138 research outputs found

    Persistent Homology Based Characterization of the Breast Cancer Immune Microenvironment: A Feasibility Study

    Get PDF
    Persistent homology is a common tool of topological data analysis, whose main descriptor, the persistence diagram, aims at computing and encoding the geometry and topology of given datasets. In this article, we present a novel application of persistent homology to characterize the spatial arrangement of immune and epithelial (tumor) cells within the breast cancer immune microenvironment. More specifically, quantitative and robust characterizations are built by computing persistence diagrams out of a staining technique (quantitative multiplex immunofluorescence) which allows us to obtain spatial coordinates and stain intensities on individual cells. The resulting persistence diagrams are evaluated as characteristic biomarkers of cancer subtype and prognostic biomarker of overall survival. For a cohort of approximately 700 breast cancer patients with median 8.5-year clinical follow-up, we show that these persistence diagrams outperform and complement the usual descriptors which capture spatial relationships with nearest neighbor analysis. This provides new insights and possibilities on the general problem of building (topology-based) biomarkers that are characteristic and predictive of cancer subtype, overall survival and response to therapy

    Spatial representability of neuronal activity

    Get PDF
    A common approach to interpreting spiking activity is based on identifying the firing fields—regions in physical or configuration spaces that elicit responses of neurons. Common examples include hippocampal place cells that fire at preferred locations in the navigated environment, head direction cells that fire at preferred orientations of the animal’s head, view cells that respond to preferred spots in the visual field, etc. In all these cases, firing fields were discovered empirically, by trial and error. We argue that the existence and a number of properties of the firing fields can be established theoretically, through topological analyses of the neuronal spiking activity. In particular, we use Leray criterion powered by persistent homology theory, Eckhoff conditions and Region Connection Calculus to verify consistency of neuronal responses with a single coherent representation of space

    Persistent homology based characterization of the breast cancer immune microenvironment: a feasibility study

    Get PDF
    International audiencePersistent homology is a powerful tool in topological data analysis. The main output, persistence diagrams, encode the geometry and topology of given datasets. We present a novel application of persistent homology to characterize the biological environment surrounding breast cancers, known as the tumor microenvironment. Specifically, we will characterize the spatial arrangement of immune and malignant epithelial (tumor) cells within the breast cancer immune microenvironment. Quantitative and robust characterizations are built by computing persistence diagrams from quantitative multiplex immunofluorescence, which is a technology which allows us to obtain spatial coordinates and protein intensities on individual cells. The resulting persistence diagrams are evaluated as characteristic biomarkers predictive of cancer subtype and prognostic of overall survival. For a cohort of approximately 700 breast cancer patients with median 8.5-year clinical follow-up, we show that these persistence diagrams outperform and complement the usual descriptors which capture spatial relationships with nearest neighbor analysis. Our results thus suggest new methods which can be used to build topology-based biomarkers which are characteristic and predictive of cancer subtype and response to therapy as well as prognostic of overall survival
    • …
    corecore