27,373 research outputs found

    Sparse Additive Models

    Full text link
    We present a new class of methods for high-dimensional nonparametric regression and classification called sparse additive models (SpAM). Our methods combine ideas from sparse linear modeling and additive nonparametric regression. We derive an algorithm for fitting the models that is practical and effective even when the number of covariates is larger than the sample size. SpAM is closely related to the COSSO model of Lin and Zhang (2006), but decouples smoothing and sparsity, enabling the use of arbitrary nonparametric smoothers. An analysis of the theoretical properties of SpAM is given. We also study a greedy estimator that is a nonparametric version of forward stepwise regression. Empirical results on synthetic and real data are presented, showing that SpAM can be effective in fitting sparse nonparametric models in high dimensional data

    Markov-switching generalized additive models

    Full text link
    We consider Markov-switching regression models, i.e. models for time series regression analyses where the functional relationship between covariates and response is subject to regime switching controlled by an unobservable Markov chain. Building on the powerful hidden Markov model machinery and the methods for penalized B-splines routinely used in regression analyses, we develop a framework for nonparametrically estimating the functional form of the effect of the covariates in such a regression model, assuming an additive structure of the predictor. The resulting class of Markov-switching generalized additive models is immensely flexible, and contains as special cases the common parametric Markov-switching regression models and also generalized additive and generalized linear models. The feasibility of the suggested maximum penalized likelihood approach is demonstrated by simulation and further illustrated by modelling how energy price in Spain depends on the Euro/Dollar exchange rate

    Variable selection in nonparametric additive models

    Full text link
    We consider a nonparametric additive model of a conditional mean function in which the number of variables and additive components may be larger than the sample size but the number of nonzero additive components is "small" relative to the sample size. The statistical problem is to determine which additive components are nonzero. The additive components are approximated by truncated series expansions with B-spline bases. With this approximation, the problem of component selection becomes that of selecting the groups of coefficients in the expansion. We apply the adaptive group Lasso to select nonzero components, using the group Lasso to obtain an initial estimator and reduce the dimension of the problem. We give conditions under which the group Lasso selects a model whose number of components is comparable with the underlying model, and the adaptive group Lasso selects the nonzero components correctly with probability approaching one as the sample size increases and achieves the optimal rate of convergence. The results of Monte Carlo experiments show that the adaptive group Lasso procedure works well with samples of moderate size. A data example is used to illustrate the application of the proposed method.Comment: Published in at http://dx.doi.org/10.1214/09-AOS781 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Smooth backfitting in generalized additive models

    Full text link
    Generalized additive models have been popular among statisticians and data analysts in multivariate nonparametric regression with non-Gaussian responses including binary and count data. In this paper, a new likelihood approach for fitting generalized additive models is proposed. It aims to maximize a smoothed likelihood. The additive functions are estimated by solving a system of nonlinear integral equations. An iterative algorithm based on smooth backfitting is developed from the Newton--Kantorovich theorem. Asymptotic properties of the estimator and convergence of the algorithm are discussed. It is shown that our proposal based on local linear fit achieves the same bias and variance as the oracle estimator that uses knowledge of the other components. Numerical comparison with the recently proposed two-stage estimator [Ann. Statist. 32 (2004) 2412--2443] is also made.Comment: Published in at http://dx.doi.org/10.1214/009053607000000596 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Comparisons of Concordance in Additive Models

    Get PDF
    In this note we compare bivariate additive models with respect to their Pearson correlation coecients, Kendall's concordance coecients, and Blomqvist medial correlation coefcients. The conditions that enable the comparisons involve variability stochastic orders such as the dispersive and the peakedness orders. Specically we show that we can compare the Kendall's concordance coecients of Cheriyan and Ramabhadran's bivariate gamma distributions, in spite of the fact that it is hard (and not necessary) to compute the
    • …
    corecore