166,090 research outputs found

    Variable word length encoder reduces TV bandwith requirements

    Get PDF
    Adaptive variable resolution encoding technique provides an adaptive compression pseudo-random noise signal processor for reducing television bandwidth requirements. Complementary processors are required in both the transmitting and receiving systems. The pretransmission processor is analog-to-digital, while the postreception processor is digital-to-analog

    Non-Adaptive Distributed Compression in Networks

    Full text link
    In this paper, we discuss non-adaptive distributed compression of inter-node correlated real-valued messages. To do so, we discuss the performance of conventional packet forwarding via routing, in terms of the total network load versus the resulting quality of service (distortion level). As a better alternative for packet forwarding, we briefly describe our previously proposed one-step Quantized Network Coding (QNC), and make motivating arguments on its advantage when the appropriate marginal rates for distributed source coding are not available at the encoder source nodes. We also derive analytic guarantees on the resulting distortion of our one-step QNC scenario. Finally, we conclude the paper by providing a mathematical comparison between the total network loads of one-step QNC and conventional packet forwarding, showing a significant reduction in the case of one-step QNC.Comment: Submitted for 2013 IEEE International Symposium on Information Theor

    Better text compression from fewer lexical n-grams

    Get PDF
    Word-based context models for text compression have the capacity to outperform more simple character-based models, but are generally unattractive because of inherent problems with exponential model growth and corresponding data sparseness. These ill-effects can be mitigated in an adaptive lossless compression scheme by modelling syntactic and semantic lexical dependencies independently

    Stack-run adaptive wavelet image compression

    Get PDF
    We report on the development of an adaptive wavelet image coder based on stack-run representation of the quantized coefficients. The coder works by selecting an optimal wavelet packet basis for the given image and encoding the quantization indices for significant coefficients and zero runs between coefficients using a 4-ary arithmetic coder. Due to the fact that our coder exploits the redundancies present within individual subbands, its addressing complexity is much lower than that of the wavelet zerotree coding algorithms. Experimental results show coding gains of up to 1:4dB over the benchmark wavelet coding algorithm
    corecore