2,913,802 research outputs found
Implications of alternative operational risk modeling techniques
Quantification of operational risk has received increased attention with the inclusion of an explicit capital charge for operational risk under the new Basle proposal. The proposal provides significant flexibility for banks to use internal models to estimate their operational risk, and the associated capital needed for unexpected losses. Most banks have used variants of value at risk models that estimate frequency, severity, and loss distributions. This paper examines the empirical regularities in operational loss data. Using loss data from six large internationally active banking institutions, we find that loss data by event types are quite similar across institutions. Furthermore, our results are consistent with economic capital numbers disclosed by some large banks, and also with the results of studies modeling losses using publicly available “external” loss data.Bank capital ; Risk management ; Basel capital accord
High-order cyclo-difference techniques: An alternative to finite differences
The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy
Dynamic performance of squeeze-film bearings
Earlier work has shown that oil-film forces can be modelled by linear coefficients. Identification techniques were used to generate numerical values for these coefficients. This paper has shown the invalidity of applying the perturbation techniques normally used in bearing studies to derive expressions for linearized coefficients to represent a cavitated oil-film. An alternative approach was developed based upon energy techniques to obtain estimates for linearized coefficients. Some current work being undertaken suggests that an alternative analytical approach is possible. These results will be reported in due course
Multiscale Adaptive Representation of Signals: I. The Basic Framework
We introduce a framework for designing multi-scale, adaptive, shift-invariant
frames and bi-frames for representing signals. The new framework, called
AdaFrame, improves over dictionary learning-based techniques in terms of
computational efficiency at inference time. It improves classical multi-scale
basis such as wavelet frames in terms of coding efficiency. It provides an
attractive alternative to dictionary learning-based techniques for low level
signal processing tasks, such as compression and denoising, as well as high
level tasks, such as feature extraction for object recognition. Connections
with deep convolutional networks are also discussed. In particular, the
proposed framework reveals a drawback in the commonly used approach for
visualizing the activations of the intermediate layers in convolutional
networks, and suggests a natural alternative
Recommended from our members
Part Fabrication Using Laser Machining and Welding
This paper describes the current work on a laser cutting and welding system for
the fabrication of prototype parts in mild and .. stainless steels. The relationship
to other rapid prototyping systems and to laminated tool production techniques is
discussed, the progress to date is described. Difficulties with current welding
procedures are outlined and alternative joining techniques are considered.Mechanical Engineerin
An Alternative Approach to Functional Linear Partial Quantile Regression
We have previously proposed the partial quantile regression (PQR) prediction
procedure for functional linear model by using partial quantile covariance
techniques and developed the simple partial quantile regression (SIMPQR)
algorithm to efficiently extract PQR basis for estimating functional
coefficients. However, although the PQR approach is considered as an attractive
alternative to projections onto the principal component basis, there are
certain limitations to uncovering the corresponding asymptotic properties
mainly because of its iterative nature and the non-differentiability of the
quantile loss function. In this article, we propose and implement an
alternative formulation of partial quantile regression (APQR) for functional
linear model by using block relaxation method and finite smoothing techniques.
The proposed reformulation leads to insightful results and motivates new
theory, demonstrating consistency and establishing convergence rates by
applying advanced techniques from empirical process theory. Two simulations and
two real data from ADHD-200 sample and ADNI are investigated to show the
superiority of our proposed methods
- …
