17,270 research outputs found
Nanowire Zinc Oxide MOSFET Pressure Sensor
Fabrication and characterization of a new kind of pressure sensor using self-assembly Zinc Oxide (ZnO) nanowires on top of the gate of a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) is presented. Self-assembly ZnO nanowires were fabricated with a diameter of 80 nm and 800 nm height (80:8 aspect ratio) on top of the gate of the MOSFET. The sensor showed a 110% response in the drain current due to pressure, even with the expected piezoresistive response of the silicon device removed from the measurement. The pressure sensor was fabricated through low temperature bottom up ultrahigh aspect ratio ZnO nanowire growth using anodic alumina oxide (AAO) templates. The pressure sensor has two main components: MOSFET and ZnO nanowires. Silicon Dioxide growth, photolithography, dopant diffusion, and aluminum metallization were used to fabricate a basic MOSFET. In the other hand, a combination of aluminum anodization, alumina barrier layer removal, ZnO atomic layer deposition (ALD), and wet etching for nanowire release were optimized to fabricate the sensor on a silicon wafer. The ZnO nanowire fabrication sequence presented is at low temperature making it compatible with CMOS technology
Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties
Over the past ten years, self-aligned TiO2 nanotubes have attracted
tremendous scientific and technological interest due to their anticipated
impact on energy conversion, environment remediation and biocompatibility. In
the present manuscript, we review fundamental principles that govern the
self-organized initiation of anodic TiO2 nanotubes. We start with the
fundamental question: Why is self-organization taking place? We illustrate the
inherent key mechanistic aspects that lead to tube growth in various different
morphologies, such as rippled-walled tubes, smooth tubes, stacks and
bamboo-type tubes, and importantly the formation of double-walled TiO2
nanotubes versus single-walled tubes, and the drastic difference in their
physical and chemical properties. We show how both double- and single-walled
tube layers can be detached from the metallic substrate and exploited for the
preparation of robust self-standing membranes. Finally, we show how by
selecting the right growth approach to TiO2 nanotubes specific functional
features can be significantly improved, e.g., an enhanced electron mobility,
intrinsic doping, or crystallization into pure anatase at extremely high
temperatures can be achieved. This in turn can be exploited in constructing
high performance devices based on anodic TiO2 in a wide range of applications.Comment: from Nanoscale Horiz., 2016, Advance Articl
Tunable Functionality and toxicity studies of Titanium Dioxide Nanotube Layers
In this work, we have developed economic process to elaborate scalable
titanium dioxide nanotube layers which show a tunable functionality. The
titanium dioxide nanotube layers was prepared by electrochemical anodization of
Ti foil in 0.4 wt% hydrofluoric acid solution. The nanotube layers structure
and morphology were characterized using x-ray diffraction and scanning electron
microscopy. The surface topography and wettability was studied according to the
anodization time. The sample synthesized while the current density reached a
local minimum displayed higher contact angle. Beyond this point, the contact
angles decrease with the anodization time. Photo-degradation of acid orange 7
in aqueous solution was used as a probe to assess the photo-catalytic activity
of titanium dioxide nanotube layers under UV irradiation. We obtained better
photocatalitic activity for the sample elaborate at higher current density.
Finally we use the Ciliated Protozoan T. pyriformis, an alternative cell model
used for in vitro toxicity studies, to predict the toxicity of titanium dioxide
nanotube layers in biological system. We did not observe any characteristic
effect in the presence of the titanium dioxide nanotube layers on two
physiological parameters related to this organism, non-specific esterases
activity and population growth rate
Depairing critical current achieved in superconducting thin films with through-thickness arrays of artificial pinning centers
Large area arrays of through-thickness nanoscale pores have been milled into
superconducting Nb thin films via a process utilizing anodized aluminum oxide
thin film templates. These pores act as artificial flux pinning centers,
increasing the superconducting critical current, Jc, of the Nb films. By
optimizing the process conditions including anodization time, pore size and
milling time, Jc values approaching and in some cases matching the
Ginzburg-Landau depairing current of 30 MA/cm^2 at 5 K have been achieved - a
Jc enhancement over as-deposited films of more than 50 times. In the field
dependence of Jc, a matching field corresponding to the areal pore density has
also been clearly observed. The effect of back-filling the pores with magnetic
material has then been investigated. While back-filling with Co has been
successfully achieved, the effect of the magnetic material on Jc has been found
to be largely detrimental compared to voids, although a distinct influence of
the magnetic material in producing a hysteretic Jc versus applied field
behavior has been observed. This behavior has been tested for compatibility
with currently proposed models of magnetic pinning and found to be most closely
explained by a model describing the magnetic attraction between the flux
vortices and the magnetic inclusions.Comment: 9 pages, 10 figure
TiO2 nanotubes for room temperature toluene sensor
TiO2 nanotubes were used to prepare gas sensor and the gas sensing properties towards toluene were analyzed. Titania nanotube arrays were fabricated via electrochemical anodization method in glycerol electrolytes containing NH4F. The sensor fabricated from these nanotubes exhibits a good response to toluene at room temperature with good sensitivity. The toluene sensing properties were tested from 20 to 150 ppm concentrations.Fil: Perillo, Patricia Maria. Comisión Nacional de Energía Atómica. Gerencia de Área de Investigación y Aplicaciones no Nucleares. Gerencia de Desarrollo Tecnológico y Proyectos Especiales. Departamento de Micro y Nanotecnología; ArgentinaFil: Rodriguez, Daniel Fabian. Comisión Nacional de Energía Atómica. Gerencia de Área de Investigación y Aplicaciones no Nucleares. Gerencia de Desarrollo Tecnológico y Proyectos Especiales. Departamento de Micro y Nanotecnología; ArgentinaFil: Boggio, Norberto Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área de Investigación y Aplicaciones no Nucleares. Gerencia de Desarrollo Tecnológico y Proyectos Especiales. Departamento de Micro y Nanotecnología; Argentin
- …
