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Automatic Adaptive Grid Refinement for the Euler Equations

Marsha A Berger*

Courant Institute of Mathematical Sciences
251 Mercer St.

New 'York University
New York, NY 10012

Antony Jameson+

Princeton University
Dept. of Mechanical and Aerospace Engineering
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Abstract
We present a method of adaptive

grid refinement for the solution of the
steady Eulcr equations for transonic flow.
Our algorithm automatically decides
where the coarse grid accuracy is insuffi-
cient, and creates locally uniform refined
grids in these regions. This typically
OCCuI'S at tLiC 1CidF,1171b' anY tI-di11.I1^,' cugc3.

The solution is then integrated to steady
state using the same integrator (FLO52)
in the inter lair of each grid. We examine
the boundary conditions needed on the
fine grids, and discus;4 the importance of
treating the finelcoarse; grid interface con-
servatively. Numerical results are
presented.

1. Introduction
In computing transonic flow fields

about complex geometries, it is difficult to
resolve all features of the solution to the
same accuracy with a uniform grid. As
much as possible, the regions where the
solution needs finer grid resolution are
finely zoned in the initial (pre-solution)
grid generation phase. However, it is not
always known in advance where those
regions are, or how finely zoned to make
them. The location of the inaccurate
regions changes with different flow
parameters, mach number, angle of
attack, ctc.

"Supported in part by Departrnent of Energy Con-
tract No, DEACO276ER03077-V,
+Supported in part by the Office of Naval
Research under Grant N00014 .81-K-0379 and by
NASALangley Research Center under Grant
NAG. 1.186,

Algorithms am commonly found in
the literature where the user computes a
solution, re.-grids, and re-solves [1]. In
this paper y we present an algorithm for
automadr local grid refinement. We
describe a simple procedure to ftcov-r
the regions of high error (typically the
leading and trailing edges and in the
neighborhood of chock waves) ; And to
re-grid by introducing any number of
local rectangular fine grids. This both
removes the guesswork and obtains com-
parable solutions at less cost than those
obtained by untxormly refining the grid
over the entire flow field.

A wide variety of approaches to
adapting the grid for better solution reso-
lution have been tried. Rai and Ander-
son [2] have a method of clustering the
grid lines in the neighborhood of a shock
by "attracting" the lines into the region.
Harten acrd Hyman [3] have an algorithm
where each grid point can move within a
base grid cell which stays fixed. In one
dimension this method can have the same
sharp resolution as a shock fitting
scheme. Recent work by Usab and Mur-
oran [4] proposed grid refinement pro-
cedures similar to ours, but does not
incorporate the automatic error estimation
in our approach.

In section 2 of this paper, we
describe the algorithm for local grid
refinement, that is, the error estimation
and grid generation. We also describe
how to integrate the solution on these
multiple grids to steady state, which we
do using 8.052 [5]. Since the reiined
grids are locally uniform patches in the
same coordinate system as the coartie
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grid, we are able co use an existing
integration routine with very little modifi-
cation. Section 3 deals with the boundary
conditions needed on the fine grid. Our
strategy is to solve an initial boundary
value problem on each grid. If a fine grid
touches the airfoil, or has a farficld boun-
dary, the same boundary conditions arc
applied as wovld be used for a single grid
computation. The only new type of
boundary that arises is the fine/coarse
grid interface. We discu3s the importance
of treating this interface conscriativcly,
even if the interface is in a smooth flow
region, and describe in some detail the
procedure which we implement. Finally,
section 4 compares the multiple grid
results to a single grid finely zoned run.

The same issues that arise in the
interfaces betvirmn fine and coarse grids
(conservation, the data structures and
bockccping needed for this information),
arise in the solution of a problem with
complex geometry by component grids.
By the latter we mean multiple grids in
different coordinate systems. In the
future we intend to apply our results in
that direction. Also, since our algorithm
keeps grids locally uniform, a simple user
interface is possible. This allows for
example, the use of a vectorized intcgra-
tor. Tbc method does not have the major
drawbacks of moving grid point methods,
namely, grid skewness and the "all points
to the worst zone" problem, and thus
seems very suitable for 3D calculations as
well. In this paper, we present a sys-
tcmatic study to verify that this method
works. We demonstrate that with no loss
in the convergence rate, we can capture
the, accuracy of the solution on a grid
twice as fine by using a coarse, global
grild, and adaptively refining only those
regions where the error is high.

2. Multiple Grid Method of Adaptive
Reflnernent

'1113is section presents the algorithm
we use to solve the 2D Euler equations
for steady flow about an airfoil. We
describe the overall algorithm before
going into detail about the main steps. A
more detailed discussion of the structure
of this algorithm is found in [b].

The solution procedure (described in
section 2.3) starts by time- stepping on a
single global grid. Since the initial condi-
tions are uniform flow, we wait until the
solution has settled down to, say, a resi-
dual ^ 10-2 before applying the error
estimator and subsequent adaptive stra-
tegy. The error estimator (described in
section 2.1) is then applied at every point
on the coarse grid. Those grid points
where the cstiinate is high are flagged as
needing finer grid resolution. The grid
generation algorithm creates fine grids in
the sarr r coordinate system as the coarse
grid, so that every flagged point is con

-taincd in a fine grid. An important point
is that the fine grids are rectangles in the
computational plane. For example, the
refinement at the leading edge in figure
2.1a is the center rectangle in the compu-
tational domain shown in figure 2.1b.
Since the grid is periodic in the t direc-
tion, with the break at the trailing edge,
the trailing edge refined grids are the left-
most and rightmost rectangles in figure
2.1b.

Figure 2.1 Fine grids at the leading
and trailing edges.

The use of rectangles as the basis for
refinement is a crucial decision. First, it
allows for a very simple user interface.
The integrator which is used on the global
coarse grid can also be used without
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change on each fine grid. Se=d, the
use of rectangles makes the data .structure
problem tractable, sin ge only four earner
Points are needed to fix the subgrid loca-
don. The storage overhead is thus on a
per grid basis, rather than on a per grid
point bas; i, and is negligible. Other
methods typically use pointers for each
refined cell of the coarse grid, or ltiossibly
each row. Finally, this approach to adap-
tivc grid refinement does not suffer from
the two main problems in movfttg grid
point methods. These problems are the
difficulty in controlling grid skewness,
and the problem of adequately resolving
several features of the solution when all
points rush to the strongest feature [7]. It
is clear that some mect.inism of adding
points in a simple way as well as moving
them is called for. In our method, if a
refined grid is found to need ft,.rther
refinement (the error estimate at firae grid
points, is still too high),another, finer rec-
tangle is added which will be nested in
the existing subgrid in the same way the
subgrid is nested in the coarse grid.

We emphasize that these grids are
not patched into one global grid, but are
kept independently, each with its own
solution vector. This means that some
coarse grid solution storage is wasted
(unless it participates in the solution pro-
cess itself, as in a multigrid method),
since we will always use the fine grid
solution when it exists. The benefits
seem to greatly outwcig a this waste, since
by preventing fragmentation the solution
process on each grid can stiff be vector-
ized, and the loss in cvompiaing some
extra coarse grid points is offset by the
gain in efficiency due to regularity and
the simplicity of the data structures.

Given this grid structure, the solu-
tion on each grid is initialized by interpo-
lation from the coarse grid, and the time
stepping continues. SeW.on 2.3 describes
the integration strategy for multiple grids,
and reviews both the finite volume
discretization scheme and s he generalized
Runge Kutta time stepping method which
is used to advance the solution on each
grid.

2.1. Error Estimation
In regions of smooth flow, the cri-

terion we use for refitting the grid is an
estimate of the error in the solution on
the fittest existing grid in that region.
Although there is no theory fa' equations
of mixed type, in the pwtly elliptic or
purely hyperbolic cAse thuro are estimates
for the global error in the solution in
terms of the local truncation error [8].
Accordingly, we will estimate the local
truncation error in the solution using
ideas similar to Richardson extrapolation
or deferred correction [6]. To solve

f(u).' + g(u)y = 0

we compute

Q(h)U = 0,

where U is the numerical approximation
to u, and the difference operators approx-
imating f, and gy based on a stepsize h
are in Q. The local truncation cYror is

Q(h)a -= T hn,

where p 2 for a second order method.
The term T contains derivatives of the
solution u. TU god of refining is to
determine when T is big, and reduce h,
so that the same accuracy is attained over
the entire flaw field. The idea is to esti-
matr the error using Richardson
extrapolation-type estimates by differenc-
ing on a grid with mesh spacing 2h using
every other point of the computed solu-
tion U. We compute

Q(2h)U - (2P -1) T hr.

In the steady state calculation, the resi-
dual Q(h)U is driven to zero, but the
coarsened grid residual will not be zero.
Thus we can use

2h U 
T hr

2P-1
as an estimate of the error at each point.

Notice that it is unnecessary to know
the exact form of the truncation error T
for this method,. Also, this residual calcu-
lation is identical to the first stage of the
rxgular Runge Kutta integration step but
on a 2h grid. For the error estimation
step, the computer code is merely
changed to read i+2 instead of i+1 (and
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4o on) when updating the Ph point. (In
fact, this can sometimes be don.° automat-
ically in Fortran by changing the dimen-
sion statements when declaring the arrays
in an integration subroutine). The com-
putational avcrbcad of this estimator is
thus less than one extra integratian step
for the whole computation.

In regions where the flew is discon-
tinuaus, this procedure mr, longer gives a
valid error estimate. However, it acts as
a trigger for mesh refinement in the pres-
cnoc of a strong shock. We have found
in our results however, that the largest
errors are at the leading edge and then
trailing edge of the airfoil. ('Df course, this
depends on the underlying global grid
resolution. For strong shocks, a fine grid
is also created in the region of the shock.
This general procedure has the advantage
that it is not .. ocssary to know the loca-
tion of the shock before the start of the
computation.

2.2. Grid Generation
The output from the error estimation

routine is a list of (coarse) grid points
with high error cstim ►tcs, indicating that
a refined zone is needed in that region.
The grid generation routine separates the
points into appropriate groups so that a
(logically) rectangular grid can be planed
around each group. This proceeds in two
phases. First, the points that are in dif-
ferent parts of the domain (such as lead-
ing edge and trailing edge) are separated
into different groups. Arcund each
group, a rectangle is formed which is
large enough to include all points in that
group. This new grid is then slightly
enlarged (by one or -two coarse grid
points), to ensure that the fine grid boun-
dary, whew special interpolation formu-
las will be used for the boundary dif-
ferencing, is in a region with a small error
estimate. Figure 2.2 iLustrates this pro-
ccdurie schematically.

The only possible exception to this
procedure is shown in Figure 2.3. It may
happen that two different grids are
created around one cluster of points, in
order to minimize the size of the
(unnecessarily) refined regiott. Details of
this exceptional case can be found in [9].

Figure 2.2 Fine grid generation
around flagged points.

We make; one last remark about the
rectangular grids. It may happen that the
zone needing refinement is oblique to the
underlying grid, for example, frnr an
oblique -shock. It could be advantageous
to be able to align the fine grid so that
&..c coordinates wer-- approximately nor-
mal and tangent to the discontinuity. A,
rotated difference Wane has been used
by Jameson [10] ArL the potential equa-
tion. Recent results by Davis [11] for the
Fulcr equations show much better perfor-
mance for first order upwind schemes if
they are rotated to align with the shock.
The grid generation procedure has the

bilicapaty to produce grids with this align-
mcnt property. ]However, interpolation
procedures have not yet been developed
which treat the finelcoarse grid interface
conservatively. Work is still in progress
an this point.

2.3. Integration Procedure
It is very easy to solve the equations

on the grid structure described above. We
take onr, step on all grids using the
Runge Kutta finite-volume integrator
described below. Since we are interested
in the steady state solution, we use
pseudo-time steps with a fixed Courant
number. :For time dependent calcula-
tions, for reasons of both stability and
efficiency, it is best to take several
smaller time steps on the fine grids for
every one coarse grid step. We have
experimented with taking several steps on
a large firie grid for every coarse grid
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Figure 2.3 Two fine grids generated
around one group of flagged points.

step. The optimal strategy for the
number of iterations to be done on each
grid at a time is still an open question.
This will be an especially imnortant con-
sideration in large computations where
secondary storage is used.

We briefly review the finite volume
Runge Kutta time stepping procedure
which is the integrator for this adaptive
algorithm. For details, sec [12] and the
discussion of the FLO52 program. The
full Euler equations in ZD are written in
integral form,

ar f f wed' + f dd, pd. ^ f1'
where

P	 Pu	 PV
Pu	 Paz+p	 puv

W — PV f — puv 8 — py2+p
E	 puH	 pvH

The equations are approximated in a com-
putational domain where the variables are
oell-centered. The flux is evaluated at the
boundary of a given cell using the aver-
age of the values in the adjacent cells.
This spatial discretization procedure leads
to a system of ordinary differential equa-
tions. These have the form

d(hw) + Qw- , Dw = 0,

where Qw is the aproximation to the

Eulcr terms, Dw is an added dissipative
term, and where h is the cell area. The
dissipation is introduced by a combination
of second and fourth order differences,
which are switched on by pressure gra-
dicnts. The same dissipation formulas are
used in the integration step on each grid,
except at the boundaries of the fine grids,
where the fourth order stencil is too
large. In this case we use only the second
order dissipation.

The ODE's are integrated using a
modified four stage Runge Kutta scheme
in which the dissipative terms are only
evaluated once. At each time step the
solution is updated by the following
sequence:

W ( l) : w(Q) — Lt (Qw(°)—Dw(0))

w(2) — 
w(o) — 3^ (Qw(^)"-Dw(0))

--_f31-_ ---ft	 Qt f- pN - i .

W(4) = w(°) — h (Qw(3)—Dw(0)),

where w (0) is the value a the beginning
of the time step, and w 4) is the final
updated value. The time step limit for
this scheme is almost the same as that of
a suindard fourth order Runge Kutta
scheme.

The farfield boundary values are
partially specified from freestream values,
and partially extrapolated from the
Riemann invariants, depending on
whether the flow is supersonic or sub-
sonic, and whether the boundary is an
inflow or outflow boundary. At the
b,7dy, ot, y the pressure is needed to
advinine the variables in the cells nearest
tI_; , id. The pressure is computed by an
ext--rolation formula based on the nor-
mal momentum equations. Tlz slight
n oditication of this required at the
criarse/fine interface is described in sec-
tion 3.

J. Fine Grid Boundary Conditions
In this section we discuss the differ-

once equations used at the interface
between a coarse and fine grid. The pro-
oed ure which we have developed is
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designed for use with the finite volume
difference scheme. More general pro-
cedures are described in [131.

r— 0

Fissure 3.1 FInelcoarsc grid inter-
face.

We illustrate the procedure using a
refinement ratio of 2 between grids. In
figure 3.1, the coarse grid variables arc
marked with o, the fine grid variables
with an x. Notice that there are coarse
points "underneath" the fine grid. The
solution is computed over the entire
coarse grid including these points when a
coarse grid integration step is taken.
Howmer, the coarse grid points under-
neath the fine grid are updated after each
coarse step by replacing the solution there
with the volume weighted average of the
solution at the four nearest fine points.
The final output uses the values from the
finest grid covering each region.

To take a step on the fine grid, the
flux across the line 6 = 0  into the fine grid
must be calculated. It is algorithmically
advantageous to introduce an "outside"
column of solution values (denoted by the
plus signs in figure 3.1). The flux can
then be calculated in the same way for
the first cell and the interior cells of the
fine grid. This also mimics the coarse
grid setup, where an extra column is kept
on each side of the periodic boundary.
The easiest way to determine this column

of fine grid values is by interpolation
from the coarse grid. Point p would be
set by linear interpolation from coarse
grid points v1 J,vt J+1,vt+1 J,v1+1 J+1 . To
maintain accuracy, the values at v1 +1 J
and vi+1,/+ 1 on the coarse grid would be
replaced by the volume weighted average
of the four neighboring fine grid points
after every coarse grid integration step.
Tx this way, each grid can still be
integrated independently, in a manner
that still vcctorizes, and only a small
amount of "fixup" work along the boun-
daries of the fine grids need be done.

Unfortunately, there is no mason for
this procedure to be conservative, which
in tris case means that the sum of the
fluxes into the coarse cells at the interface
(computed for example using the value
vj J+vt+ l J ) 

is equal to that computed

on tim fine grid into the fine cells on the
right of the interface. It is important to
maintain conservation in order to auaran-
tec the correct shock location in transonic
flow ficlaa. This is especially relevant
since there will often be a fine grid in the
region of a shock, and so the interface
between the fine and coarse grids will be
near the shock.

An alternative interface procedure
which is conservative is to calculate the
flux on the coarse grid, and divide it in
half for the adjacent two fine cells. This
would bypass setting the outside vari-
ables, and calculate a boundary flux for
the fine grid directly. Unfortunately, this
is unstable, as can be seen from a linear
analysis of the interface. The treatment
in this case yields the linear relationship
va,l +Vl , l+vp,2+vl ,i = 201J+Ul+1J)^

where u approximates the solution on the
coarse grid, and v approximates the solu-
tion on the fine grid. It turns out that
any boundary scheme which couples the
fine points across the interface can give
rise to an oscillatory wave emanating
from the interface into the fine grid, and
supported by the central differenced
(linearized finite volume) scheme.
Another alternative, that of calculating
the flux directly from the one coarse point
and adjacent two fine points, is stable,
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but of lower order accuracy. In effect, it
treats the solution in the r,lumn of plus
signs as picccwisr, constant in each coarse
cell, insicad of linear.

The procedure we have chosen is a
variation of interpolation. The cells with
plus signs arc obtained from interpolation
from the coarse grid, and the fine grids
are then advanced. The coarse grid
fluxes are determined as usual during thr.
regular integration step, but than the
value at each coarse grid point nearest the
interface is "freed" so that the flux at the
interface equals the sum of the two fine
cell fluxes. In this way, conservation is
enforced, second order accuracy is main,
tained, and the only extra computational
work is donr, along the boundary. (This
method thus avoids having to check every
coarse point to determine. whether it is
located at an interface, which would be
unacceptable overhead). In experiments
with these interface ccivations, whin tYw
interface is formed to be right at the loL,4-
tion of a shock, no loss of accuracy is
observed in the solution.

A special treatment is required when
the interface coincides with the body. In
order to interpolate for a fine point value
at the body, a coarse grid value is
needed at the body as well. Since only the
pressureis uted at the body, values
arc needed for

comp 
the density, x and y

momentum, and energy. These are com-
puted by setting the momentum normal to
the body to 0, setting the tangential
momentum to be identical to that one cell
over, and setting the energy to its steady
state constant value. In practice, there is
little difference between this procedure
and simple linear extrapolation of the
missing coarse grid values from the inte-
rior.

4. Numerical Results
We present results comparing the

solution computed on a coarse grid, on a
coarse grid with patched fine grids, and
on a uniformly refined grid. In all cases,
by refining a fraction of the grid, the
accuracy of the solution on a uniformly
fine grid is recovered at less than half the
cost.

The first test case is for non-lifting
subsonic flow over a NACA 0011, airfoil.
The Yazb number is .500 with vcio
degrees angle of atteck. Figure 4.1
shows a grid oaf siec 32 by 8, with the cal-
culatcd pressure coefficient shown in Fig.
um 4.2. The drag coefficient is .0049.
Figure 4.3 shows a grid of size 64 by 16,
with the pressure coefficient in Figure
4.4. The drag coefficient is .0011. Fig-
ure 4.6 is the w1utirm, on a grid of size
128 by 32 grid, shown in Figure 4.5. The
drag coefficient here is .0002. T? drag
coefficient is converging like h to its
expected value of zero. Figure 4.8 shows
a refined grid solution based on a 32 by 8
underlying coarse grid, with refined grid
patchmfa as shown in Figure 4.7. The drag
coefficient in this case is .0009. Figure
4.10 shows a refined grid solution based
on a 64 b 16 underlying coarse grid.
The refined

 by 
for this case is shown in

Figure 4.9. 'The drag coefficient is
reduced to .Owl. In both cases, the
accuracy of the solution on the uniformly
next finer level grid is recovered by using
small grid patches at the leading and trail-
ing edges of the airfoil.

The second test case is transonic
flow containing a shock wave. Figure
4.11 shows the pressure coefficient for a
NACA 0012 airfoil at Mach .8 with zero
degrees angle of attack. The mesh used
for this computation is 64 by 16 cells.
When the grid is refined (using an error
tolerance of .005), as shown in Figure
4.12, the solution obtained is almost
identical to the solution computed on a
128 by 32 mesh (compare Figures 4.13
and 4.14). In the coarse grid run, the
entropy behind the shock was commuted
to be .0072, in the multiple grid run it
was .0052, and in the fine grid run the
entropy was .0054. In this mesh refined
solution, 21 % of the coarse grid was
refined by a factor of 2 in both coordinate
directions. The cost of integrating the
mesh refined run was thus roughly half
the cost of the 128 by 32 grid run. H the
error tolerance for mesh refinement is less
stringent (.025), so that only the leading
and trailing edges are refined (Figure
4.15), the solution is only slightly worse
(Figure 4.16). The entropy production
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across the shock is .0046 in this case. In
this run only 10 % of the coarse grid is
refined, and so the ovenii', cost of the
solution is roughly 35 % of the fine grid
cost.
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