174,063 research outputs found
Tunneling spectroscopy of superconducting MoN and NbTiN grown by atomic layer deposition
A tunneling spectroscopy study is presented of superconducting MoN and
NbTiN thin films grown by atomic layer deposition (ALD). The
films exhibited a superconducting gap of 2meV and 2.4meV respectively with a
corresponding critical temperature of 11.5K and 13.4K, among the highest
reported values achieved by the ALD technique. Tunnel junctions were
obtained using a mechanical contact method with a Au tip. While the native
oxides of these films provided poor tunnel barriers, high quality tunnel
junctions with low zero bias conductance (below 10%) were obtained using
an artificial tunnel barrier of AlO on the film's surface grown
by ALD. We find a large critical current density on the
order of A/cm at for a 60nm MoN film and
demonstrate conformal coating capabilities of ALD onto high aspect ratio
geometries. These results suggest the ALD technique offers significant promise
for thin film superconducting device applications.Comment: 5 pages, 4 figure
Free augmented LD-systems
Define an augmented LD-system, or ALD-system, to be a set equipped with two
binary operations, one satisfying the left self-distributivity law and the other satisfying the mixed laws and . We solve the word problem of
the ALD laws, and prove that every element in the parenthesized braid group
of [Bri1, Dhb, Dhe] generates a free ALD-system of rank 1, thus
getting a concrete realization of the latter structure
Accelerated hermeticity testing of biocompatible moisture barriers used for the encapsulation of implantable medical devices
Barrier layers for the long-term encapsulation of implantable medical devices play a crucial role in the devices’ performance and reliability. Typically, to understand the stability and predict the lifetime of barriers (therefore, the implantable devices), the device is subjected to accelerated testing at higher temperatures compared to its service parameters. Nevertheless, at high temperatures, reaction and degradation mechanisms might be different, resulting in false accelerated test results. In this study, the maximum valid temperatures for the accelerated testing of two barrier layers were investigated: atomic layer deposited (ALD) Al2O3 and stacked ALD HfO2/Al2O3/HfO2, hereinafter referred to as ALD-3. The in-house developed standard barrier performance test is based on continuous electrical resistance monitoring and microscopic inspection of Cu patterns covered with the barrier and immersed in phosphate buffered saline (PBS) at temperatures up to 95 °C. The results demonstrate the valid temperature window to perform temperature acceleration tests. In addition, the optimized ALD layer in combination with polyimide (polyimide/ALD-3/polyimide) works as effective barrier at 60 °C for 1215 days, suggesting the potential applicability to the encapsulation of long-term implants
Ultra-long-term reliable encapsulation using an atomic layer deposited Hfo2/Al2o3/Hfo2 triple-interlayer for biomedical implants
Long-term packaging of miniaturized, flexible implantable medical devices is essential for the next generation of medical devices. Polymer materials that are biocompatible and flexible have attracted extensive interest for the packaging of implantable medical devices, however realizing these devices with long-term hermeticity up to several years remains a great challenge. Here, polyimide (PI) based hermetic encapsulation was greatly improved by atomic layer deposition (ALD) of a nanoscale-thin, biocompatible sandwich stack of HfO2/Al2O3/HfO2 (ALD-3) between two polyimide layers. A thin copper film covered with a PI/ALD-3/PI barrier maintained excellent electrochemical performance over 1028 days (2.8 years) during acceleration tests at 60 °C in phosphate buffered saline solution (PBS). This stability is equivalent to approximately 14 years at 37 °C. The coatings were monitored in situ through electrochemical impedance spectroscopy (EIS), were inspected by microscope, and were further analyzed using equivalent circuit modeling. The failure mode of ALD Al2O3, ALD-3, and PI soaking in PBS is discussed. Encapsulation using ultrathin ALD-3 combined with PI for the packaging of implantable medical devices is robust at the acceleration temperature condition for more than 2.8 years, showing that it has great potential as reliable packaging for long-term implantable devices
Improving oxidation resistance of carbon nanotube nanocomposites for aerospace applications
Carbon nanotubes (CNTs) based materials possess strong potential to substitute various functional materials developed exclusively for aerospace applications. However, because of the low oxidation temperature of CNTs (400-500 oC), using CNT based ceramic nanocomposites in high temperature applications can be problematic. Making ceramic-CNT nanocomposites by atomic layer deposition (ALD) method and field assisted sintering technology (FAST) is a good route to improve oxidative stability of CNTs. In this study, thermo-gravimetric analysis (TGA) of alumina coated CNTs (prepared by ALD) and alumina-CNT nanocomposites (prepared by FAST) were carried out. 16% improvements were observed in the oxidation resistance for alumina-CNT nanocompo-sites prepared by ALD and SPS techniques. Different strategies to improve oxidation resistance are discussed
Bifunctional earth-abundant phosphate/phosphide catalysts prepared via atomic layer deposition for electrocatalytic water splitting
The development of active and stable earth-abundant catalysts for hydrogen and oxygen evolution is one of the requirements for successful production of solar fuels. Atomic Layer Deposition (ALD) is a proven technique for conformal coating of structured (photo)electrode surfaces with such electrocatalyst materials. Here, we show that ALD can be used for the deposition of iron and cobalt phosphate electrocatalysts. A PE-ALD process was developed to obtain cobalt phosphate films without the need for a phosphidation step. The cobalt phosphate material acts as a bifunctional catalyst, able to also perform hydrogen evolution after either a thermal or electrochemical reduction step
Ultrathin Oxide Films by Atomic Layer Deposition on Graphene
In this paper, a method is presented to create and characterize mechanically
robust, free standing, ultrathin, oxide films with controlled, nanometer-scale
thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films
were deposited onto suspended graphene membranes using ALD. Subsequent etching
of the graphene left pure aluminum oxide films only a few atoms in thickness. A
pressurized blister test was used to determine that these ultrathin films have
a Young's modulus of 154 \pm 13 GPa. This Young's modulus is comparable to much
thicker alumina ALD films. This behavior indicates that these ultrathin
two-dimensional films have excellent mechanical integrity. The films are also
impermeable to standard gases suggesting they are pinhole-free. These
continuous ultrathin films are expected to enable new applications in fields
such as thin film coatings, membranes and flexible electronics.Comment: Nano Letters (just accepted
Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle x-ray scattering
Atomic layer deposition (ALD) enables the conformal coating of porous
materials, making the technique suitable for pore size tuning at the atomic
level, e.g., for applications in catalysis, gas separation and sensing. It is,
however, not straightforward to obtain information about the conformality of
ALD coatings deposited in pores with diameters in the low mesoporous regime (<
10 nm). In this work, it is demonstrated that in situ synchrotron based grazing
incidence small angle x-ray scattering (GISAXS) can provide valuable
information on the change in density and internal surface area during ALD of
TiO2 in a porous titania film with small mesopores (3-8 nm). The results are
shown to be in good agreement with in situ x-ray fluorescence data representing
the evolution of the amount of Ti atoms deposited in the porous film. Analysis
of both data sets indicates that the minimum pore diameter that can be achieved
by ALD is determined by the size of the Ti-precursor molecule
- …
