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Automatic Adaptive Crid Refinement for the Euler Equations

Marsha J. Berger*

Courant Institute of Mathcmatical Sciences
251 Mercer St.
New York University
New York, NY 10012

Antony Jameson-+

Princeton University
Dept. of Mechanical and Acrospace Engincering
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Abstract

We present a method of adaptive
grid refinement for the solution of the
stcady Euler equations for transonic flow.
Our algorithm automatically decides
where the coarse grid accuracy is insuffi-
cient, and creates locally uniform refined
grids in these regions. This typically
occurs at the leading and trailing edges.
The solution is then integrated to steady
statc using the same integrator (FLOS52)
in the interior of cach grid. We examine
the boundary conditions needed on the
fine grids, and discuss the importance of
treating the fine/coarse grid interface con-
scrvatively.  Numerical results are
presented.

1. Introduction

In computing transonic flow ficlds
about complex geometries, it is difficult to
resolve all features of the solution to the
same accuracy with a uniform grid. As
much as possible, the regions where the
solution needs finer grid resolution are
fincly zoned in the initial (pre-solution)
grid generation phase. However, it is not
always known in advance wkere those
regions are, or how finely zoned to make
them. The location of the inaccurate
regions changes with different flow
parameters, mach number, angle of
attack, ctc.

*Supported in part by Departmen
tract INo. DEACU276ER03077-V,
+Supported in part by the Office of Naval
Research under Grant NC0014-81-K-0379 and by
NASA Langley Research Center under Grant
NAG-1-186.

t of Energy Con-

Algorithms arc commonly found in
the literature where the user computes a
solution, re-grids, and re-solves [1]. In
this paper, we present an algorithra for
automatic local grid refinement. We
describe a simple procedure to discover
the regions of high error (typically the
leading and trailing edges and in the
neighborhood of shock waves), and to
re-grid by introducing any number of
local rectangular fine grids. This both
removes the guesswork and obtains com-
parable solutions at less cost than those
obtaincd by uniformly vefining the grid
over the entire flow ficld.

A wide varizty of approaches to
adapting the grid for better solution reso-
lution have been tried. Rai and Ander-
son [2] bave a method of clustering the
grid lines in the neighborhood of a shack
by "attracting” the lines into the region.
Harten and Hyman [3] have an algorithm
where cach grid point can move within a
base grid ccll which stays fixed. In one
dimension this method can have the same
sharp resolution as a shock fitting
scheme. Recent work by Usab and Mur-
man [4] proposed grid refinement pro-
cedures similar to ours, but does not
incorporate the automatic error estimation
in our approach.

In section 2 of this paper, we
describe the algorithm for local grid
refinement, that is, the error estimation
and grid gencration. We also describe
how to integrate the solution on these
multiple grids to steady state, which we
do using FLOS52 [S]. Since the refined
grids are locally uniform patches in the
same coordinate system as the coame



grid, we arc able to usc an existing
integration routine with very little modifi-
cation, Scction 3 deals with the boundary
conditions needed on the fine grid. Our
strategy is to solve an initial boundary
value problem on cach grid. If a fine grid
touches the airfoil, or has a farficld boun-
dary, the same boundary conditions arc
applicd as would be used for a single grid
computation. The only necw type of
boundary that arises is the fine/coarse
grid interface. We discuss the importance
of trcating this interface conscrvatively,
even if the interface is in a smooth flow
region, and dcescribe in some detail the
proccdure which we implement. Finally,
section 4 comparcs the multiple grid
results to a single grid finely zoned run.

The samec issucs that arisc in the
interfaces between fine and coarse grids
(conscrvation, thc data structures and
bockeeping nceded for this information),
arisc in the solution of a problem with
complex gcometry by component grids.
By the latter we mcan multiple grids in
different coordinate systems. In the
future we intend to apply our results in
that dircction. Also, since our algorithm
keeps grids locally uniform, a simnle user
interface is possible. This allows for
cxample, the use of a vectorized integra-
tor, The method does not have the major
drawbacks of moving grid point methods,
namely, grid skewness and the "all points
to the worst zone" problem, and thus
seems very suitable for 3D calculations as
well. In this paper, we present a sys-
tematic study to verify that this method
works. We demonstrate that with no loss
in the convergence rate, we can capture
the accuracy of the solution on a grid
twice as finc by using a ccarse, global
grid, and adaptively refining only those
regions where the error is high.

Z. Multiple Grid Method of Adaptive
Refnemnent

This section presents the algorithm
we usc to solve the 2D Euler equations
for stcady flow about an airfoil. We
describe  the overall algorithm  before
going into detail about the main steps. A
more detailed discussion of the structure
of this algorithm is found in [6].

The solution procedure (described in
section 2,3) starts by time- stepping on a
single global grid. Since the initial condi-
tions are uniform flow, we wait until the
solution has settled down to, say, a resi-
dual = 10™2 before applying the error
cstimator and subscquent adaptive stra-
tegy. The error cstimator (described in
section 2.1) is then applied at every point
on the coarse grid. Those grid points
where the cstinate is high are flagged as
necding finer grid resolution. The grid
generation algorithm creates fine grids in
the samz coordinate systcm as the coarse
grid, so that every flagged point is con-
tained in a finc grid. An important point
is that the fine grids are rectangles in the
comiputational plane. For cxample, the
refinement at the leading edge in figure
2.1a is the center rectangle in the compu-
tational domain shown in figure 2.1b.
Since the grid is periodic in the £ direc-
tion, with the break at the trailing edge,
the trailing cdge refined grids are the left-
gmibt and rightmost rectangles in figure

Figure 2.1 Fine grids at the leading
and trailing edges.

The use of rectangles as the basis for
refinement is a crucial decision. First, it
allows for a very simple user interface.
The integrator which is used on the global
coarse grid can also be used without




change on cach finc grid. Second, the
use of rectangles makes the data structure
problem tractable, since only four corner
points are needed to fix the subgrid loca-
tion. The storage overbead is thus on a
per grid basis, rather than on a per grid
point basij, and is negligible, Othecr
methods typically use pointers for each
refined cell of the coarse grid, or possibly
cach row. Finally, this approach to adap-
tive grid refinement does not suffer from
the two main problems in moving grid
point methods. These problems are the
difficulty in controlling grid skcwness,
and the problem of adequately resolving
several featurcs of the solution when all
points rush to the strongest feature [7]. It
is clear that some mect.tnism of adding
points in a simple way as well as moving
them is called for. In our method, if a
refined grid is found to nced firther
refinement (the error estimate at fire grid
points is still too high), another, finer rec-
tangle is added which will be nested in
the existing subgrid in the same way the
subgrid is pested in the coarse grid.

We emphasize that these grids are
not patched into onc global grid, but are
kept independently, cach with its own
solution vector. This means that some
coarsc grid solution storage is wasted
(unless it participates in the solution pro-
cess itself, as in a multigrid methad),
sincc we will always use the fine grid
solution when it exists. The benefits
scem to greatly outweig, ; this waste, since
by preventing fragmentation the solution
process on cach grid can stil be vector-
ized, and the loss in computing some
extra coarse grid points is offset by the
gain in efficiency due to regularity and
the simplicity of the data structures.

Given this grid structure, the solu-
tion on each grid is initialized by interpo-
lation from the coarse grid, and the time
stepping continues. Section 2.3 describes
the integration strategy for multiple grids,
and revicws both the finite volume
discretization scheme and the generalized
Runge Kutta time siepring method which
is used to advance the solution on each
grid.

2.1. Error Estimation

In regions of smooth flow, the cri-
terion we usc for refining the grid is an
estimate of the crror in the solution on
the finest existing grid in that region.
Although there is no theory for equations
of mixed type, in the purely clliptic or
purely hyperbolic case thure are estimates
for the global error in the solution in
terms of the local truncation error [8].
Accordingly, we will estimate the local
truncation error in the solution using
idcas similar to Richardson extrapolation
or deferred correction [6]). To solve

f@)s + g(u), = 0
we compute
o(h)U = 0,

where U is the numérical approximation
to u, and the difference operators approx-
imating f, and g, based on a stepsize A
are in 0. The local truncation error is

Q(h)e = T AP,

where p = 2 for a second order method.
The term 7T contains derivatives of the
solution u. The goul of refining is to
determine when 7 is big, and reduce A,
so that the sasne accuracy is attained over
the entire flow field. The idea is to esti-
mate the error using Richardson
extrapolation-type estimates by differenc-
ing on a grid with mesh spacing 2k using
every other point of the computed solu-
tion U. We compute

QU = (2-1) = A"

In the steady state calculation, the resi-
dual Q(h)U is driven to zero, but the
coarsened grid residual will not be zero.
Thus we can use

.QQ_”_M =7 hp
-1
as an estimate of the error at each point.

Notice that it is unnecessary to know
the exact form of the truncation error 7
for this method. Also, this residual calcu-
lation is identical to the first stage of the
cgular Runge Kutta integration step but
on a 2h grid. For the error estimation
step, the computer code is merely
changed to read i+2 instead of i+1 (and



so on) when updating the i point. (In
fact, t)his can sometimes be dons automat-
ically in Fortran by changing the dimen-
sion statcments when declaring the arrays
in an intcgration subroutine). The com-
putational overhead of this estimator is
thus less than one extra integration step
for the whole computation,

In regions where the flow is discon-
tinuous, this procedure no longer gives a
valid crror estimate. However, it acts as
a trigger for mesh refinement in the pres-
cnce of a strong shock. We have found
in our results however, that the largest
crrors arc at the leading edge and then
trailing edge of the airfoil. Of course, this
depends on the underlying global grid
resolution.  For strong shocks, a fine grid
is also crcatcd in the region of the shock.
This gencral procedure has the advantage
that it is not ,.cccssary to know the loca-
tion of the shock before the start of the
computation.

2.2. Grid Generation

The output from the error estimation
routine is a list of (coarse) grid points
with high error estimates, indicating that
a rcfined zone is nceded in that region.
The grid gencration routine separates the
points into appropriatc groups so that a
(logically) rectangular grid can be placed
around cach group. This procceds in two
phases. First, the points that are in dif-
ferent parts of the domain (such as lead-
ing edge and trailing edge) are separated
into different groups. Arcund each
group, a rcctangle is formed which is
large enough to include all points in that
group. This new grid is ther slightly
enlarged (by one or iwo coarse grid
points), to ensure that the fine grid boun-
dary, wherc special interpolation formu-
las will be used for the boundary dif-
ferencing, is in a region with a small error
estimate. Figure 2.2 illustrates this pro-
ccdure schematically.

The only possible exception to this
procedure is shown in Figure 2.3. It may
happen that two different grids are
created around one cluster of points, in
order to minimize the size of the
(unneccesarily) refined region. Details of
this exceptional case can be found in [9].
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Figure 2.2 Fine grid generation
around flagged points.

We make one last remark about the
rectangular grids. It may happen that the
zone needing refinement is oblique to the
underlying grid, for example, for an
oblique shock. It could be advantageous
to be able to align the fine grid so that
the coordinates wers approximately nor-
mal and tangent to the discontinuity, A
rotated difference scheme has been used
by Jameson [10] fur the potential equa-
tion. Recent results by Davis [11] for the
Euler equations show much better perfor-
mance for first order upwind schemes if
they are rotated to align with the shock.
The grid gencration procedure has the
capability to produce grids with this align-
ment property. However, interpolation
procedures have not yei been developed
which trcat the fine/coarse grid interface
conscrvatively. Work is still in progress
on this point.

2.3. Integration Procedure

1t is very easy to solve the equations
on the grid structure described above. We
take one step on all grids using the
Runge Kutta finite-volume integrator
described telow. Sinee we are interested
in the stcady state solution, we usc
pseudo-time steps with a fixed Courant
number. For time dependent calcula-
tions, for reasons of both stability and
efficiency, it is best to take several
smaller time steps on the fine grids for
every onc coarse grid step. We have
experimented with taking several steps on
a large fine grid for every coarse grid



Euler terms, Dw is an added dissipative
term, and where h is the ccll area. The
dissipation is introduced by a combination
of sccond and fourth order differenccs,
which are switched on by pressure gra-
dicnts. The same dissipation formulas are
3 used in the integration step on cach grid,

N O A T ot except at the boundaries of the fine grids,
H o I I e Y where the fourth order stencil is too
% - 3 large. In this case we use only the second

order dissipation.

The ODE'’s arc integrated using a
modificd four stage Runge Kutta scheme
in which the dissipative terms are only
cvaluated once. At cach time step the
solution is uvpdated by the following
sequence:

w(l) w2 w(o) —

Figure 2.3 Two fine grids generated
around one group of flagged points. __A_!.('QW(O)- Dw(®)
step. The optimal strategy for the 4h
number of itcrations to be done on cach
grid at a time is still an opcn question.
This will be an especially important con-

%(me_pwm))

sideration in large computations where W= W = oy Wi —Dwi)
sccondary storage is used. B (0 At ; .
We briefly review the finite volume wi) = w0 — ',';'(QW( )—Dw! ))

Runge Kutta time stepping procedure
which is the intcgrator for this adaptive
algorithm. For details, sec [12] and the
discussion of the FLOS2 program. The
full Euler equations in 2D are written in
integral form,

3 -
Effwdxdy + [ fdy—gds = (,

where

p o ov

_ |eu] ,_ |ow?+p| ,_ | ow
W= Tev| £ =1 pw pr2+p
E pu pvH

The equations are approximated in a com-
putational domain where the variables are
ccll-centered. The flux is evaluated at the
boundary of a given ccll using the aver-
age of the values in the adjacent cells.
This spatial discretization procedure leads
to a system of ordinary differential equa-
tions. These have the form '

%(hw) + Qw-Dw = 0,
where Qw is the aproximation to the

where w(©@ is the value a% the beginning
of the time step, and w 4) is the final
updated value. The time step limit for
this scheme is almost the same as that of
a standard fourth order Runge Kutta
scheme.,

The farficld boundary values are
partially specified from freestream values,
and partially cxtrapolated from the
Riemann invariants, dependitig on
whether the flow is supersonic or sub-
sonic, and whether the boundary is an
inflow or outflow boundary. At the
b-dy, only the pressure is needed to
advoi:oe the variables in the cclls nearest
tkc v all. The pressure is computed by an
cxt...rolation formula based on the nor-
mal momentum equations. The slight
rodification of this required at the
crarse/fine interface is described in sec-
tiun 3.

J. Fine Grid Boundary Conditions
In this section we discuss the differ-
cnce equations used at the interface

tewween a coarse and fine grid. The
cedure which we have developed is



designed for use with the finite volume
differenoe schenmye, More general pro-

ccdures are deseribed in (13].
+ X% X
(@] b savm = o i .
+ 1 % X
+ | x X
o} ) Lo NN
1 ox X
— SR R

Figure 3.1 Finc/coarse grid inter-
face.

We illustrate the proccdure using a
refinement ratio of 2 between grids. In
figurc 3.1, the coarse grid variables arc
marked with o, the fine grid variables
with an x. Noticc that there are coarse
points "underncath” the fine grid. The
solution is computed over the entire
coarsc grid including these points when a
coars¢ grid intcgration step is taken.
However, the coarse grid points under-
ncath the fine grid are updated after cach
coarse step by replacing the solution there
with the volume weighted average of the
solution at the four nesrest fine points.
The final cutput uses the values from the
finest grid covering each region.

To take a step on the fine grid, the
flux across the line £=0 into the fine grid
must be calculated. It is algorithmically
advantageous to introduce an "outside”
column of solution values (denoted by the
plus signs in figure 3.1). The flux can
then be calculated in the same way for
the first ccll and the interior cells of the
fine grid. This also mimics the coarse
grid setizp, where an cxtra column is kept
on cach side of the periodic boundary.
The casiest way to determine this column

.6-

of finc grid values is by interpolation
from the coarse grid. Point p would be
set by lincar interpolation from coarse
grid points v j,V; ju1sVia1 jsVie1,4+1- TO
maintain accuracy, values at vy4.q
and v;44 #1 on tlic coarse grid would be
replaced by the volume weighted average
of the four neighboring fine grid points
after every coarse grid integration step.
T this way, cach grid can still be
integrated independently, in a manner
that still vectorizes, and only a small
amount of "fixup” work along the boun-
daries of the fine grids need be done.

Unfortunately, there is no reason for
this procedure to be conservative, which
in this case means that the sum of the
fluxcs into the coarse cclls at the interface
(computed for example using the value

v jtv
_.‘J_.__i'ﬂ.) is equal to that computed

on the fine grid into the fine cells on the
right of the interface. It is important to
maintain conservation in order to guaran-
tee the correct shock location in transonic
flow ficlos., This is especially relevant
since there will often be a fine grid in the
region of a shock, and so the interface
between the fine and coarse grids will be
near the shock.

An alternative interface procedure
which is conservative is to calcuiate the
flux on the coarse grid, and divide it in
half for the adjacent two fine cells. This
would bypass sctting the outside vari-
ables, and calculate a boundary flux for
the fine grid directly. Unfortunately, this
is unstable, as can be seen from a lincar
analysis of the intcrface. The treatment
in this case yields the linear relationship

Vo1t vt Vot = 20w 5t U ),

where u approximates the solution on the
coarse grid, and v approximates the solu-
tion on the fine grid. Jt turns out that
any boundary scheme which couples the
fine points across the interface can give
risc to an oscillatory wave emanating
from the interface into the fine grid, and
supported by the central differenced
(linearized finite volume) scheme.
Another alternative, that of calculating
the flux directly from the one coarse point
and adjacent two fine points, is stable,
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but of lower order accuracy. In cffect, it
treats the solutior; in the eplumn of plus
signs as plecewise constant in each coarse
ccll, insicad of linear.

The procedure we have chosen is a
variation of interpolation, The cells with
plus signs arc obtained from interpolation
from the coarse grid, and the fine grids
arc then advanced. The coarse grid
fluxes arc detzrmined as usual during the
regular intcgration stcé), but then the
value at cach coarse grid point nearest the
interface is "fixed” so that the flux at the
interface equals the sum of the two fine
ccll fluxes. In this way, conservation is
enforced, second order accuracy is main-
taincd, and the only extra computational
work is dons along the boundary. (This
method thus avoids having to check every
coarsec point to determine whether it is
located at an interface, which would be
unacceptable overhead). In experiments
with these interface equations, when the
interface is forced to be right at the lovg-
tion of a shock, no loss of accuracy is
observed in the solution.

A special treatment is required when
the interface coincides with the body. In
order to interpolate for a fine point value
at the body, a coarse grid value is
needed at the body as well. Since only the
pressurc is computed at the body, valuces
arc nceded for the density, x and y
momentum, and cnergy. These are com-
puted by setting the momentum normal to
the body to O, setting the tangential
momentum to be identical to that one cell
over, and setting the energy to its steady
state constant value. In practice, there is
little difference between this procedure
and simple linear extrapolation of the
missing coarse grid values from the inte-
rior.

4. Numerical Results

We present results comparing the
solution computed on a coarse grid, on a
coarse grid with patcked fine grids, and
on a uniformly refined grid. In all cases,
by refining a fraction of the grid, the
accuracy of the solution on a uniformly
fine grid is recovered at less than half the
cost.

The first test case is for non-lifting
subsonic flow over a NACA 0017, airfoil,
The Mach number is .500 with zero
degrees angle of aiteck, Figure 4.1
shows a grid «f size 32 by 8, with the cal-
culated pressure cocfficient shown in Fig-
ure 4.2, The drag cocfficient is .0049,
Figure 4.3 shows a grid of size 64 by 16,
with the pressure coefficient in Figure
4.4, The drag cocfficient is ,0011. Fig-
urc 4.6 is the solutiz= on a grid of size
128 by 32 grid, shown in Figure 4.5. The
drag coefficient here is 0002, 'l;hc drag
cocfficient is converging like A to its
cxpected value of zero. Figure 4.8 shows
a refined grid solution based on a 32 by 8
underlying coarse grid, with refined grid
patches; as shown in Figurce 4,7, The drag
cocfficient in this case is .0009. Figure
4.10 shows a refined grid solution based
on a 64 by 16 underlying coarse grid.
The refined grid for this case is shown in
Figure 4.9, 'The drag cocfficient is
reduced to .0001. In both cases, the
accuracy of the solution on the uniformly
next finer level grid is recovered by using
small grid patches at the lcading and trail-
ing cdges of the airfoil.

The second test case is transonic
flow containing a shock wave, Figure
4.11 shows the ure coefficient for a
NACA 0012 airfoil at Mach .8 with zero
degrees angle of attack, The mesh used
for this computation is 64 by 16 cells.
When the grid is refined (using an error
tolerance of .005), as shown in Figure
4.12, the solution obtained is almost
identical to the solution computed on a
128 by 32 mesh (corapare Figures 4,13
and 4.14). In the coarse grid run, the
entropy behind the shock was computed
to be .0072, in the multiple grid run it
was .0052, and in the fine grid run the
entropy was .0054. In this mesh refined
solution, 21 % of the coarsc grid was
refined by a factor of 2 in both coordinate
directions. The cost of integrating the
mesh refined run was thus roughly half
the cost of the 128 by 32 grid run. If the
error toleraiice for mesh refinement is less
stringent (.025), so that only the leading
and trailing edges are refined (Figure
4.15), the solution is only slightly worse
(Figure 4.16). The entropy production



across the shoek is .0046 in this case. In
this run only 10 % of the coarse grid is
refined, and so the overzii cost of the
solution is roughly 35 % of the finc grid
cost,
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