24,701 research outputs found

    SMaSH: A Benchmarking Toolkit for Human Genome Variant Calling

    Full text link
    Motivation: Computational methods are essential to extract actionable information from raw sequencing data, and to thus fulfill the promise of next-generation sequencing technology. Unfortunately, computational tools developed to call variants from human sequencing data disagree on many of their predictions, and current methods to evaluate accuracy and computational performance are ad-hoc and incomplete. Agreement on benchmarking variant calling methods would stimulate development of genomic processing tools and facilitate communication among researchers. Results: We propose SMaSH, a benchmarking methodology for evaluating human genome variant calling algorithms. We generate synthetic datasets, organize and interpret a wide range of existing benchmarking data for real genomes, and propose a set of accuracy and computational performance metrics for evaluating variant calling methods on this benchmarking data. Moreover, we illustrate the utility of SMaSH to evaluate the performance of some leading single nucleotide polymorphism (SNP), indel, and structural variant calling algorithms. Availability: We provide free and open access online to the SMaSH toolkit, along with detailed documentation, at smash.cs.berkeley.edu

    Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy.

    Get PDF
    Current cell-free DNA (cfDNA) next generation sequencing (NGS) precision oncology workflows are typically limited to targeted and/or disease-specific applications. In advanced cancer, disease burden and cfDNA tumor content are often elevated, yielding unique precision oncology opportunities. We sought to demonstrate the utility of a pan-cancer, rapid, inexpensive, whole genome NGS of cfDNA approach (PRINCe) as a precision oncology screening strategy via ultra-low coverage (~0.01x) tumor content determination through genome-wide copy number alteration (CNA) profiling. We applied PRINCe to a retrospective cohort of 124 cfDNA samples from 100 patients with advanced cancers, including 76 men with metastatic castration-resistant prostate cancer (mCRPC), enabling cfDNA tumor content approximation and actionable focal CNA detection, while facilitating concordance analyses between cfDNA and tissue-based NGS profiles and assessment of cfDNA alteration associations with mCRPC treatment outcomes. Therapeutically relevant focal CNAs were present in 42 (34%) cfDNA samples, including 36 of 93 (39%) mCRPC patient samples harboring AR amplification. PRINCe identified pre-treatment cfDNA CNA profiles facilitating disease monitoring. Combining PRINCe with routine targeted NGS of cfDNA enabled mutation and CNA assessment with coverages tuned to cfDNA tumor content. In mCRPC, genome-wide PRINCe cfDNA and matched tissue CNA profiles showed high concordance (median Pearson correlation = 0.87), and PRINCe detectable AR amplifications predicted reduced time on therapy, independent of therapy type (Kaplan-Meier log-rank test, chi-square = 24.9, p < 0.0001). Our screening approach enables robust, broadly applicable cfDNA-based precision oncology for patients with advanced cancer through scalable identification of therapeutically relevant CNAs and pre-/post-treatment genomic profiles, enabling cfDNA- or tissue-based precision oncology workflow optimization

    VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research

    Get PDF
    Accurate variant calling in next generation sequencing (NGS) is critical to understand cancer genomes better. Here we present VarDict, a novel and versatile variant caller for both DNA- and RNA-sequencing data. VarDict simultaneously calls SNV, MNV, InDels, complex and structural variants, expanding the detected genetic driver landscape of tumors. It performs local realignments on the fly for more accurate allele frequency estimation. VarDict performance scales linearly to sequencing depth, enabling ultra-deep sequencing used to explore tumor evolution or detect tumor DNA circulating in blood. In addition, VarDict performs amplicon aware variant calling for polymerase chain reaction (PCR)-based targeted sequencing often used in diagnostic settings, and is able to detect PCR artifacts. Finally, VarDict also detects differences in somatic and loss of heterozygosity variants between paired samples. VarDict reprocessing of The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma dataset called known driver mutations in KRAS, EGFR, BRAF, PIK3CA and MET in 16% more patients than previously published variant calls. We believe VarDict will greatly facilitate application of NGS in clinical cancer research

    Ethical values supporting the disclosure of incidental and secondary findings in clinical genomic testing : a qualitative study

    Get PDF
    Background: Incidental findings (IFs) and secondary findings (SFs), being results that are unrelated to the diagnostic question, are the subject of an important debate in the practice of clinical genomic medicine. Arguments for reporting these results or not doing so typically relate to the principles of autonomy, nonmaleficence and beneficence. However, these principles frequently conflict and are insufficient by themselves to come to a conclusion. This study investigates empirically how ethical principles are considered when actually reporting IFs or SFs and how value conflicts are weighed. Methods: A qualitative focus group study has been undertaken, including a multidisciplinary group of professionals from Belgian centres for medical genetics. The data were analysed thematically. Results: All eight Belgian centres participated in this study. Ethical values were frequently referred to for disclosure policies on IFs and SFs. Participants invoked respect for patient autonomy to support the disclosure of IFs and optout options for IFs and SFs, non-maleficence for the professional delineation of reportable IFs and opt-out options for IFs and SFs and (the particular scope of) beneficence for the mandatory reporting of actionable IFs, the delineation of reportable IFs and a current decline of actively pursued SFs. Professional assumptions about patients’ genetic literacy were an important factor in the weighing of values. Conclusions: In line with the traditional bioethical discourse, the mandatory reporting of actionable IFs might be interpreted as a “technological, soft paternalism”. Restricting patients’ choices might be acceptable, but then its motives should be valid and its beneficent outcomes highly plausible. Hence, the presuppositions of technological, soft paternalism - patients’ inability to make informed decisions, normative rationality, the efficacy of beneficent outcomes and the delineated spectrum of beneficence - should be approached critically. Moreover, distributive justice should be considered an important value in the delineation of the current scope of the ethical debate on IFs and SFs. This study of guiding values may stimulate the debate on the ethical grounds for a solid policy on IFs and SFs internationally

    Criteria for reporting incidental findings in clinical exome sequencing : a focus group study on professional practices and perspectives in Belgian genetic centres

    Get PDF
    Background: Incidental and secondary findings (IFs and SFs) are subject to ongoing discussion as potential consequences of clinical exome sequencing (ES). International policy documents vary on the reporting of these findings. Discussion points include the practice of unintentionally identified IFs versus deliberately pursued SFs, patient opt-out possibilities and the spectrum of reportable findings. The heterogeneity of advice permits a non-standardised disclosure but research is lacking on actual reporting practices. Therefore, this study assessed national reporting practices for IFs and SFs in clinical ES and the underlying professional perspectives. Methods: A qualitative focus group study has been undertaken, including professionals from Belgian centres for medical genetics (CMGs). Data were analysed thematically. Results: All Belgian CMGs participated in this study. Data analysis resulted in six main themes, including one regarding the reporting criteria used for IFs. All CMGs currently use ES-based panel testing. They have limited experience with IFs in clinical ES and are cautious about the pursuit of SFs. Two main reporting criteria for IFs were referred to by all CMGs: the clinical significance of the IF (including pathogenicity and medical actionability) and patient-related factors (including the patient's preference to know and patient characteristics). The consensus over the importance of these criteria contrasted with their challenging interpretation and application. Points of concern included IFs' pathogenicity in non-symptomatic persons, IFs concerning variants of uncertain significance, the requirement and definition of medical actionability and patient opt-out possibilities. Finally, reporting decisions were guided by the interaction between the clinical significance of the IF and patient characteristics. This interaction questions the possible disclosure of findings with context-dependent and personal utility, such as IFs concerning a carrier status. To evaluate the IF's final relevance, a professional and case-by-case deliberation was considered essential. Conclusions: The challenging application of reporting criteria for IFs results in diversified practices and policy perspectives within Belgian CMGs. This echoes international concerns and may have consequences for effective policy recommendations

    Comparison of TCGA and GENIE genomic datasets for the detection of clinically actionable alterations in breast cancer.

    Get PDF
    Whole exome sequencing (WES), targeted gene panel sequencing and single nucleotide polymorphism (SNP) arrays are increasingly used for the identification of actionable alterations that are critical to cancer care. Here, we compared The Cancer Genome Atlas (TCGA) and the Genomics Evidence Neoplasia Information Exchange (GENIE) breast cancer genomic datasets (array and next generation sequencing (NGS) data) in detecting genomic alterations in clinically relevant genes. We performed an in silico analysis to determine the concordance in the frequencies of actionable mutations and copy number alterations/aberrations (CNAs) in the two most common breast cancer histologies, invasive lobular and invasive ductal carcinoma. We found that targeted sequencing identified a larger number of mutational hotspots and clinically significant amplifications that would have been missed by WES and SNP arrays in many actionable genes such as PIK3CA, EGFR, AKT3, FGFR1, ERBB2, ERBB3 and ESR1. The striking differences between the number of mutational hotspots and CNAs generated from these platforms highlight a number of factors that should be considered in the interpretation of array and NGS-based genomic data for precision medicine. Targeted panel sequencing was preferable to WES to define the full spectrum of somatic mutations present in a tumor

    A pilot study evaluating concordance between blood-based and patient-matched tumor molecular testing within pancreatic cancer patients participating in the Know Your Tumor (KYT) initiative

    Get PDF
    Recent improvements in next-generation sequencing (NGS) technology have enabled detection of biomarkers in cell-free DNA in blood and may ultimately replace invasive tissue biopsies. However, a better understanding of the performance of blood-based NGS assays is needed prior to routine clinical use. As part of an IRBapproved molecular profiling registry trial of pancreatic ductal adenocarcinoma (PDA) patients, we facilitated blood-based NGS testing of 34 patients from multiple community-based and high-volume academic oncology practices. 23 of these patients also underwent traditional tumor tissue-based NGS testing. cfDNA was not detected in 9/34 (26%) patients. Overall concordance between blood and tumor tissue NGS assays was low, with only 25% sensitivity of blood-based NGS for tumor tissue NGS. Mutations in KRAS, the major PDA oncogene, were only detected in 10/34 (29%) blood samples, compared to 20/23 (87%) tumor tissue biopsies. The presence of mutations in circulating DNA was associated with reduced overall survival (54% in mutation-positive versus 90% in mutation-negative). Our results suggest that in the setting of previously treated, advanced PDA, liquid biopsies are not yet an adequate substitute for tissue biopsies. Further refinement in defining the optimal patient population and timing of blood sampling may improve the value of a blood-based test. © Pishvaian et al

    FGFR2 amplification in colorectal adenocarcinoma

    Get PDF
    FGFR2 is recurrently amplified in 5% of gastric cancers and 1%–4% of breast cancers; however, this molecular alteration has never been reported in a primary colorectal cancer specimen. Preclinical studies indicate that several FGFR tyrosine-kinase inhibitors (TKIs), such as AZD4547, have in vitro activity against the FGFR2-amplified colorectal cell line, NCI-H716. The efficacy of these inhibitors is currently under investigation in clinical trials for breast and gastric cancer. Thus, better characterizing colorectal tumors for FGFR2 amplification could identify a subset of patients who may benefit from FGFR TKI therapies. Here, we describe a novel FGFR2 amplification identified by clinical next-generation sequencing in a primary colorectal cancer. Further characterization of the tumor by immunohistochemistry showed neuroendocrine differentiation, similar to the reported properties of the NCI-H716 cell line. These findings demonstrate that the spectrum of potentially clinically actionable mutations detected by targeted clinical sequencing panels is not limited to only single-nucleotide polymorphisms and insertions/deletions but also to copy-number alterations.</jats:p
    corecore