350,082 research outputs found
Improvement of flight simulator feeling using adaptive fuzzy backlash compensation
In this paper we addressed the problem of improving the control of DC motors used for the specific application of a 3 degrees of freedom moving base flight simulator. Indeed the presence of backlash in DC motors gearboxes induces shocks and naturally limits the flight feeling. In this paper, dynamic inversion with Fuzzy Logic is used to design an adaptive backlash compensator. The classification property of fuzzy logic techniques makes them a natural candidate for the rejection of errors induced by the backlash. A tuning algorithm is given for the fuzzy logic parameters, so that the output backlash compensation scheme becomes adaptive. The fuzzy backlash compensator is first validated using a realistic model of the mechanical system and is actually tested on the real flight simulator
Virtual Reality Games for Motor Rehabilitation
This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
Adaptive logic characterizations of input/output logic
We translate unconstrained and constrained input/output logics as introduced by Makinson and van der Torre to modal logics, using adaptive logics for the constrained case. The resulting reformulation has some additional benefits. First, we obtain a proof-theoretic (dynamic) characterization of input/output logics. Second, we demonstrate that our framework naturally gives rise to useful variants and allows to express important notions that go beyond the expressive means of input/output logics, such as violations and sanctions
Adaptive system and method for signal generation Patent
Adaptive signal generating system and logic circuits for satellite television system
Model Driven Mutation Applied to Adaptative Systems Testing
Dynamically Adaptive Systems modify their behav- ior and structure in
response to changes in their surrounding environment and according to an
adaptation logic. Critical sys- tems increasingly incorporate dynamic
adaptation capabilities; examples include disaster relief and space exploration
systems. In this paper, we focus on mutation testing of the adaptation logic.
We propose a fault model for adaptation logics that classifies faults into
environmental completeness and adaptation correct- ness. Since there are
several adaptation logic languages relying on the same underlying concepts, the
fault model is expressed independently from specific adaptation languages.
Taking benefit from model-driven engineering technology, we express these
common concepts in a metamodel and define the operational semantics of mutation
operators at this level. Mutation is applied on model elements and model
transformations are used to propagate these changes to a given adaptation
policy in the chosen formalism. Preliminary results on an adaptive web server
highlight the difficulty of killing mutants for adaptive systems, and thus the
difficulty of generating efficient tests.Comment: IEEE International Conference on Software Testing, Verification and
Validation, Mutation Analysis Workshop (Mutation 2011), Berlin : Allemagne
(2011
A Novel Fuzzy Logic Based Adaptive Supertwisting Sliding Mode Control Algorithm for Dynamic Uncertain Systems
This paper presents a novel fuzzy logic based Adaptive Super-twisting Sliding
Mode Controller for the control of dynamic uncertain systems. The proposed
controller combines the advantages of Second order Sliding Mode Control, Fuzzy
Logic Control and Adaptive Control. The reaching conditions, stability and
robustness of the system with the proposed controller are guaranteed. In
addition, the proposed controller is well suited for simple design and
implementation. The effectiveness of the proposed controller over the first
order Sliding Mode Fuzzy Logic controller is illustrated by Matlab based
simulations performed on a DC-DC Buck converter. Based on this comparison, the
proposed controller is shown to obtain the desired transient response without
causing chattering and error under steady-state conditions. The proposed
controller is able to give robust performance in terms of rejection to input
voltage variations and load variations.Comment: 14 page
- …
