659,010 research outputs found

    Anaphor resolution and the scope of syntactic constraints

    Get PDF
    An anaphor resolution algorithm is presented which relies on a combination of strategies for narrowing down and selecting from antecedent sets for re exive pronouns, nonre exive pronouns, and common nouns. The work focuses on syntactic restrictions which are derived from Chomsky's Binding Theory. It is discussed how these constraints can be incorporated adequately in an anaphor resolution algorithm. Moreover, by showing that pragmatic inferences may be necessary, the limits of syntactic restrictions are elucidated

    Network File Storage With Graceful Performance Degradation

    Get PDF
    A file storage scheme is proposed for networks containing heterogeneous clients. In the scheme, the performance measured by file-retrieval delays degrades gracefully under increasingly serious faulty circumstances. The scheme combines coding with storage for better performance. The problem is NP-hard for general networks; and this paper focuses on tree networks with asymmetric edges between adjacent nodes. A polynomial-time memory-allocation algorithm is presented, which determines how much data to store on each node, with the objective of minimizing the total amount of data stored in the network. Then a polynomial-time data-interleaving algorithm is used to determine which data to store on each node for satisfying the quality-of-service requirements in the scheme. By combining the memory-allocation algorithm with the data-interleaving algorithm, an optimal solution to realize the file storage scheme in tree networks is established

    Adaptive sampling by information maximization

    Get PDF
    The investigation of input-output systems often requires a sophisticated choice of test inputs to make best use of limited experimental time. Here we present an iterative algorithm that continuously adjusts an ensemble of test inputs online, subject to the data already acquired about the system under study. The algorithm focuses the input ensemble by maximizing the mutual information between input and output. We apply the algorithm to simulated neurophysiological experiments and show that it serves to extract the ensemble of stimuli that a given neural system ``expects'' as a result of its natural history.Comment: 4 pages, 2 figure

    Confident Kernel Sparse Coding and Dictionary Learning

    Full text link
    In recent years, kernel-based sparse coding (K-SRC) has received particular attention due to its efficient representation of nonlinear data structures in the feature space. Nevertheless, the existing K-SRC methods suffer from the lack of consistency between their training and test optimization frameworks. In this work, we propose a novel confident K-SRC and dictionary learning algorithm (CKSC) which focuses on the discriminative reconstruction of the data based on its representation in the kernel space. CKSC focuses on reconstructing each data sample via weighted contributions which are confident in its corresponding class of data. We employ novel discriminative terms to apply this scheme to both training and test frameworks in our algorithm. This specific design increases the consistency of these optimization frameworks and improves the discriminative performance in the recall phase. In addition, CKSC directly employs the supervised information in its dictionary learning framework to enhance the discriminative structure of the dictionary. For empirical evaluations, we implement our CKSC algorithm on multivariate time-series benchmarks such as DynTex++ and UTKinect. Our claims regarding the superior performance of the proposed algorithm are justified throughout comparing its classification results to the state-of-the-art K-SRC algorithms.Comment: 10 pages, ICDM 2018 conferenc

    Acceleration of stereo-matching on multi-core CPU and GPU

    Get PDF
    This paper presents an accelerated version of a dense stereo-correspondence algorithm for two different parallelism enabled architectures, multi-core CPU and GPU. The algorithm is part of the vision system developed for a binocular robot-head in the context of the CloPeMa 1 research project. This research project focuses on the conception of a new clothes folding robot with real-time and high resolution requirements for the vision system. The performance analysis shows that the parallelised stereo-matching algorithm has been significantly accelerated, maintaining 12x and 176x speed-up respectively for multi-core CPU and GPU, compared with non-SIMD singlethread CPU. To analyse the origin of the speed-up and gain deeper understanding about the choice of the optimal hardware, the algorithm was broken into key sub-tasks and the performance was tested for four different hardware architectures
    corecore