238,942 research outputs found
An adaptive grid algorithm for one-dimensional nonlinear equations
Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and less computation time than required by the tridiagonal method. The performance of the adaptive grid method tends to degrade as the solution process proceeds in time, but still remains faster than the tridiagonal scheme
Automatic adaptive grid refinement for the Euler equations
A method of adaptive grid refinement for the solution of the steady Euler equations for transonic flow is presented. Algorithm automatically decides where the coarse grid accuracy is insufficient, and creates locally uniform refined grids in these regions. This typically occurs at the leading and trailing edges. The solution is then integrated to steady state using the same integrator (FLO52) in the interior of each grid. The boundary conditions needed on the fine grids are examined and the importance of treating the fine/coarse grid inerface conservatively is discussed. Numerical results are presented
A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger
We present an adaptive version of the Multi-Index Monte Carlo method,
introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with
coefficients that are random fields. A classical technique for sampling from
these random fields is the Karhunen-Lo\`eve expansion. Our adaptive algorithm
is based on the adaptive algorithm used in sparse grid cubature as introduced
by Gerstner and Griebel (2003), and automatically chooses the number of terms
needed in this expansion, as well as the required spatial discretizations of
the PDE model. We apply the method to a simplified model of a heat exchanger
with random insulator material, where the stochastic characteristics are
modeled as a lognormal random field, and we show consistent computational
savings
- …
