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Abstract

In this note we compare bivariate additive models with respect to their Pearson correlation
coefficients, Kendall’s τ concordance coefficients, and Blomqvist β medial correlation coef-
ficients. The conditions that enable the comparisons involve variability stochastic orders
such as the dispersive and the peakedness orders. Specifically we show that we can compare
the Kendall’s τ concordance coefficients of Cheriyan and Ramabhadran’s bivariate gamma
distributions, in spite of the fact that it is hard (and not necessary) to compute them.

Math. Subject Classification: 60E15, 62H20.
Key words and phrases: Pearson correlation coefficient, Kendall’s concordance coefficient,
Blomqvist medial correlation coefficient, dispersive order, peakedness order, Cheriyan and
Ramabhadran’s bivariate gamma distribution.



1 Introduction

Let Z1 and Z2 be two random variables that a probabilist uses to approximately describe some
real world situation. It is often desired that Z1 and Z2, on one hand not be independent, and
on the other hand not be totally dependent. A common way of doing this sort of modelling
is to introduce three independent random variables, X1, X2, and Y , and then model Z1 and
Z2 by

Z1 = g(X1, Y ) and Z2 = g(X2, Y ), (1.1)

where g is some bivariate function. In the setup (1.1), X1 and X2 indicate the “individuality”
that is associated with Z1 and Z2, whereas Y indicates the factors that give rise to the partial
dependence between Z1 and Z2.

In the setup (1.1), it is sometimes of importance to figure out the influence of Y on the
strength of positive dependence between Z1 and Z2. That is, suppose that the dependence
between the two random variables in (1.1) can be chosen to be modelled using Y yielding

(Z1, Z2) as in (1.1), or that it can be chosen to be modelled using Ỹ yielding (Z̃1, Z̃2) as
follows

Z̃1 = g(X1, Ỹ ) and Z̃2 = g(X2, Ỹ ).

The question that arises then is what conditions on Y and Ỹ imply that (Z1, Z2) is “less

positively dependent” than (Z̃1, Z̃2).

For example, Li and Pellerey (2011) considered, among other things, the comparison of

(Z1, Z2) = (min{X1, Y },min{X2, Y })

and

(Z̃1, Z̃2) = (min{X1, Ỹ },min{X2, Ỹ }).

They showed that if Y is larger than Ỹ in the ordinary stochastic order, then (Z̃1, Z̃2) is
more positively dependent than (Z1, Z2) in the sense of the concordance order, that is, the

copula of (Z̃1, Z̃2) is greater than, or equal to, the copula of (Z1, Z2) over the whole unit
square; see, for example, Nelsen (2006). Fang and Li (2011) considered the comparison of

(Z1, Z2) = (max{X1, Y },max{X2, Y })

and

(Z̃1, Z̃2) = (max{X1, Ỹ },max{X2, Ỹ }).

They showed that if Y is smaller than Ỹ in the ordinary stochastic order, then (Z̃1, Z̃2) is
more positively dependent than (Z1, Z2) in the same sense that was described above.

The purpose of this note is to compare

(Z1, Z2) = (X1 + Y,X2 + Y ) (1.2)
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and

(Z̃1, Z̃2) = (X1 + Ỹ , X2 + Ỹ ) (1.3)

in a sense of positive dependence. More explicitly, we find conditions on Y and Ỹ that yield
a stronger positive dependence between Z̃1 and Z̃2, than between Z1 and Z2.

Random vectors of the form (1.2) have been used in the literature to model a variety of
applications. Here is a sample of such usages:

• Reliability theory : The random vector in (1.2) can represent a replacement model
similar to a model in Marshall and Shaked (1982, page 263). Specifically, in a reliability
system that performs two tasks, Y is the lifetime of the original device that performs
both tasks, and upon its failure, it is replaced by two devices with lifetimes X1 and
X2, each of which performs only one of the tasks. Then (Z1, Z2) is the vector of the
time periods of the performance of the two tasks.

• Risk analysis : Bauerle and Muller (1998, page 66) studied models of pairs of n-
dimensional risky portfolios. In the case when n = 1, their model for (dependent)
risks, that belong to a certain group, is (g(X1, Y ), g(X2, Y )), for some bivariate func-
tion g, where X1 and X2 are the individual risk factors, and Y is the group-specific
risk factor. Specifically, when g(x, y) = x+ y, the model of Bauerle and Muller (1998)
reduces to (1.2).

• Combat target detection: Youngren (1991) considered modelling the detection of an
enemy unit that has some target elements such as a tank or a truck. When the unit
has two elements, Youngren (1991, page 574) modelled the times to the detection
of the elements by (1.2), where the random quantity Y captures the contribution of
the common environmental factors on the time for detection of both elements, and
the random quantity Xi captures the contribution of the other factors to the time of
detection of element i, i = 1, 2.

Remark 1.1. At the first glance it may not be clear what we may assume about Y and Ỹ
in (1.2) and (1.3) in order for Z̃1 and Z̃2 to be “more positively dependent” than Z1 and

Z2. However, upon some reflection we may guess that if Ỹ is “more variable” (or “more

dispersed”) than Y , then we may expect Z̃1 and Z̃2 to be “more positively dependent”
than Z1 and Z2. The intuitive reason behind this is that the role of Y is to introduce the
dependence between Z1 and Z2, and it does that by adding the same random quantity to
both X1 and X2. Thus, the “more variable” Y is, the more it “forces” the sums X1 +Y and
X2 + Y to vary, but to do it “together” and hence “be like each other”, and as a result the
“more dependent” Z1 and Z2 should be. Note that in the extreme case when Y is degenerate
(that is, Y is “as small in variability as possible”), then Z1 and Z2 are independent. J

Verifying the intuition that is described in Remark 1.1, some of the results in this note
are of the following form: If Y is smaller than Ỹ in some variability sense, then (Z1, Z2) of

(1.2) is smaller than (Z̃1, Z̃2) of (1.3) with respect to some positive dependence sense.

2



Technically, we found the models in (1.2) and (1.3) to be quite complex for the purpose of

comparing the copulas that are associated with (Z1, Z2) and with (Z̃1, Z̃2). Thus our present
study is more humble in the sense that we compare the Pearson product-moment corre-
lation coefficients, the Kendall’s τ concordance coefficients, and the Blomqvist’s β medial
correlation coefficients of (Z1, Z2) and (Z̃1, Z̃2) in (1.2) and (1.3).

It is worthwhile to mention that a comparison of the strength of dependence in the sense
of SI (stochastic increasingness) of models that are similar to the ones in (1.2) and (1.3), but
still quite different than these, is given in Proposition 3.1 of Khaledi and Kochar (2005).

In the next section we obtain results that compare (Z1, Z2) and (Z̃1, Z̃2) with respect
to their Pearson product-moment correlation coefficients. These results are quite straight-
forward, but their importance is that they make up our first formalization of the intuition
that is described in Remark 1.1. Our second formalization of that intuition is given in Sec-
tion 3, where we develop comparisons of (Z1, Z2) and (Z̃1, Z̃2) with respect to their Kendall’s
τ concordance coefficients. A third formulation of the above intuition is described in Sec-
tion 4, where we compare (Z1, Z2) and (Z̃1, Z̃2) with respect to their Blomqvist’s β medial
correlation coefficients. Further comments, including some remarks about the relationship
between the dispersive variability order and our conditions for the comparisons of the various
concordant coefficients, are given in Section 5.

In the sequel, ‘increasing’ stands for ‘nondecreasing’ and ‘decreasing’ stands for ‘nonin-
creasing’. For every random variable X, and an event A, we denote by [X

∣∣A] a random
variable that is distributed according to the conditional distribution of X given A.

2 Comparisons via Pearson correlation coefficients

Let X1, X2, and Y be independent random variables. In this section we assume that the
second moments of these three random variables are finite, and we denote their variances
by σ2

X1
, σ2

X2
, and σ2

Y . Define (Z1, Z2) by (1.2). A straightforward computation yields the
Pearson product-moment correlation coefficient of Z1 and Z2 as

Corr(Z1, Z2) =
σ2
Y√

σ2
X1

+ σ2
Y ·

√
σ2
X2

+ σ2
Y

. (2.1)

It is easy to verify that the partial derivative of (2.1) with respect to σ2
Y is nonnegative,

no matter what σ2
X1

and σ2
X2

are. That is, for fixed σ2
X1

and σ2
X2
, the correlation coefficient

Corr(Z1, Z2) is increasing in σ2
Y . This observation yields the following result. In this result

we assume not only that X1, X2, and Y have finite second moments, but also that Ỹ has
this property.

Proposition 2.1. Let (Z1, Z2) and (Z̃1, Z̃2) be as defined in (1.2) and (1.3). If

Var(Y ) ≤ Var(Ỹ ) (2.2)

then
Corr(Z1, Z2) ≤ Corr(Z̃1, Z̃2).

3



Note that if Y is smaller than Ỹ with respect to any common variability order (some of
these will be defined or mentioned in the sequel), then (2.2) holds. In this sense Proposi-
tion 2.1 is quite strong because the assumption (2.2) can be considered to be quite a weak
variability order.

Noting that (2.1) is a decreasing function of σ2
X1

and of σ2
X2
, Proposition 2.1 can be

strengthened as follows.

Theorem 2.2. Let X1, X2, Y , X̃1, X̃2, and Ỹ be independent random variables. Define

(Z1, Z2) = (X1 + Y,X2 + Y )

and

(Z̃1, Z̃2) = (X̃1 + Ỹ , X̃2 + Ỹ ).

If
Var(X1) ≥ Var(X̃1), Var(X2) ≥ Var(X̃2), and Var(Y ) ≤ Var(Ỹ ), (2.3)

then
Corr(Z1, Z2) ≤ Corr(Z̃1, Z̃2).

3 Comparisons via Kendall’s concordance coefficients

First we recall the definition of the Kendall’s τ concordance coefficient; more details about
this coefficient can be found, for instance, in Drouet Mari and Kotz (2001). Let (X, Y ) be a
random vector. In order to define the Kendall’s τ(X,Y ), consider also a copy (X ′, Y ′) that
is independent of (X,Y ); that is, (X ′, Y ′) =st (X,Y ). Then τ(X, Y ) is defined as follows:

τ(X,Y ) = 2P{(X −X ′)(Y − Y ′) ≥ 0} − 1.

We will use below the ordinary stochastic order that is defined as follows: Let X and
Y be two random variables with respective distribution functions F and G, and respective
survival functions F ≡ 1−F and G ≡ 1−G. If F (x) ≤ G(x) for all x ∈ R then X is said to
be smaller than Y in the ordinary stochastic order, and we denote is as X ≤st Y . A useful
property of the ordinary stochastic order is the following: If X ≤st Y then

E[ϕ(X)] ≤ E[ϕ(Y )] (3.1)

for all increasing functions for which the above expectations are well defined; see Müller and
Stoyan (2002) or Shaked and Shanthikumar (2007) for further properties of the ordinary
stochastic order.

Proceeding to the comparison of random vectors, we start with a special case of the setup
of (1.2) and (1.3) where X1 and X2 are identically distributed.
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Proposition 3.1. Let X1, X2, Y and Ỹ be independent random variables such that X1 and
X2 are identically distributed. Let (Z1, Z2) and (Z̃1, Z̃2) be as defined in (1.2) and (1.3).

Furthermore, let Y ′ be an independent copy of the Y in (1.2), and let Ỹ ′ be an independent

copy of the Ỹ in (1.3). If

|Y − Y ′| ≤st |Ỹ − Ỹ ′| (3.2)

then
τ(Z1, Z2) ≤ τ(Z̃1, Z̃2).

Proof. First let us derive a useful expression for

τ(Z1, Z2) = τ(X1 + Y,X2 + Y ).

Let (X ′
1, X

′
2, Y

′) be a copy of (X1, X2, Y ) [that is, (X ′
1, X

′
2, Y

′) =st (X1, X2, Y )] that is inde-
pendent of (X1, X2, Y ). Denote W1 = X1 −X ′

1, W2 = X2 −X ′
2, and W3 = Y − Y ′, and let

Fi be the distribution of Wi, i = 1, 2, 3. Note that W1, W2, and W3 are independent, and
that Fi is a distribution that is symmetric about 0, i = 1, 2, 3. We have

τ(X1 + Y,X2 + Y ) = 2P
{[
(X1 + Y )− (X ′

1 + Y ′)
]
·
[
(X2 + Y )− (X ′

2 + Y ′)
]
≥ 0

}
− 1

= 2P
{
(W1 +W3)(W2 +W3) ≥ 0

}
− 1.

Now,

P
{
(W1 +W3)(W2 +W3) ≥ 0

}
=

∫ ∞

−∞
P
{
(W1 + w)(W2 + w) ≥ 0

}
dF3(w)

=

∫ ∞

−∞

[
P{W1 > −w}P{W2 > −w}+ P{W1 ≤ −w}P{W2 ≤ −w}

]
dF3(w)

=

∫ 0

−∞

[
F 1(−w)F 2(−w) + F1(−w)F2(−w)

]
dF3(w)

+

∫ ∞

0

[
F 1(−w)F 2(−w) + F1(−w)F2(−w)

]
dF3(w).

By changing −w to w in the first integral, and using the symmetry property of F3, F1, and
F2, we get that

P
{
(W1 +W3)(W2 +W3) ≥ 0

}
= 2

∫ ∞

0

[
F1(w)F2(w) + F 1(w)F 2(w)

]
dF3(w). (3.3)

From the symmetry of W3 = Y − Y ′ we see that |Y − Y ′| =st [W3|W3 > 0]. Denote by
F[W3|W3>0] the distribution of [W3|W3 > 0], and note that F[W3|W3>0](w) = 2F3(w) − 1 for
w > 0. Thus we have

τ(Z1, Z2) = 4

∫ ∞

0

[
F1(w)F2(w) + F 1(w)F 2(w)

]
dF3(w)− 1

= 4

∫ ∞

0

[
F 2
1 (w) + F

2

1(w)
]
dF3(w)− 1 (3.4)

= 2

∫ ∞

0

[
F 2
1 (w) + F

2

1(w)
]
dF[W3|W3>0](w)− 1,
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where the second equality follows from the assumption that X1 and X2 are identically dis-

tributed. Letting h(w) = F 2
1 (w) + F

2

1(w), w > 0, we can write

τ(Z1, Z2) = 2E[h(W3)
∣∣W3 > 0]− 1. (3.5)

Similarly, consider an independent copy Ỹ ′ of Ỹ , that is independent of X1, X
′
1, X2, and

X ′
2, and denote W̃3 = Ỹ − Ỹ ′. Again, note that |Ỹ − Ỹ ′| =st

[
W̃3|W̃3 > 0

]
. As above we can

write
τ(Z̃1, Z̃2) = 2E

[
h(W̃3)

∣∣W̃3 > 0
]
− 1. (3.6)

Next, express h as h(w) = F 2
1 (w)+F

2

1(w) = g(F1(w)) for w > 0, where g(p) = 1−2p+2p2.
It is easy to see that g(p) is increasing in p ∈ [1/2, 1]. Now, for w > 0, we have that F1(w) ≥ 1

2
,

and F1 is increasing. Hence h is increasing on [0,∞).

From the equalities |Y − Y ′| =st [W3|W3 > 0], |Ỹ − Ỹ ′| =st

[
W̃3|W̃3 > 0

]
, and (3.2), it

follows that [W3|W3 > 0] ≤st

[
W̃3|W̃3 > 0

]
. Thus the increasingness of h, the expressions

(3.5) and (3.6), and the inequality (3.1), yield τ(Z1, Z2) ≤ τ(Z̃1, Z̃2).

In the next result we compare the random vector from (1.2), that is,

(Z1, Z2) = (X1 + Y,X2 + Y ), (3.7)

with

(Ẑ1, Ẑ2) = (X̂1 + Y, X̂2 + Y ), (3.8)

where X1, X2, X̂1, X̂2, and Y are all independent, and X1 =st X2 and X̂1 =st X̂2.

Proposition 3.2. Let X1, X2, X̂1, X̂2, and Y be independent random variables such that
X1 =st X2 and X̂1 =st X̂2, and let (Z1, Z2) and (Z̃1, Z̃2) be as defined in (3.7) and (3.8).

Also, let X ′
1 and X̂ ′

1 be independent copies of X1 and X̂1, respectively. If

|X̂1 − X̂ ′
1| ≥st |X1 −X ′

1|, (3.9)

then
τ(Ẑ1, Ẑ2) ≤ τ(Z1, Z2).

Proof. Let F1 be the distribution function of X1−X ′
1, and let F3 be the distribution function

of Y − Y ′, where Y ′ is an independent copy of Y . Then, from (3.4) we have

τ(Z1, Z2) = 4

∫ ∞

0

[
F 2
1 (w) + F

2

1(w)
]
dF3(w)− 1

= 4

∫ ∞

0

[
1− 2F1(w)(1− F1(w))

]
dF3(w)− 1. (3.10)
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Similarly, if we denote the distribution function of X̂1 − X̂ ′
1 by F̂1, then

τ(Ẑ1, Ẑ2) = 4

∫ ∞

0

[
1− 2F̂1(w)(1− F̂1(w))

]
dF3(w)− 1. (3.11)

From the symmetry of F1 and F̂1 it follows that F1(w) ≥ 1/2 and that F̂1(w) ≥ 1/2 for

w ≥ 0. From (3.9) it follows that F1(w) ≥ F̂1(w) ≥ 1/2 for all w ≥ 0. Since the function
p(1−p) is decreasing in p ∈ [1/2, 1], it follows that the integrands in (3.10) and (3.11) satisfy[

1− 2F1(w)(1− F1(w))
]
≥

[
1− 2F̂1(w)(1− F̂1(w))

]
, for all w ≥ 0.

This, together with (3.10) and (3.11), yields τ(Ẑ1, Ẑ2) ≤ τ(Z1, Z2).

Combination of Propositions 3.1 and 3.2 gives the following main result of this section.

Theorem 3.3. Let X̂1, X̂2, X1, X2, Y , and Ỹ be independent random variables such that
X̂1 =st X̂2 and X1 =st X2. Define

(Ẑ1, Ẑ2) = (X̂1 + Y, X̂2 + Y )

and

(Z̃1, Z̃2) = (X1 + Ỹ , X2 + Ỹ ).

Let X̂ ′
1, X

′
1, Y

′, and Ỹ ′ be independent copies of X̂1, X1, Y , and Ỹ , respectively. If

|X̂1 − X̂ ′
1| ≥st |X1 −X ′

1| and |Y − Y ′| ≤st |Ỹ − Ỹ ′| (3.12)

then
τ(Ẑ1, Ẑ2) ≤ τ(Z̃1, Z̃2).

Remark 3.4. Note that the conditions in (2.3) are weaker than than the conditions in (3.12)
(see the argument that follows (5.1) in Section 5 below). However, the conditions in (2.3)
require the finiteness of the second moments. Thus, when the second moments do not exist,
Theorem 3.3 becomes useful because it does not require the finiteness of second moments.J

4 Comparisons via Blomqvist’s medial correlation co-

efficients

In this section we consider only random variables that have symmetric distributions about
their medians. For such random variables X and Y , with medians mX and mY , respectively,
the Blomqvist’s β is defined as follows:

β(X, Y ) = P{(X −mX)(Y −mY ) > 0} − P{(X −mX)(Y −mY ) < 0}
= 2P{(X −mX)(Y −mY ) > 0} − 1; (4.1)

see Blomqvist (1950).

Proceeding to the comparison of random vectors, we start with a special case of the setup
of (1.2) and (1.3) where X1 and X2 are identically distributed.
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Proposition 4.1. Let X1, X2, Y and Ỹ be independent random variables such that X1 and
X2 are identically distributed. Assume that all these random variables have distributions that
are symmetric about their respective medians. Let (Z1, Z2) and (Z̃1, Z̃2) be as defined in (1.2)
and (1.3). If

|Y −mY | ≤st |Ỹ −mỸ | (4.2)

then
β(Z1, Z2) ≤ β(Z̃1, Z̃2).

Proof. From (4.1) we can write

β(X1 + Y,X2 + Y ) = 2P{(X1 + Y −m13)(X2 + Y −m23) > 0} − 1,

wherem13 andm23 are the medians ofX1+Y andX2+Y , respectively. Denote the (common)
median of X1 and X2 by mX . Consider W1 = X1−mX , W2 = X2−mX , and W3 = Y −mY .
We have

P{(X1 + Y −m13)(X2 + Y −m23) > 0}
= P{(W1 +W3 +mX +mY −m13)(W2 +W3 +mX +mY −m23) > 0}.

Note that Wi, i = 1, 2, 3 are independent, have distributions that are symmetric about zero,
and

m1 +mY −m13 = m2 +mY −m23 = 0.

Thus we get that

P{(X1 + Y −m13)(X2 + Y −m23) > 0} = P{(W1 +W3)(W2 +W3) > 0}.

Denote the distribution function of Wi by Fi, i = 1, 2, 3, and note that, with this notation,
the expression (3.3) holds for P{(W1 +W3)(W2 +W3) > 0}. Following the argument in the
proof of Proposition 3.1, that leads from (3.3) to (3.5), we see that

β(Z1, Z2) = 2E[h(W3)
∣∣W3 > 0]− 1, (4.3)

where h(w) = F 2
1 (w) + F

2

1(w), w > 0. Similarly, if we let W̃3 = Ỹ −mỸ , then

β(Z̃1, Z̃2) = 2E
[
h(W̃3)

∣∣W̃3 > 0
]
− 1. (4.4)

From the equalities |Y − mY | =st [W3|W3 > 0], |Ỹ − mỸ | =st

[
W̃3|W̃3 > 0

]
, and (4.2), it

follows that [W3|W3 > 0] ≤st

[
W̃3|W̃3 > 0

]
. Thus the increasingness of h (argued in the

proof of Proposition 3.1), the expressions (4.3) and (4.4), and the inequality (3.1), yield

β(Z1, Z2) ≤ β(Z̃1, Z̃2).

In the next result we compare the random vectors (Z1, Z2) and (Ẑ1, Ẑ2) of the form given
in (3.7) and (3.8).
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Proposition 4.2. Let X1, X2, X̂1, X̂2, and Y be independent random variables such that
X1 =st X2 and X̂1 =st X̂2. Assume that all these random variables have distributions that
are symmetric about their respective medians. Let (Z1, Z2) and (Z̃1, Z̃2) be as defined in (3.7)
and (3.8). If

|X̂1 −mX̂1
| ≥st |X1 −mX1 |, (4.5)

then
β(Ẑ1, Ẑ2) ≤ β(Z1, Z2).

Proof. As in the proof of Proposition 4.1, let F1 be the distribution function of W1 =
X1 − mX1 , and let F3 be the distribution function of W3 = Y − mY . Again, as in the
proof of Proposition 4.1, with this notation of W1 and W3, the expression (3.3) holds for
P{(W1 +W3)(W2 +W3) > 0}. As a result, the expression (3.4) holds for β(Z1, Z2). Thus,
also the expression (3.10) holds for β(Z1, Z2); that is,

β(Z1, Z2) = 4

∫ ∞

0

[
1− 2F1(w)(1− F1(w))

]
dF3(w)− 1. (4.6)

Similarly, if we denote the distribution function of X̂1 −mX̂1
by F̂1, then

β(Ẑ1, Ẑ2) = 4

∫ ∞

0

[
1− 2F̂1(w)(1− F̂1(w))

]
dF3(w)− 1. (4.7)

Following the argument at the end of the proof of Proposition 3.2, it is seen that (4.6) and

(4.7) yield β(Ẑ1, Ẑ2) ≤ β(Z1, Z2).

Combination of Propositions 4.1 and 4.2 gives the following main result of this section.

Theorem 4.3. Let X̂1, X̂2, X1, X2, Y , and Ỹ be independent random variables such that
X̂1 =st X̂2 and X1 =st X2. Assume that all these random variables have distributions that
are symmetric about their respective medians. Define

(Ẑ1, Ẑ2) = (X̂1 + Y, X̂2 + Y )

and

(Z̃1, Z̃2) = (X1 + Ỹ , X2 + Ỹ ).

Let X̂ ′
1, X

′
1, Y

′, and Ỹ ′ be independent copies of X̂1, X1, Y , and Ỹ , respectively. If

|X̂1 −mX̂1
| ≥st |X1 −mX1 | and |Y −mY | ≤st |Ỹ −mỸ | (4.8)

then
β(Ẑ1, Ẑ2) ≤ β(Z̃1, Z̃2).
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5 Further comments

Recall the dispersive stochastic order that is defined as follows. Let X and Y be random
variables with the corresponding distribution functions F and G. Denote by F−1 and G−1

the respective right continuous inverses. If F−1(β) − F−1(α) ≤ G−1(β) − G−1(α) for all
0 < α < β < 1 then X is said to be smaller than Y in the dispersive order, and we denote
it as X ≤disp Y . See Müller and Stoyan (2002) or Shaked and Shanthikumar (2007) for
thorough studies of the dispersive order.

The following result, which is Theorem 3.B.42 in Shaked and Shanthikumar (2007), states
a useful relationship between the dispersive and the ordinary stochastic orders.

Theorem 5.1. Let X and X ′ be two independent and identically distributed random variables
and let Y and Y ′ be two other independent and identically distributed random variables. Then

X ≤disp Y =⇒ |X −X ′| ≤st |Y − Y ′|.

Recall also the peakedness order that is defined as follows. Let X and Y be random
variables with distribution functions that are symmetric about their medians mX and mY .
If |X −mX | ≤st |Y −mY | then X is said to be smaller than Y in the peakedness order, and
we denote it as X ≤peak Y ; see Section 3.D in Shaked and Shanthikumar (2007). That is,

X ≤peak Y ⇐⇒ |X −mX | ≤st |Y −mY |.

Thus, (4.2), (4.5), and (4.8) are all conditions of ordering random variables in the peakedness
stochastic order.

The orders ≤disp and ≤peak are variability orders in the intuitive sense that if X ≤disp Y
or X ≤peak Y , then we expect Y to be “more variable” than X. Even the condition

|X −X ′| ≤st |Y − Y ′|, (5.1)

where X, X ′, Y , and Y ′ are as in Theorem 5.1, can stand for some kind of variability
order. For example, note that if |X − X ′| ≤st |Y − Y ′|, then Var(X) = 1

2
E(X − X ′)2 ≤

1
2
E(Y − Y ′)2 = Var(Y ).

Now note that the inequalities (2.2), (3.2), (3.9), (4.2), and (4.5), or more generally, (2.3),
(3.12), and (4.8), all compare random variables in some sense of variability or dispersion. In
fact, (3.2) and (4.2) compare the variability of the common parts (the Y s) of the compared
random vectors, whereas (3.9) and (4.5) compare the variability of the non-common parts
(the Xs) of the compared random vectors. The results show that if the common part (the
Y ) of one vector is more variable than the common part of the second vector, and/or the
non-common parts (the Xs) of one vector are less variable than the non-common parts
of the second vector, then the first vector is “less positively dependent” than the second
vector. These informal explanations of the results of this paper go along with the intuition.
We were able to notice these intuitive explanations only after we proved the inequalities in
Sections 2–4.

Note that if |Y −Y ′| ≤st |Ỹ −Ỹ ′| (this is (3.2)), where Y ′ be an independent copy of Y and

Ỹ ′ is an independent copy of Ỹ , then, as argued above, Var(Y ) ≤ Var(Ỹ ) (which is (2.2)).
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That is, the condition of Proposition 3.1 is stronger than the condition of Proposition 2.1; a
similar observation was given in Remark 3.4. As we can see from Theorem 5.1, a condition
that is even stronger than (3.2) is Y ≤disp Ỹ . This is useful because plenty of examples of

random variables that satisfy Y ≤disp Ỹ can be found in the literature (for instance, see

Example 5.2 below). Also, plenty of examples of random variables that satisfy Y ≤peak Ỹ
can be found in the literature.

Example 5.2. Let X1, X2, Y , and Ỹ be independent gamma random variables with shape
parameters αX , αX , αY , and αỸ , respectively, and with the same scale parameter. Without
losing any generality we take the common scale parameter to be 1. Then both

(Z1, Z2) = (X1 + Y,X2 + Y ) and (Z̃1, Z̃2) = (X1 + Ỹ , X2 + Ỹ )

have Cheriyan and Ramabhadran’s bivariate gamma distributions; see Kotz, Balakrishnan,
and Johnson (2000, page 432). From Theorem 1 of Saunders and Moran (1978) we see that
if

αỸ > αY > 0 (5.2)

then Y ≤disp Ỹ . It follows, from Theorem 5.1 and Proposition 3.1, that if (5.2) holds then

τ(Z1, Z2) ≤ τ(Z̃1, Z̃2). (5.3)

Let, furthermore, X̂1 and X̂2 be independent gamma random variables with a common shape
parameter αX̂ , and scale parameter 1. Then also

(Ẑ1, Ẑ2) = (X̂1 + Y, X̂2 + Y )

has a Cheriyan and Ramabhadran’s bivariate gamma distribution. If

αX̂ > αX > 0 (5.4)

then, as argued above, X ≤disp X̂. Now it follows from Theorem 5.1 and Proposition 3.2,
that if (5.4) holds then

τ(Ẑ1, Ẑ2) ≤ τ(Z1, Z2). (5.5)

Note that in this example, using our theoretical result, we obtain the inequalities (5.3) and

(5.5) without having to explicitly compute the quantities τ(Z1, Z2), τ(Z̃1, Z̃2), and τ(Ẑ1, Ẑ2)
for the Cheriyan and Ramabhadran’s bivariate gamma random vectors. In fact, the explicit
expressions for τ(Z1, Z2), τ(Z̃1, Z̃2), and τ(Ẑ1, Ẑ2) are far from trivial, and as a result, directly
obtaining (5.3) and (5.5) is not easy, if at all possible. ♢

Looking at (1.2) and (1.3) one may get the impression that if Ỹ ≥st Y then we would

expect Corr(Z̃1, Z̃2) ≥ Corr(Z1, Z2) or τ(Z̃1, Z̃2) ≥ τ(Z1, Z2), because Ỹ seems to stochas-

tically pull both X1 + Ỹ and X2 + Ỹ more strongly than Y would pull both X1 + Y and
X2 + Y . However, as the following example shows, in general this is not the case. The
explanation is that the “pull” mentioned above is a change of location, and not an effect on
the concordance of the underlying random variables.
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Example 5.3. Let X1, X2 and Y be independent random variables, where X1 and X2

have the uniform(0,1) distribution, and Y is a Bernoulli random variable with probability of
success p ∈ (0, 1). As in (1.2), let (Z1, Z2) = (X1 + Y,X2 + Y ).

Note that Var(X1) = Var(X2) = 1/12, and Var(Y ) = p(1 − p). Thus, from (2.1) we see
that

Corr(Z1, Z2) =
p(1− p)

p(1− p) + 1
12

= 1−
1
12

p(1− p) + 1
12

.

This expression is increasing in p ∈ (0, 1
2
) and decreasing in p ∈ (1

2
, 1). Now, if Ỹ is Bernoulli

with probability of success p̃ ∈ (0, 1), and p̃ ≥ p, then Ỹ ≥st Y . But, as can be seen from

the computations above, if p̃ > p > 0, then it is not true that Corr(Z̃1, Z̃2) ≥ Corr(Z1, Z2),

where (Z̃1, Z̃2) is defined in (1.3).
Now we compute τ(Z1, Z2) = τ(X1 + Y,X2 + Y ). Let (X ′

1, X
′
2, Y

′) be an independent
copy of (X1, X2, Y ), and define W1 = X1−X ′

1, W2 = X2−X ′
2, and W3 = Y −Y ′. Note that

W3 takes on only the values −1, 0, 1. Thus, applying (3.3) we have

τ(Z1, Z2) = 2P
{
(W1 +W3)(W2 +W3) ≥ 0

}
− 1

= 2
{
p(1− p)P

{
(W1 − 1)(W2 − 1) ≥ 0

}
+ ((1− p)2 + p2)P

{
W1W2 ≥ 0

}
+ p(1− p)P

{
(W1 + 1)(W2 + 1) ≥ 0

}}
− 1

= 2
{
p(1− p) + ((1− p)2 + p2)(1

4
+ 1

4
) + p(1− p)

}
− 1

= 2p(1− p).

This, like Corr(Z1, Z2), is increasing in p ∈ (0, 1
2
) and decreasing in p ∈ (1

2
, 1). So the

analysis above applies here too. That is, Ỹ ≥st Y does not necessarily imply that τ(Z̃1, Z̃2) ≥
τ(Z1, Z2). ♢
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