276 research outputs found

    Predicting opponent actions by bbservation

    Get PDF
    In competitive domains, the knowledge about the opponent can give players a clear advantage. This idea lead us in the past to propose an approach to acquire models of opponents, based only on the observation of their input-output behavior. If opponent outputs could be accessed directly, a model can be constructed by feeding a machine learning method with traces of the opponent. However, that is not the case in the Robocup domain. To overcome this problem, in this paper we present a three phases approach to model low-level behavior of individual opponent agents. First, we build a classifier to label opponent actions based on observation. Second, our agent observes an opponent and labels its actions using the previous classifier. From these observations, a model is constructed to predict the opponent actions. Finally, the agent uses the model to anticipate opponent reactions. In this paper, we have presented a proof-of-principle of our approach, termed OMBO (Opponent Modeling Based on Observation), so that a striker agent can anticipate a goalie. Results show that scores are significantly higher using the acquired opponentrsquos model of actions.Publicad

    Football in Belgium from centre to semi-periphery: Analyzing the financial ground

    Get PDF
    The facts show that in the given economic environment a restructuring of the Belgian professional football league is necessary for several reasons. First, to provide some form of “limited” competition with other European countries. Second, the introduction of the licence system by the Belgian Football Association in 2000-01 and by the UEFA in 2004-05, because clubs would no longer be allowed to have debts to the social security system, inland revenue, players,etc, Third, to stop the gradually increasing number of bankruptcies since the introduction of the licence system. Historical reasons and conservatism make a transition very difficult.sports economics

    A framework for the definition of metrics for actor-dependency models

    Get PDF
    Actor-dependency models are a formalism aimed at providing intentional descriptions of processes as a network of dependency relationships among actors. This kind of models is currently widely used in the early phase of requirements engineering as well as in other contexts such as organizational analysis and business process reengineering. In this paper, we are interested in the definition of a framework for the formulation of metrics over these models. These metrics are used to analyse the models with respect to some properties that are interesting for the system being modelled, such as security, efficiency or accuracy. The metrics are defined in terms of the actors and dependencies of the model. We distinguish three different kinds of metrics that are formally defined, and then we apply the framework at two different layers of a meeting scheduler system.Postprint (published version

    A Compositional Framework for Preference-Aware Agents

    Get PDF
    A formal description of a Cyber-Physical system should include a rigorous specification of the computational and physical components involved, as well as their interaction. Such a description, thus, lends itself to a compositional model where every module in the model specifies the behavior of a (computational or physical) component or the interaction between different components. We propose a framework based on Soft Constraint Automata that facilitates the component-wise description of such systems and includes the tools necessary to compose subsystems in a meaningful way, to yield a description of the entire system. Most importantly, Soft Constraint Automata allow the description and composition of components' preferences as well as environmental constraints in a uniform fashion. We illustrate the utility of our framework using a detailed description of a patrolling robot, while highlighting methods of composition as well as possible techniques to employ them.Comment: In Proceedings V2CPS-16, arXiv:1612.0402

    Enhancing the Supply Chain Performance by Integrating Simulated and Physical Agents into Organizational Information Systems

    Get PDF
    As the business environment gets more complicated, organizations must be able to respond to the business changes and adjust themselves quickly to gain their competitive advantages. This study proposes an integrated agent system, called SPA, which coordinates simulated and physical agents to provide an efficient way for organizations to meet the challenges in managing supply chains. In the integrated framework, physical agents coordinate with inter-organizations\' physical agents to form workable business processes and detect the variations occurring in the outside world, whereas simulated agents model and analyze the what-if scenarios to support physical agents in making decisions. This study uses a supply chain that produces digital still cameras as an example to demonstrate how the SPA works. In this example, individual information systems of the involved companies equip with the SPA and the entire supply chain is modeled as a hierarchical object oriented Petri nets. The SPA here applies the modified AGNES data clustering technique and the moving average approach to help each firm generalize customers\' past demand patterns and forecast their future demands. The amplitude of forecasting errors caused by bullwhip effects is used as a metric to evaluate the degree that the SPA affects the supply chain performance. The experimental results show that the SPA benefits the entire supply chain by reducing the bullwhip effects and forecasting errors in a dynamic environment.Supply Chain Performance Enhancement; Bullwhip Effects; Simulated Agents; Physical Agents; Dynamic Customer Demand Pattern Discovery

    Intelligent agent for formal modelling of temporal multi-agent systems

    Get PDF
    Software systems are becoming complex and dynamic with the passage of time, and to provide better fault tolerance and resource management they need to have the ability of self-adaptation. Multi-agent systems paradigm is an active area of research for modeling real-time systems. In this research, we have proposed a new agent named SA-ARTIS-agent, which is designed to work in hard real-time temporal constraints with the ability of self-adaptation. This agent can be used for the formal modeling of any self-adaptive real-time multi-agent system. Our agent integrates the MAPE-K feedback loop with ARTIS agent for the provision of self-adaptation. For an unambiguous description, we formally specify our SA-ARTIS-agent using Time-Communicating Object-Z (TCOZ) language. The objective of this research is to provide an intelligent agent with self-adaptive abilities for the execution of tasks with temporal constraints. Previous works in this domain have used Z language which is not expressive to model the distributed communication process of agents. The novelty of our work is that we specified the non-terminating behavior of agents using active class concept of TCOZ and expressed the distributed communication among agents. For communication between active entities, channel communication mechanism of TCOZ is utilized. We demonstrate the effectiveness of the proposed agent using a real-time case study of traffic monitoring system

    A motion planning method for simulating a virtual crowd

    Get PDF
    A model of motion planning for agent-based crowd simulation is one of the key techniques for simulating how an agent selects its velocity to move towards a given goal in each simulation time step. If there is no on-coming collision with other agents or obstacles around, the agent moves towards the designated goal directly with the desired speed and direction. However, the desired velocity may lead the agent to collide with other agents or obstacles, especially in a crowded scenario. In this case, the agent needs to adjust its velocity to avoid potential collisions, which is the main issue that a motion planning model needs to consider. This paper proposes a method for modelling how an agent conducts motion planning to generate velocity for agent-based crowd simulation, including collision detection, valid velocity set determination, velocity sampling, and velocity evaluation. In addition, the proposed method allows the agent to really collide with other agents. Hence, a rule-based model is applied to simulate how the agent makes a response and recovers from the collision. Simulation results from the case study indicate that the proposed motion planning method can be adapted to different what-if simulation scenarios and to different types of pedestrians. The performance of the model has been proven to be efficient
    corecore