Accepted: 2009-07-13

http://CRAN.R-project.org/package=mgcv
http://CRAN.R-project.org/package=mgcv
http://www.jstatsoft.org/v27/i08/
mailto:liuhai@iupui.edu
http://www.biostat.iupui.edu/Faculty/HaiLiu.aspx
mailto:kung-sik-chan@uiowa.edu
http://www.stat.uiowa.edu/~kchan/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Model formulation and estimation
	Model formulation
	Model estimation
	Model selection

	The COZIGAM package
	Simulated data
	Example 1
	Example 2
	Use model selection

	Real data application

	Conclusion

