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Abstract 
 

 

 

Feature extraction in pattern recognition has been researched for many years. Some 

works have been inspired by biological systems, particularly neural networks. As the 

biological system is not fully understood, this thesis proposed an algorithm inspired 

on the way humans see objects. Humans can tell two objects look similar when both 

objects have a high percentage of similarity. The similarity of individual features in 

both objects is measured before deciding how similar they are. Small features construct 

bigger features of the object, and at the end the combination of some bigger features 

make up the whole object. This process of recognising patterns following a 

hierarchical approach inspired the research presented in this thesis; hence the proposed 

algorithm is called the Hierarchical Concatenation Network (HCN). When two objects 

are compared, one object is used as the reference object in the comparison. Hence the 

HCN analyses the features of patterns using other patterns’ features as reference. 

As features construct a whole object, the HCN  proposed in this thesis has been 

designed to have several levels. The research investigated how many levels the HCN 

should have to produce better results. This led to investigate different approaches to 

concatenate low level features to represent the higher level features. Experimental 

results on measuring the similarity between specimens led the research to explore 

alternative ways to represent the high level features, hence this thesis reports on two 

feature activation methods called HCN-I and HCN-II.  

Preliminary results showed that the higher the level of the network, the more 

differentiated the two objects were. Exchanging the position of the tested and reference 

patterns produced different result. Hence, different methods of feature extraction were 

investigated to understand the effect of the relative position between the tested and 

reference patterns. This resulted in the proposed HCN  having two methods called ‘one 

to many’ and ‘many to one’. 
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To validate HCN networks, a very simple dataset was used in similarity measure tests. 

The dataset consisted of ten groups of numbers (0 to 9) with ten different style. This 

dataset was chosen because it contains patterns that are easily identified by humans, 

which simplified the task of determining if the HCN could achieve recognition or not. 

More complex datasets that included numbers with various noise levels (extremely 

rotated or extremely noisy) were not included in the experiment. Results showed that 

the HCN’s performance degrades as the tested patterns’ complexity increases.  In these 

tests the HCN was expected to be able to classify test numbers in the correct group, 

even though their style was different according to their similarity rate. To improve the 

HCN’s performance, some possibilities were investigated, such as overlapping the 

middle area of the images, and circular and non-circular-shifting (sequential and non-

sequential) of the image during the feature extraction process. 

The ability of HCNs to classify as well as recognise patterns was also investigated in 

this research. For all HCN feature extraction methods, three different ways of 

classification: classification by union, classification by average, and classification by 

distance were investigated. Referring back to the way humans recognise objects by 

combining features, the thesis investigated one method of classification called 

‘classification by union’. In this method, the features of images within the same class 

are grouped together. This means that a node in a layer of a class contains patterns 

with similar unique features. Classification is achieved by selecting the highest 

similarity rate between the features of the tested pattern and the features of a class, 

which were previously determined. 

‘Classification by union’ combines the features of pattern in the same class, while  

‘classification by average’ takes an average of features of patterns from the same class. 

This means that a node in a layer of a class has an average value of the features of all 

patterns in the same class. Similar to the ‘classification by union’, the classification 

result is determined by the highest similarity rate between the features of the tested 

pattern and the features of a class. 

The last classification method investigated in this research was different from the two 

previous methods. This classification method uses standard Euclidean Distance to 

measure similarity. As the distance of a tested pattern to a class of patterns needs to be 

determined , this thesis investigated three different distance measurement methods: 
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distance to mean, mean of distance, and minimum distance. The ‘distance to mean’ 

method calculates the distance between the features of the tested patterns to the mean 

of features of the reference patterns. The ‘mean of distance’ method calculates the 

distance of tested patterns’ features to all features of the reference patterns in the same 

class. The distance between a tested pattern and a class is the average of their distance. 

The last distance measure to be considered was the ‘minimum distance’. Similar to 

‘mean of distance’, the distance of tested patterns’ features to all features of the 

reference patterns in the same class is measured, but the distance between a tested 

pattern and a class is the minimum distance between the tested pattern and one of the 

patterns in that class. 

In terms of the topology of the network, experimental results show that only two levels 

are enough for HCNs to perform recognition. More levels lead to over distinction 

among patterns and give incorrect results. 

At the end of the investigation, two publicly available datasets (USPS and MNIST) 

were used to test the HCN network. These datasets were used because they were 

written by different people with different styles. To feed these datasets to the HCN 

network, they were first normalized (size and binarization). The experimental results 

show that HCN is able to increase its performance by increasing the size of the 

datasets, although the benchmark method LDA still outperformed HCN’s in 

recognising a big number of datasets. However, the HCN was able to show better 

performance with small datasets compared to LDA and PCA. 
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Chapter 1  

Introduction 

 

 

 

 

 

All processes that make vertebrates act might be controlled by their brain. Even finger 

tipping is under the brain’s control without realizing it. This control process is a unique 

and amazing operation that all creatures possess. However, the way the brain works is 

still not fully understood, and to this day, there is still no evidence to prove that current 

technologies are able to replicate the whole brain’s capabilities.  

For decades, scientists have been conducting many researches related to the brain in 

different areas including psychology, computer science, engineering, and neurology 

(Balaban & Gulyaeva, 2016; Mayer, 1998; Pompe, 2013). Some applications have 

been developed from this inter-disciplinary knowledge. For example, iris-, fingerprint-

, and face-recognition systems make it easy to record personal data that can be used 

for many purposes such as an absence system, and/or to solve criminal problems and 

identification processes. 

However, although the above are examples of research works related to imitate some 

humans’ abilities into a machine, they are still far removed from the real process of 

the human brain as it is not fully understood. Replicating the brain process is difficult 

to achieve, but researchers have developed algorithms that produce results close to the 

ability of the human brain. The implementation of developed algorithms into 

applications that are run by machines makes our lives easier. For example, machines 

can do repeated tasks over a long period of time with minimum error rates compared 

to a human.  
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Research in this area belongs to certain disciplines with the Artificial Intelligence 

discipline. Many methods and algorithms of artificial intelligence have been studied 

and tested to solve specific problems such as decision-making (Dragulescu & Albu, 

2007; Vari & Vecsenyi, 1988) and prediction (Daynac, Cortes-Cabrera, & Prieto, 

2015; Khamehchi, Rahimzadeh Kivi, & Akbari, 2014). Each method or algorithm 

performs specific tasks by replicating one of the brain’s abilities. For example, image 

or pattern recognition and classification algorithms propose computers to be able to 

perform the tasks related to visual information processing that supposed to be close to 

the humans’ ability. Voice recognition seeks to imitate the brain’s ability to process 

voices.  

Neural network has been a part of research area in the artificial intelligence since the 

first time it emerged. Researchers continue to develop neural networks such as 

convolutional neural networks, residual networks, and densely connected networks. 

However, this research area is being continued to find the best solution if the network 

becomes deeper and wider (K. H. and, and, and, & Sun, 2016; K. S. and & Zisserman, 

2014; He, Zhang, Ren, & Sun, 2016; Huang, Liu, & Weinberger, 2016; Wen, Fu, Sun, 

Sun, & Wang, 2018; Zagoruyko & Komodakis, 2016). Yet, the knowledge of how 

exactly the brain performs its tasks is not known. For example, how does the 

information flow and how is it used in each level of the brain? This lack of total 

understanding causes difficulties for computer scientists when attempting to develop 

an algorithm to replicate the biological process of the human brain. However, it is not 

the objective of the researches to replace the human brain with a machine’s algorithms. 

Instead, it is just to replicate the behaviour of the human activity with computer 

algorithms. If a machine can help make decisions or do specific tasks, the machine 

algorithm will be useful for human life. Figure 1.1 illustrates three objects that are easy 

for human to recognize them. 

(a) (b) (c)
 

Figure 1.1: Examples of objects 
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As a human, we can instantly conclude that Figure 1.1(a) and (c) looks similar 

compared to (b). Without looking at how the brain works in this case, we see each 

object first and then compare each features they have. Both objects (a) and (c) have 

two features (two lines) while (b) only has one feature (one line). At this point, it is 

clear that object (a) does not look similar to object (b). But can we say that object (a) 

is similar to object (c)? The answer is “yes we can” even though both features belong 

to object (a) and (c) are not 100% similar. Figure 1.2 gives more detail of possible 

process comparing the three objects by their features. 

(a) (b) (c)

feature x feature x

 

Figure 1.2: Features of patterns 

As an illustration, we are comparing three objects in Figure 1.2 feature by feature. At 

this point, we use image (a) as the reference object to be compared with the two others. 

The first comparison is between image (b) and (a). When we see feature y of image 

(b), we can say that this feature looks similar to feature y in image (a). To indicate 

there is a similarity between them, we can imagine that feature y of image (a) as an 

active feature. With one feature of image (a) is active, we can say image (b) could have 

several percentage of similarity to image (a). For the comparison between image (c) 

and (a), both features x and y would be active as they look similar. We can conclude 

that image (c) and (a) has higher percentage of similarity rather than image (b) and (a). 

The way humans see, separate, and compare the features of the objects as illustrated 

above is an interesting process, but the way how the brain process the information 

come to it is very complex tasks. A decade ago, a book called “On Intelligence” was 

written by Jeff Hawkins (Hawkins & Blakeslee, 2005). This book presents the 

conceptual theory of the neocortex as the part of the brain that processes external 

information through sensory systems such as the eyes, the tongue, ear, nose, and skin, 

receiving visual information, taste, sound, smell, and touch, respectively. A few years 
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after the book was published, an investigation into how the brain might work was 

conducted (George, 2008b). This work was inspired by Hawkins’s book and since that 

time, Hawkins’s theory has become more popularly known as hierarchical temporal 

memory, or HTM. It is a biological-inspired computer algorithm discussed in (George, 

2008a; George & Hawkins, 2005b; George & Hawkins, 2009). It is further investigated 

in several research works (Chen, Wang, & Li, 2012; George & Hawkins, 2009; Kalmar 

& Vida, 2013; Kostavelis, Nalpantidis, & Gasteratos, 2012; Melis, Chizuwa, & 

Kameyama, 2009; Sherwin & Mavris, 2009). The works related to Hawkin’s concept 

tried to implement the intelligence system from biological point of view while the truth 

of the biological systems work is still not fully understood. Even though Jeff Hawkins 

stated in his book that studying the detailed biology of brain could be the best way to 

understand the intelligence, filling the gap between the truth of the brain-based 

intelligence and the computer ability could be another way of understanding the 

intelligence concept. This thesis is supposed to study the basic way humans see the 

object and implement that way within the computer term. The concept of spatial and 

temporal pooler in the HTM network has inspired this thesis to investigate the process 

of humans see the object as illustrated in Figure 1.2. It is started with hierarchical 

feature extraction procedure and ended with the ability of recognition or classification 

as the end product of the algorithm.  

Figure 1.3 shows the possible way of hierarchical feature separation from the whole 

object within m square area defined as coincidence array in this thesis. 

(a) (b) (c)
 

Figure 1.3: Example of extracting feature 

Figure 1.3(a) shows the view of the whole image called the top-level image. Four 

concatenated features from the level below construct this image. One red circle in 

image (a) shows the concatenation of four square indicated by the red circle. This 
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figure illustrates that image (b) is one feature that construct the image (a), while image 

(c) is one of the feature that construct image (b). 

The example above rises several research questions to investigate the way humans see 

the object. How to extract features of an object using another object’s features 

hierarchically? How to represent the new features on upper level? As the proposed 

algorithm extracts the features of an object using other objects' features, is there any 

difference in terms of feature similarity by exchanging the position of tested and 

reference patterns? Is there any difference in terms of similarity measure between the 

features on the lowest level and the features on upper level? If yes, how many levels 

the network should have? What method is suitable to perform classification? These are 

major questions that will be addressed in this thesis. Several experiments need to be 

conducted to answer those questions. Hence, digits datasets that represent known 

patterns were applied in the experiment. 

The literature reveals that the development in the area of artificial intelligence has 

grown very fast. (Alom et al., 2018; Sze, Chen, Yang, & Emer, 2017) presented the 

big picture of the development area in the context of artificial intelligence. They did 

not put HTM in the picture, even though HTM algorithm is also inspired by brain. 

HTM has inspired this thesis by simplifying its process. Figure 1.4 could be an 

illustration of the position of this thesis within the picture of (Alom et al., 2018; Sze et 

al., 2017). 

Artificial

Intelligence

Machine

Learning

Brain-

Inspired

SNN
NN

Deep

Learning
HTM

HCN

 

Figure 1.4. HCN position in the context of Artificial Intelligence 
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The remaining of this thesis is structured as follows. Chapter 2 organizes the major 

themes of the background knowledge, the theoretical and methodological findings in 

the field of pattern recognition. It starts with an overview of early works, showing how 

objects or images are represented in the area of pattern. It then reviews related works 

in pre-processing and feature extraction to support this research. One particular 

hierarchical network called Hierarchical Temporal Memory (HTM) is reviewed to 

analyse specific processes such as input extraction, grouping, and activation of patterns 

in the upper layers. At the end of this chapter, the general process of image or pattern 

recognition is explored. 

In Chapter 3, the methodology used in this thesis is presented. As this research aims 

to verify the hypothesis written in subsection 1.2, a quantitative methodology is used 

throughout the research. The methodology consists of three stages. The first is the 

review of hierarchical concatenation networks to assess the possibility of simplifying 

the concatenation and pattern activation processes within the network. The second 

stage is the exploration of feature extraction and activation methods to investigate how 

the hierarchical concept is achieved. The last stage is the implementation of a 

hierarchical concatenation network for classification. The performance of the network 

at classifying patterns is also investigated. 

Chapter 4 presents a step-by-step description of the hierarchical concatenation method 

to recognise patterns. 

Chapter 5 describes the implementation of the hierarchical concatenation algorithm to 

conduct feature extraction and activation. 

Chapter 6 describes the ability of the network developed in this research to classify 

patterns. 

Chapter 7 concludes this thesis with a summary of the key contributions, and presents 

possibilities of future works. 
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Chapter 2  

Background Knowledge 

 

 

 

 

 

2.1. Introduction 

Human ability to recognise objects or patterns is amazing. It is easy for humans to 

distinguish what objects they see, what aromas they smell, what sounds they hear, what 

foods they taste, and what textures they touch. Recognising or classifying objects or 

patterns through sensory systems is also a natural capability for humans; a very 

complex process happens almost unconsciously. For example, within a crowded 

market, humans can easily identify their friends among the people there. They are able 

to recognise a mango located on the other side of the market from the place where they 

stand. They can also easily find the exit sign above the exit gate, and are able to 

evacuate themselves if the fire alarm is triggered. This process of pattern recognition 

is one example of the ability of the human brain. Neuroscientists have been unable to 

fully explain the complexities involved in pattern recognition, because most of the 

complex mechanisms involved happen at an unconscious level. Nevertheless, 

computer scientists have made significant progress replicating some of these amazing 

abilities using algorithms implemented by computers. 

This chapter presents a brief overview of state-of-the-art pattern recognition. 

Theoretical and methodological findings in pattern recognition are presented, 

alongside other related topics like similarity measurement and classification. The 

following section begins with an overview of early works, showing how objects or 
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images are represented in the area of pattern recognition. It continues with an 

exploration into replicated brain-inspired concepts and their transference to computer 

algorithms. It ends with a look at the general process of image recognition, and 

includes a review of features’ extraction, similarity measurement, and classification. 

2.2. An Overview of Pattern Representation in Early 

Pattern Recognition 

In terms of recognition, shapes or features among objects are the most important 

properties to be matched. According to (Stefanucci, 2011), the matching process 

determines a measurement of similarity between the representation of an object or 

pattern and a model of the object’s subset stored in its memory (see Subsection 2.4.2). 

(Marr & Nishihara, 1978) state that there are three criteria for shape representation in 

object recognition. These are: 

1. Accessibility, which simplifies the representation of objects and can be useful 

for recognition. 

2. Scope and uniqueness, where the shape representation of objects within the 

same class should have the same description. 

3. Stability and sensitivity, where the degree of similarity between two shapes 

should be reflected by the description of their properties.  

The earliest works in the field of object or pattern recognition used single images of 

static two dimensional (2-D) scenes. The use of 2-D images in this type of application 

has been prevalent for more than a half century, or at least since Alan Turing raised 

the idea with a question: ‘Can a machine think?’ (Turing, 1950; Williams, 1991).  

Some practical experiments, conducted in the early 1960s, are reported in (Gold, 1959; 

Grimsdale, Sumner, Tunis, & Kilburn, 1959a, 1959b; Taylor, 1959; Unger, 1959). The 

implementation of simple pattern recognition processes to encode the signal of hand-

sent Morse code is conducted in (Gold, 1959). Gold introduces the use of thresholds 

and error rates in the experiment to give a range of value during signal activation. The 

patterns that need to be encoded are letters, numbers, and punctuation signs. These 

signs are represented by simple mark spaces. A threshold is also used to classify the 
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marks and spaces. However, since Morse code relies heavily on the ability of an 

operator, the error rate is variable and relatively high. 

In the same year as Gold’s Morse code experiment, (Grimsdale et al., 1959b; Unger, 

1959) presents an automatic system for pattern recognition. With the limited 

capabilities of computers at that time, the patterns used as inputs are printed on a piece 

of paper and then scanned as image files. These image files are then stored in a 

computer as the patterns’ library. Each pattern is analysed, based on groups that 

represent vertical and horizontal lines, and lines with slopes and curvatures. The first 

step in the algorithm is scanning the input patterns, pixel by pixel, and identifying the 

continuity of the lines or curvatures. The scanning process analyses the pattern, based 

on the groups presented in Figure 2.1. 

 

Figure 2.1: Examples of groups of patterns (Grimsdale et al., 1959b) 

For example, during scanning, a horizontal line is identified if the line continues with 

no space at the end (see Figure 2.1 (a), which is a Group 2). The scanned patterns are 

reproduced by printing the patterns with the highest similarity between the input and 

stored patterns. 

In another work, Unger (1959) implements a noise reduction process that still plays an 

important role in pattern recognition. The noise reduction process involves certain 

steps to smooth images, i.e. filling in isolated holes in black areas, filling in small 

notches in straight-edge segments, eliminating isolated ones, eliminating small bumps 

along straight-edge segments, and replacing missing corner points. An example of an 

original pattern along with its smoothed pattern is shown in Figure 2.2. 
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Figure 2.2: Example of noise reduction by smoothing (Unger, 1959) 

The use of arrays as the patterns’ field, which has been popular in pattern recognition 

implementation, is introduced by Stearns (1960). Stearns presents patterns as black 

and white cells within the array. This is similar to pixels, which represent a pattern’s 

binary values. The general approach of Stearn’s pattern representation is that the 

pattern is always to occupy a fixed or finite rectangular area, which is then divided into 

n elements where each element is represented as black or white. Stearn’s experiment 

attempts to perform classification where patterns from the same group are combined 

together. The combination of patterns in a group is then used as the classifier. 

 

Figure 2.3: Example of forming a classifier using array (Stearns, 1960) 

Since that time, pixels representing features of images have been captured in arrays or 

matrices (Eden, 1962; Horwitz & Shelton, 1961; King-Sun & Rosenfeld, 1976; 

Levialdi, 1970). 

The first concept of a general pattern recognition system is presented by King-Sun and 

Rosenfeld in 1976. They propose a two-part algorithm as shown in Figure 2.4. The 

first part is recognition and the second part is analysis or inference. The recognition 

Original After smoothing
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part consists of pre-processing, extraction, and structural analysis. The analysis part 

involves selection and structural inference. 

 

Figure 2.4: Block diagram of pattern recognition system as proposed by (King-Sun & 

Rosenfeld, 1976) 

Nowadays, pattern recognition and classification have developed in significant ways. 

However, the use of arrays to represent an object’s or pattern’s features, as well as the 

general concept of pattern recognition and classification, remains the same as in the 

earliest works. 

2.3. Brain-Inspired Intelligence Algorithms 

Since Turing’s question regarding whether machines can think, research on machine 

intelligence has been directed at replicating the abilities of the brain, including 

learning. (Sze et al., 2017) has drawn the big picture of the development of the artificial 

intelligence as shown in Figure 2.5. Neural networks are  considered as the brain-

inspired algorithms. With their fast development since the time they were introduced,  

deep convolutional neural networks aim to achieve the best performance compared 

with their successor neural networks. On the left-hand side of the brain-inspired 

algorithm in Figure 2.5, the spiking neural networks (SNNs) are placed, and claimed 

as more biologically realistic compared to the neural networks (Tavanaei, Ghodrati, 

Kheradpisheh, Masquelier, & Maida, 2018). 
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Figure 2.5. The position of several development areas in the context of artificial 

intelligence 

Experience has demonstrated, however, that the mechanisms involved in machine 

learning are significantly different to the brain’s (Baev, 1998). As part of an intelligent 

machine movement, an article about research on neural networks was published in the 

early 1940s (Yadav, Yadav, & Kumar, 2015). Other works conducted in the early 

stages of the intelligent machine movement can be found in (Grimsdale et al., 1959b; 

Horwitz & Shelton, 1961; Rosenblatt, 1960; Sebestyen, 1961; Taylor, 1959). One of 

the earliest brain-inspired models implemented in computers is called the perceptron 

network (Rosenblatt, 1960). In fact, the inspiration for this brain-inspired algorithm 

came from a behavioural study on how humans learn, and this is presented in the 1949 

book “The Organisation of Behaviour” by (Hebb, 2005). The way other creatures (i.e. 

bees) learn and recognise patterns is also studied in (Ronacher, 1998). In 2005, 

(Hawkins & Blakeslee, 2005) wrote the book “On Intelligence”. This book presents a 

very interesting theory on how the neocortex of the brain may work. Hawkins’ ideas 

were implemented into the algorithm called hierarchical temporal memory (HTM) in 

(George, 2008b; George & Hawkins, 2009). 

Although HTM is not in the picture drawn by (Sze et al., 2017), the following sections 

present the artificial neural network, spiking neural network, and hierarchical temporal 

memory. 
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2.3.1. Artificial Neural Network 

The modern study of artificial neural networks (ANNs) started with a paper that 

employs Turing’s mathematical notion of computation written by McCulloch and Pitts 

in 1943 (McCulloch & Pitts, 1943). According to (Hebb, 2005), the concept of how 

humans learn is presented in 1949. A mathematical computing algorithm that 

replicates the process of a biological neural system is a definition of an ANN (Hen Hu 

& Hwang, 2001). (Macukow, 2016) states that an ANN is a network of neurons 

organised in layers. Figure 2.6 shows an illustration of a biological neuron 

(Yegnanarayana, 1994), while the structure of an ANN with two hidden layers (a 

multilayer perceptron) is presented in Figure 2.7 (Katic & Vukobratovic, 2003). 

 

Figure 2.6: Biological neurons (Yegnanarayana, 1994) 

The circles in Figure 2.6 represent neurons that are connected to their neighbours, 

using solid lines, and fulfil the function of nerve fibres (Katic & Vukobratovic, 2003). 
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Figure 2.7: Multilayer perceptron network (Katic & Vukobratovic, 2003) 

According to (Yagawa & Okuda, 1996), the inputs denoted by ui flow through the 

network to produce outputs yi, applying the state transition ti into the activation 

function f(ti) as: 

𝑡𝑖 = ∑ 𝑤𝑖𝑗𝑢𝑗 + 𝜃𝑖𝑗
𝑖≠𝑗

      (1) 

𝑦𝑖 = 𝑓(𝑡𝑖)      (2) 

Inputs are multiplied by weights wij, summed up, and then sent to the activation 

function. The output yi of unit i is the result of the activation function as presented in 

equations (1) and (2). θ represents the offset. The activation function f(ti) is usually the 

sigmoid function, which has values between 0 and 1. Then yi will be: 

𝑓(𝑡𝑖) =
1

1+𝑒𝑥𝑝−𝑡𝑖
     (3) 

An ANN processes inputs or information (images, patterns, objects, etc) in a similar 

way to the human brain. The simplest ANN has signals that flow from inputs, from 

hidden nodes that receive the signals from the inputs, and from output nodes that 

produce the outputs of the network (Macukow, 2016).  

The input layer of an ANN is directly connected to the input patterns, and the number 

of nodes in this layer depends on the number of features (Ukil, 2007). In terms of 

image recognition, the inputs that are fed to the input layer are the values that represent 
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the colours of pixels as the features of image. In the case of an image of size 32x32 

pixels, where each pixel represents one feature, the input layer has 1024 neurons as the 

ANN’s input nodes. 

The multilayer neural network is also known as the hierarchical neural network. 

(Fukushima, Miyake, & Ito, 1983) introduce the concept of a hierarchical network, 

containing cascaded connections between its layers. (Yeap, Zaky, Tsotsos, & Kwan, 

1990) explain that the reason for using a hierarchical network is to reduce the 

complexity of the network. Because neural networks are inspired by biological 

neurons, these early researchers implemented components such as cells, synapses, and 

layers. A few years later, (Pau-Choo, Chen, & Ching-Tsorng, 1994) presented their 

work on pattern recognition, based on hierarchical neural networks with two layers. 

They train the two layers to perform specific tasks. The first layer extracts the features 

of patterns, while the second layer recognises the objects. Following some early 

success, modifications to the network are conducted to achieve better results. For 

example, (Ersoy & Shi-Wee, 1995) propose an algorithm to parallelise the hierarchical 

neural network. 

ANNs have been widely applied in many areas, and different topologies have been 

suggested to achieve better results and performance. For example, the recurrent neural 

network (RNN), which is a class of neural network with a self-connected hidden layer, 

produces better results than the hierarchical Markov model (HMM) in handwriting 

recognition (Graves et al., 2009). The inputs and outputs of early neural networks are 

independent of one another, whereas the RNN has connections in its hidden layer for 

the purpose of apprehending information in sequential data (Choi, Kim, & Lee, 2016). 

With this ability, the RNN can predict what the output will be based on the previous 

data. RNNs are able to replicate the ability of the brain to conduct prediction. However, 

RNNs are not appropriate for solving problems involving voice, natural language, and 

time-series data. RNNs are also part of deep learning models like the enhanced neural 

network called the convolutional neural network (CNN) (Du, Cai, Wang, & Zhang, 

2016). 
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The CNN is neo-cognition based on the receptive field (the area of input). It is different 

to the original neural network. CNNs do not propagate each pixel from an image to 

the hidden layer’s nodes through the input layer’s nodes as the original neural networks 

did. CNNs convolve or shift the receptive field across the image area and across the 

input. Shifting the receptive field means that CNNs look at features of the image within 

the size of the receptive field and then propagate the output of the receptive field to 

the hidden layer’s nodes. Convolutional feature extraction is conducted hierarchically. 

For example, an experiment by (Afzal et al., 2015) implemented four convolutional 

layers. The first layer used a 55x55 receptive field to extract features of an input image 

of size 227x227 pixels. The convolutional output of the first layer is then pooled to a 

27x27 receptive, and filed in the second layer. From Layers 2 to 4, outputs of previous 

convolutional layers are pooled into 13x13, 6x6, and 1x1 receptive fields in Layers 2, 

3, and 4, respectively. Outputs of the last convolutional layer are fed into the input 

layer’s neural network nodes, while the original neural networks are fed directly from 

the input. 

The use of receptive fields to extract features in CNN algorithms looks promising 

compared to ANN, because the receptive field extracts the shape of images (Afzal et 

al., 2015; Du et al., 2016; Li, Peng, Zhizhen, & Jingjing, 2016; Pal & Sudeep, 2016). 

The CNN has been developed further to be Deep CNN (Krizhevsky, Sutskever, & 

Hinton, 2017). In their work, the proposed network is shown in Figure 2.8. 

 

Figure 2.8. The architecture of Deep CNN 

This architecture contains eight learning, five convolutional, and three full connected 

layers. This architecture was designed with unusual features. The first is the Rectified 

Linear Unit (ReLU) which refers to the neuron with non-linearity. The use of CNN 
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with ReLU increases the training time faster than the standard CNN. The second is the 

use of multiple GPUs that consumes less time compared with only one GPU. The third 

is Local Response Normalization which is applied after ReLu. They claimed that with 

the error rate for dataset CIFAR-10 was 13% without normalization and 11% with 

normalization. The last feature is Overlapping Pooling to reduce the overfitting. 

To simplify the training process on deeper neural networks, (He et al., 2016) proposed 

a new architecture for deep CNN using deep residual learning framework which is 

then call as ResNets. This new algorithm has been developed due to the degradation 

of accuracy when the network’s depth increase. To solve this problem, they used the 

residual formulation that is added by shortcut connection as shown in Figure 2.9 . 

 

Figure 2.9. A building block of residual learning 

ResNets gave good performance compared to the original deep CNN at the ILSVRC 

2015 in classification, localization, and detection, and COCO detection and 

segmentation. Even though residual networks can be used up to thousands of layers or 

very depth network, it has a problem of diminishing feature reuse that makes the time 

to train the network is very slow. (Zagoruyko & Komodakis, 2016) proposed a method 

to solve this problem by making the residual network wider instead of deeper. They 

claimed that their simple 16 layers wide residual network produce better accuracy and 

efficiency compared with all previous deep residual networks with thousands of layers. 

Recent investigation by (K. Zhang et al., 2018) found that the wider residual network 

in (Zagoruyko & Komodakis, 2016) still having overfitting problems when the 

network is becoming wider. This is due to the ResNets perform residual mapping fitted 

by stacked nonlinear layers. They then gave the hypothesis that the residual mapping 

of residual mapping is easier to optimize than the original residual mapping. They then 
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proposed their hypothesis which is then called residual networks of residual networks 

(RoR). The idea of RoR was based on the hypothesis to optimize the residual networks. 

The exploration of the neural network architectures has been an interesting research 

area since their performance become well. Residual networks is a part of research area 

of neural network architectures since the problem emerged when the CNN become 

deeper. (Huang et al., 2016) argued that the CNNs can be more accurate and efficient 

to train compared to the original CNN if the connection between layers becomes 

shorter. If the original CNN with L layers have L connections, their network called 

Dense Convolutional Network (DensNet) has 
𝐿(𝐿+1)

2
 direct connections. Figure 2.10 

shows the DensNet in (Huang et al., 2016) whereas the network has five layers and 

fifteen connections between layers.  

 

Figure 2.10. DensNet with 15 direct connections 

The connections between layers is supposed to ensure the maximum information flow 

between layers in the network. If the ResNets sum up the features to be passed into the 

next layer, the DensNet combines features by concatenating them. With this different 

feature combination method lead to different behaviour between these two network 

architectures. Regarding the network parameters, by using the same dataset, a DensNet 
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requires only 1/3 of the parameters of ResNet and able to achieve the comparable 

accuracy (Huang et al., 2016).  

The implementation of DenseNet has been used in several experiments. (Rubin, 

Parvaneh, Rahman, Conroy, & Babaeizadeh, 2017) implemented the DenseNet to 

analysed the signal quality atrial fibrillation using short single-lead ECG recording, 

(Sreela & Idicula, 2017) modified the DenseNet for content generation in automatic 

image description. (Kuang, Ma, Chen, & Li, 2018) utilized the design of DenseNet to 

be able to learn mapping between low and high resolution images. Even the 

combination between ResNet and DenseNet called Densely Connected Residual 

Networks (DRNet) has been investigated very deep and wide network with only few 

parameters (Wen et al., 2018). 

2.3.2. Spiking Neural Networks 

According to (Tavanaei et al., 2018), the neural networks with activation values and a 

set of inputs’ weight are inspired by biological component called neuron. These kind 

of neural networks are categorized as a non-spiking neural network. The more realistic 

biological inspiration of neuron uses discrete spike to compute and transmit the 

information. If the non-spiking neural networks use differentiable activation function, 

the spiking neural networks (SNNs) use non-differentiable activation function. 

(Tavanaei et al., 2018) claimed that SNNs are still behind ANNs in terms of accuracy, 

but the gap between them is decreasing. 

The SNNs are the third generation of neural networks (Xie, Qu, Liu, Zhang, & Kurths, 

2016) which are well known in the cognitive tasks. The first generation of neural 

networks was indicated by the use of neurons and introduced by McCulloch-Pitts 

model (McCulloch & Pitts, 1990). The second generations which use perceptron were 

pioneered in (Rosenblatt, 1958). The spiking concepts has been discussed in 

(VanRullen, Guyonneau, & Thorpe, 2005) with the main purposes to replicate the fast 

computation like the brain does. The simulations of firing process in SNNs are shown 

in (Mehta, Lee, & Wilson, 2002) and (Benchenane et al., 2010). The main goal of 

research in SNNs area is the learning process of how to recognize the information of 

spike trains (H. H. Amin & Fujii, 2005). It is based on the spiking neural network 
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model in (H. Amin & Fujii, 2004) which called as spiking response model (SRM). 

Figure 2.11 shows the basic idea of their network with single neuron (H. Amin & Fujii, 

2004). It looks like earlier neural network. 

 

Figure 2.11. A neuron with n inputs and j outpus 

The input spikes come to the input synapses of the neuron. It then generates a spike 

when the internal neuron membranes crosses the threshold that is assumed to be 

constant. It is shown in Figure 2.12. 

 

Figure 2.12. A potential spike 

According to (H. H. Amin & Fujii, 2005), the learning process in SNNs has two stages. 

The first is a mapping stage that is composed of neural mapping units (MUs). This 

stage is used for mapping the input spike trains into unique spatio-temporal patterns. 

Their mapping stage is illustrated in Figure 2.13. 
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Figure 2.13. Mapping input spike trains 

The second stage is the learning stage. This stage consists of several learning units 

(LUs) as shown in Figure 2.14 (H. H. Amin & Fujii, 2005). 

 

Figure 2.14. (A) Learning units, (B) MU and sub learning unit 

The input of learning stage is the output of mapping stage that is the spatio-temporal 

output pattern. Each LU is formed by sub-LUs as shown in Figure 2.14 (A). Each sub-

LU receives input from one mapping unit as shown in Figure 2.14 (B). The inter-spike 

intervals (ISIs) unit that contains a sequence of spike in LU and sub-LUs have been 

assigned with synaptic weights. In each Lu there are 2*n of ISIs, where n is the number 

of spike trains. The output of ISI1 and ISI2 in each LU (see Figure 2.14(A)) fires at a 

certain times defends on the assigned synaptic weights. Patterns that are close to the 

train pattern will join the same LU and can cause the output fire. For that reason, the 

neuron threshold should be adjusted to allow some fuzziness in the input spike times. 
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SNNs plays important part to realize the model of the brain by modelling the memory 

mechanism (Lisitsa & Zhilenkov, 2017). They also stated that the use of SNNs are still 

not wide due to the lack of understanding of the important algorithm of the brain. 

However, the research in this area is growing and has been implemented in the 

hardware platform.  

2.3.3. Hierarchical Temporal Memory 

Hierarchical temporal memory (HTM) is a biological-inspired algorithm discussed in 

(George, 2008b; George & Hawkins, 2005a; George & Hawkins, 2009). It is originally 

proposed in the book “On Intelligence” written by Jeff Hawkins (Hawkins & 

Blakeslee, 2005). To implement the ideas put forward in On Intelligence, Hawkins 

created a private company called Numenta. Numenta researchers conducted a study to 

develop and implement the proposed concept. Their works are available on 

www.numenta.org. 

Hawkins mentioned that in order to create intelligent machines it is necessary to 

understand intelligence and what may be happening in the brain to create it. Like other 

researchers before him, Hawkins studied how the brain cortex works to try to replicate 

the emergence of intelligence. Figure 2.7 shows a simplified model of four visual 

cortex regions labelled as V1, V2, V4, and IT. The V1 region receives the input from 

the retina. In the HTM, the input that comes to region V1 is processed in a similar way 

to how neurons are processed in the eyes’ receptive field. In this region, a spatial-

pooling function is performed on the input; in other words, the input is scanned and 

extracted to get its features. This is similar to what happens when the eyes look at an 

object and see every single detail of every feature within the object. Then, when the 

eyes move to look at another detail, it makes groups of similar patterns that have been 

seen before. The movement of the eyes is the biological equivalent to moving the 

receptive field. The groups of similar patterns are useful in firing the neurons in region 

V2. The process from the bottom region (V1) to the top region (IT) is called feed-

forward. This process is indicated by the arrow pointing up in Figure 2.15, while the 

arrows pointing down represent the feedback process from region IT to V1. 
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Figure 2.15: Visual regions of cortex for pattern recognition (Hawkins and Blakeslee 

2005) 

In his book, Hawkins presents his theory of how intelligence is produced in a part of 

the brain called neocortex. To understand how the brain works, the brain process can 

be replicated by a computer algorithm (George, 2008a); however, this is not to 

replicate the real biological brain as a machine algorithm. The current computational 

capability of machines must also be considered.  

The machine has some requirements for replicating the biological process into a 

computer algorithm (Hawkins, George, & Niemasik, 2009). The first requirement is 

called probabilistic prediction and is designed to predict future events from noisy input 

data. The second requirement is for simultaneous learning and recall, meaning that the 

machine should have the ability to learn and predict simultaneously. Intelligent 

machines are also supposed to be able to recognise, even if it gets only a partial part 

of an object. This is called auto-associative recall. Variable-order memory is the next 

requirement, where a computer algorithm should be able to predict the next input. The 

last requirement for the machine is that the intelligent system should be mapped to the 

neocortical anatomy. 

The HTM algorithm is inspired by the brain’s neo-cortex, hence it is called a cortical 

algorithm. Figure 2.15 shows a simplified interpretation of the hierarchical structure 

of the neo-cortex. 
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Figure 2.16: The hierarchical structure of the neo-cortex (Hawkins and Blakeslee 

2005) 

Figure 2.16 shows three kinds of sensorial systems that perceive information from 

outside of the human body. The skin constitutes the touch sensory system, which 

receives tactaile information by touching. Sound stimuli are perceived through the ears 

in the auditory system, while the eyes receive visual information for the vision sensory 

system. The information that is captured through through these senses is sent to the 

first region of the cortical sensory system. The top level of the network makes sense 

of the world based on the given information from all three sensors. 

The actual process that takes place in the brain to make sense of the world is very 

complicated. To this day, the concept of combining different sensory systems is still 

in its early research stages. Researchers are more focussed on the development of 

algorithms to emulate each individual sensory system. The research is then continued 

in the area of pattern recognition or image processing.  

According to (Hawkins et al., 2009), the HTM models the neo-cortex as a tree-shaped 

hierarchy of memory regions, or layers, where each layer learns common sequences 

of patterns. The HTM also performs a probabilistic prediction function modelled as a 

form of Bayesian network. 

Similar to the neocortex, HTM inputs are connected directly to nodes in the lowest 

level of the network. The first layer has enough nodes to receive the specific size of 

the input (based on the size of receptive field). Layers 2 and 3 are layers on the top of 
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Layer 1 and 2, respectively. These layers receive information from several 

concatenated nodes of the layers below them. The top layer has only one node. It is in 

the nodes of the top layers where the output decision is made. A schematic 

representation of an HTM network is shown in Figure 2.17. 

 

Figure 2.17: HTM network structure (George 2008) 

Detailed below are the system requirements — outlined by (Hawkins et al., 2009) — 

for implementation of the biological concept into a computer algorithm: 

a. Sparsification of response. The system should be sparser and more selective to 

the incoming input. 

b. Inhibitory requirements. This requires only a few cells to be active during a 

feed-forward input. 

c. Distributed representations. Every region of the hierarchy passes a distribution 

of potentially active sequences to its parent regions. 

d. Efficient computation. The memory system should use information from 

previous inputs when making prediction. Both history of inputs and forward 

predictions are distributed over many states. 
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e. Cortical layers. Hierarchical models require the feed-forward and feedback 

path. The feed-forward happens in Layers 3 and 4, and the feedback happens 

in Layers 2 and 6, while a belief is made in Layer 5. 

f. Sequence timing. The sequence memory needs a neural mechanism that can 

encode the duration of sequence elements in all regions. 

g. Memory capacity. This is related to memory allocation. The use of hierarchical 

sequences of learning should be used repeatedly in different combinations. For 

example, when a series of small features is stored in the lower layer, it forms 

bigger features in the upper layers. 

2.3.3.1. The Flow of Information in HTM Networks 

The biology of the human brain has inspired the implementation of hierarchical layers 

in HTMs to extract features for visual pattern recognition. The lower layer of HTM 

networks learns the basic features of an object, which are then used to generate new, 

more complex features in the higher levels. To build the new features in the higher 

layers, a set of lower layer features must be concatenated. This process continues until 

the information from the lowest layer reaches the top layer. According to Hawkin’s 

model, this is the way information flows in the human brain. 

As a soft computing framework, which is derived from a simplified model of the 

human brain, the HTM is considered by some as a new masterpiece in the field of 

artificial intelligence (Chen et al., 2012). The key process of HTMs is the feature 

extraction of every single part of the object — spatially, temporally, and hierarchically. 

Spatial extraction is the process of scanning the input of the network, while temporal 

extraction groups the most likely patterns into the same group. The hierarchy concept 

of HTM shows the relationship between the parent and child layer (high level and low 

level) as shown in Figure 2.17. 

Every single part of the visual pattern that comes to the first layer of the network is 

patched together using a receptive field or coincidence array of size 2x2 pixels. This 

is called the spatial-pooler, which means that within a time t, a coincidence array will 

record four bits from the whole pattern. To analyse the whole input image, the 

coincidence array moves across the pattern. After several times t, the spatial-pooler 
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groups several four bit patterns based on similarity and using a Markov chain. The 

process of grouping patterns is called temporal-pooling. 

The information that is passed to the next layer depends on the degree of belief of the 

layer below it. Beliefs from child nodes are propagated to their parent nodes. Parent 

nodes will also propagate their beliefs back to their child nodes to confirm or adjust 

the child’s belief. These processes are unsupervised. HTM learns from time to time, 

and time itself acts as a supervisor (Hawkins et al., 2009). 

2.3.3.2. Spatial and Temporal Pooler Related Works 

The concept of temporal and sequential pooling has been studied by many researchers 

because it is an important component of understanding human intelligence. (Starzyk 

& Haibo, 2007, 2009) study this biological concept. Even though their works are a bit 

different — compared to the original HTM as described in (George, 2008a) — in terms 

of the connection between each neuron and its process, both studies are based on the 

two types of memory identified in neurobiological research of the human brain, 

namely: short-term memory (STM) and long-term memory (LTM). In the research, 

the lower layer, called the pattern recognition layer, uses a modified Hebbian learning 

algorithm while the old HTM uses Bayesian networks. The WTA (winner takes all) 

approach is used to decide which stored pattern is similar to the incoming pattern. This 

WTA is implemented in all layers to reduce the complexity of the learning process. In 

their simulation, the weights of all the neurons’ were set to be a small positive number 

between 0.001 and 0.01). The WTA itself is the maximum value of the sum of the 

input’s products from the lower layer. It is similar to the general concept of HTM that 

also uses the WTA to define which stored pattern has the maximum probability of 

being similar to the incoming pattern. However, they use a threshold to anticipate the 

possibility of getting more than one WTA. The concept of spatial-temporal and 

propagation processes in (Starzyk & Haibo, 2007, 2009)’s works are more complex 

compared to the spatial-temporal concept explained in (Chen et al., 2012), but the 

concept of using STM and LTM can be considered for use in the HTM algorithm, as 

long as it meets the neocortex model. 
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Other studies that replicate the neocortex also use spatio-temporal processes. (Vu-Anh, 

Starzyk, & Wooi-Boon, 2012) claim that there are three critical problems in spatio-

temporal learning: error tolerance, significance of a sequence’s elements, and the 

memory forgetting mechanism. Solving these problems allows the system to process 

real-valued, multi-dimensional data streams, continuously. Spatio-temporal neural 

architectures have two types of memory: STM (short-term memory) and LTM (long-

term memory). STM is used as temporal storage of input data (it will decay over time) 

and has a limited capacity. LTM is built using synaptic modifications of STM. Also, 

LTM involves several STMs. 

2.3.3.3. HTM for Pattern Recognition 

The neocortex-inspired HTM has played an important role in the development of 

algorithms for object or pattern recognition. Many methods have been found to 

replicate the neocortex’s work as a computer algorithm. However, even though this 

research area has been studied by various researchers over many years, it is still far 

removed from achieving the level of the natural brain’s performance (Lei, Xianbin, 

Xu, & Jianguang, 2009). (Hawkins & Blakeslee, 2005)’s basic understanding of the 

human brain is used by (Lei et al., 2009) to implement object recognition using HTMs. 

They use handwritten digits, collected from mail envelopes in Buffalo. Each digit is 

captured in 16x16 pixels. Euclidean distance is used to measure the similarity, and 

their results show that a small distance threshold produces more accurate outputs than 

a longer distance threshold. The researchers also provide the results when using other 

tools, such as relevance vector machines, neural networks, invariant support vectors, 

a k-nearest neighbour classifiers (k-NNs), mixture densities, and support vector 

machines (SVMs) (Lei et al., 2009). However, they do not mention whether the HTM 

performs well compared to others. The work by (Maltoni, 2011), on the other hand, 

does provide comparisons between the HTM, nearest neighbour classifiers, multilayer 

perceptrons, and convolutional neural networks. (Maltoni, 2011) is also successful in 

implementing the HTM for pattern recognition. His work is available for viewing on 

NuPIC (Numenta Platform for Intelligence Computing), which is an open source 

project founded by Hawkins. Maltoni uses three different pattern sets, namely: 

SDIGIT (machine-printed digit with 16x16 pixels and greyscale images), PICTURE 
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(line drawing in 32x32 pixels with black and white images), and USPS (handwritten 

in 16x16 pixels with greyscale images) as described in (Ponce et al., 2006). Some 

parameter values, such as the forget threshold, transition memory, minimum and 

maximum group sizes among others, have been investigated for each pattern 

classification to get the best result. The results of Maltoni’s work show that HTM is 

much more accurate than the three different pattern classification methods, namely 

SDIGIT, PICTURE, and USPS, and also when compared to NN, MLP, and CN. 

However, is it shown that the HTM consumes more time to finish the process. 

The implementation of HTM in pattern recognition is not only to test whether the HTM 

performs well compared to other methods, but also to investigate HTM optimisation. 

The optimisation of HTMs is also investigated in (Bolotova & Spitsyn, 2012). They 

optimise the temporal grouping process and rename it maximum temporal connection 

(MTC). This optimisation method is based on the greedy algorithm (GrA). MTC’s 

recognition rate is 78.6% with clustering and 83.1% without. By using MTC, the 

recognition rate increased by 3-5%. The temporal grouping process is also optimised 

using an adaptive neural gas algorithm and a graph clustering technique, as reported 

in (Charalampous, Kostavelis, Amanatiadis, & Gasteratos, 2012). This research uses 

colour images from the ETH-80 dataset. This dataset is a collection of 256x256 pixel 

coloured images. The k-NN and the linear SVM method are used in the top level of 

the HTM, and the results are compared with those of the proposed method, which is a 

combination of the SVM method and the principal component analysis (PCA). This 

optimisation also performs better than k-NN and pure PCA. 

In another work, (Kostavelis et al., 2012) also use colour images from the ETH-80 data 

set as inputs to the HTM. This work adopts saliency detection to release the HTM 

network from memorising redundant information and to increase the accuracy of 

classification. The HTM implements the saliency detection procedure using a graph-

based visual saliency algorithm (GBVS) before performing the spatial process. This 

prevents the HTM from memorising redundant information, and means that the HTM 

is not trained on the whole image, but on just a specific area of the image delivered by 

the GBVS. The classification rate shows that this method gives a good result, even 

though it is only about 2% higher compared to k-NN and SVM. In other works, the 
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classification rate of optimised HTMs — using locality-constrained linear coding 

(LLC) and spatial pyramid matching (SPM) — also increases the classification rate by 

about 2%–3% compared to the original LLC and SPM models. 

(Boone et al., 2010) show that HTM is not as accurate as traditional image analysis 

and the processing techniques used to diagnose the retina in the detection of diabetes. 

Their work helps people prevent diabetes by monitoring the eyes of patients. However, 

one particular implementation called NuPIC is shown to still be limited in its 

recognition of colour images, and it cannot identify any other objects included in the 

single image. Nerve diagnosis in the retina not only requires detection of the shape of 

the retina, but also recognition of the nerve in a retina image. The image of the retina 

is also influenced by the intensity of light. To improve results, therefore, the image is 

pre-processed by dividing the single image into smaller greyscale images, and the 

location of the nerve is manually determined using Matlab. The smaller images are 

then fed into the HTM input layer. Even though the results show that HTM is able to 

recognise the nerve in the images, the researchers claim that this case does not show 

the full benefit of using HTM, which is identified as learning effectively through 

example. 

Many applications implementing HTM networks focus on pattern or object 

recognition. (Schey, 2008) uses NuPIC to identify song, which is a time series 

problem. Even though NuPIC is not able to handle the complex problem of song 

recognition, the data preparation and research methods are good examples of ways to 

start understanding the kind of data that can be fed into HTMs in future research. In 

his description of the process to be followed, Schey suggests that readers must first 

understand the input data to be analysed. In his research, it is about understanding and 

investigating the digital music format. The second step is preparing the data that will 

be fed into HTM network and writing the data generation scripts. This is an important 

step because the input data should be in a format that can be fed into and read by the 

HTM network. The next step is creating and configuring the HTM network. The 

standard version of NuPIC does not suit all applications; it requires customisation. The 

last step is training to see — and then evaluate — the accuracy of the network. If the 

accuracy is not acceptable, the parameters assigned to each node must be adjusted. 
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Figure 2.18 shows the example of input that is fed to HTM network in Schey’s work. 

 

Figure 2.18: The example of input patterns fed to HTM network (Schey 2008) 

Another work, this time by (Maxwell, Pasquier, & Eigenfeldt, 2009), adapts the HTM 

into their proposed framework called hierarchical sequential memory for music 

(HSMM). They observe that music has the potential to build spatio-temporal 

hierarchies. They start their work by dividing standard MIDI files into three groups of 

data, namely: pitch data, rhythmic data, and velocity data. Figure 2.19 shows a HSMM 

with a four-level network. 
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Figure 2.19: Splitting MIDI files to be fed into HTM networks (Maxwell et al., 2009) 

The inputs for pitch, rhythm, and velocity are associated with node on L1 (Level/Layer 

1) and combined on L2 (Level/Layer 2). The upper layers, L3 and L4, learn the higher-

order musical structure. They use Euclidean distance to evaluate the similarity between 

incoming input patterns and the stored patterns. They claim that the system is able to 

recognise a simple pattern at L1, and at the higher level, it can recognise larger musical 

structure like phrases, melodies, and sections. 

Another example of the use of HTMs in real time series problems is implemented in 

(Gabrielsson, Konig, & Johansson, 2012). Their work focuses on creating a profitable 

software agent to trade in the financial market. They use data from the E-Mini S&P 

500 (ES) of 2 August–1 September, 2011. The raw data is aggregated into vectors 

containing one minute of the trade volume. Each vector contains 10 technical 

indicators or features, which are fed into HTM networks. The first 70% of data is used 

for the training, the next 15% is used for validating, and the last 15% is used for testing. 

Figure 2.20 shows the use of HTM for classification, based on (Gabrielsson et al., 

2012). 
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Figure 2.20: HTM network as a classifier of two classes 0 and 1 (Gabrielsson et al., 

2012) 

In this research, the classifier has two output classes: class 0 indicates the price will 

not increase by at least two ticks at the end of the next ten-minute period, and class 1 

represents that the price will increase. During the training stage, input vectors are fed 

into Layer 1 of the network; the network is then trained with the classifier, which is 

fed into Layer 3. During temporal pooling, likelihood is calculated using a Euclidean 

distance algorithm with a varied distance from 0.001 to 0.5. An ANN is used to 

compare the result of the proposed HTM network. The study claims it is possible to 

use HTM to create a profitable trading algorithm for the financial market. 

2.4. The General Process of Image Recognition 

The image recognition process consists of the following steps (Gurevich & 

Koryabkina, 2006): 

1. Obtaining the original image by scanning, photography, capturing from 

sensors, etc. 

2. Pre-processing the image, which involves: 
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a. image normalisation, intensity normalisation, filtering, binarisation, 

colour conversion, noise elimination, etc. 

b. image segmentation to distinguish objects and regions 

3. Image feature extraction 

4. Recognition algorithms 

A general recognition or classification system is shown in Figure 2.21. 

 

Figure 2.21: A general recognition or classification system (Dougherty, 2013) 

2.4.1. Feature Extraction 

According to (Tou, 1968), there are four different ways to describe the features of an 

object, using: physical features, topological features, mathematical features, and 

statistical features. When humans see objects, they might focus on particular features 

of an object (e.g. the physical or topological). When observing an apple and an orange, 

humans can recognise them based on their physical and topological features, but these 

two ways of feature extraction are in fact arbitrary and subjective.  

Feature extraction, on the other hand, is a critical process. It requires choosing features 

of the image to assist in solving recognition and classification problems. The features 

of an object or image should be informative. They should contain some significant 

information to distinguish between classes and to ensure that the recognition and 

classification processes are conducted properly. Features should be suitable for feeding 

into the image recognition or classification processes, and for allowing the 

construction of an image model. They must also belong to the minimal set of the image, 

be limited in number, and not exceed the gain due to their usage in the solution 

(Gurevich & Koryabkina, 2006; Kumar & Bhatia, 2014; Nixon & Aguado, 2012c). 
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(Gurevich & Koryabkina, 2006) divide feature extraction into three types based on the 

type of image features: binary, greyscale, or colour. (Nixon & Aguado, 2012a, 2012b) 

separate feature extraction into two levels: low-level and high-level. Low-level feature 

extraction is the process of extracting the features of an image without spatial 

relationship information (no shape information). High-level feature extraction extracts 

the features of an image by extracting the information of shapes. Low-level feature 

extraction involves edge detection, phase congruency, and localised feature extraction, 

while the high-level feature extraction involves template matching, feature extraction 

by low-level features (appearance-based and distribution-based), and the Hough 

transform. (Kumar & Bhatia, 2014) list the following widely used feature extraction 

methods: template matching, unitary image transforms, graph description, projection 

histograms, contour profiles, zoning, geometric moment invariants, Zernike moments, 

Spline curve approximation, Fourier descriptors, the gradient feature, and the Gabor 

feature. 

Low-level feature extraction methods analyse parts of an image without using shape 

information. These methods use pixels as the features of the image. Extracting pixels 

as the features of the image can be used in any type of image (binary, greyscale, or 

colour). While the high-level feature extraction examines features based on shape 

information, it first performs a low-level feature extraction before looking at the shape-

based features. This subsection presents some feature extraction methods such as 

template matching and unitary transform. 

Template matching is a technique or method used to compare small parts of an image 

against a defined template (Cha, 2000; Jalil, Basari, Salam, Ibrahim, & Norasikin, 

2015; Song, Chen, Chi, Qiu, & Wang, 2007). In general, this technique measures the 

similarity between tested images and a predefined template. According to (H. Lee, 

Kwon, Robinson, & Nothwang, 2016; Nezhinsky & Verbeek, 2012; Slot & Gozdzik, 

2008; Takahashi, Tanaka, Suzuki, Shio, & Ohtsuka, 2007; Younes, 2010; Zhu, Chen, 

& Yuille, 2010), the majority of the experimental setups convert images into greyscale 

or binary images before processing them using the template matching method. 

Unitary image transformations are commonly used for bit reduction in signal 

transmission, but they also can be used in pattern classification, speech and signal 
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processing, and picture encoding (Kekre & Solanki, 1978). Unitary image 

transformations preserve the information of the data by concentrating most of the 

image energy into a few of the transformed domain samples. In other words, the 

images are processed within blocks instead of as a whole image. A transformed image 

Ă is a multiplication of the unitary matrix U, the original matrix A, and the transposed 

form of matrix U (Gotze & Sauer, 1993). Discrete sine transform (DST) and discrete 

cosine transform (DCT) are two examples of sinusoidal image transforms (Clarke, 

1983; A. K. Jain, 1979). DCT is used as a features matrix by (Ezoji & Faez, 2011) to 

reduce the effect of illumination on the images. In this work, an illuminated image, 

containing dark and bright pixels, provides histogram equalisation before it is applied 

to the DCT. The output of DCT is a feature matrix that contains the extracted features 

from the input image. 

2.4.2. Similarity Measurement 

To achieve recognition, similarity between two images or patterns must be measured. 

According to (R. Jain, Murthy, Chen, & Chatterjee, 1995), similarity measurement can 

be categorised into three groups: metric, set-theoretic, and signal-detection theory-

based measurement. 

The metric-based measurement calculates a pair of points between the tested and 

reference images. The distance between them represents their dissimilarity. Euclidean 

distance has been popular in metric-based similarity comparison. The farther the 

distance between the reference and tested patterns, the more dissimilarity there is. Let 

x and y be two vectors of size n, where x = (x1,x2,…,xn) and y = (y1,y2,…yn). The 

Euclidean distance between x and y is given by: 

𝑑2(𝑥, 𝑦) = ∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1      (5) 

Euclidean distance has also been used in fuzzy similarity measurement for calculating 

the distance of all fuzzy sets between two compared images (Ray, 2009). 

Even though Euclidean distance has been widely used to measure similarity, it is very 

sensitive to even small changes or deformations (Liwei, Yan, & Jufu, 2005). LIwei 
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and Yan propose a new method of Euclidean distance called image Euclidean distance 

(IMED). IMED has some advantages, such as its relative insensitivity to the small 

deformation, its simple computation process, and the fact it can be embedded in most 

image recognition techniques. To measure the distance between two images, metric 

coefficients are calculated with Equation (6). 

𝑔𝑖𝑗 =< 𝑒𝑖, 𝑒𝑗 >= √< 𝑒𝑖, 𝑒𝑖 > √< 𝑒𝑗, 𝑒𝑗 > . 𝑐𝑜𝑠𝜃𝑖𝑗   (6) 

where < and > are the scalar product, and θij is the angle between ei and ej. The IMED 

between two images is calculated with Equation (7). 

𝑑2(𝑥, 𝑦) = ∑ 𝑔𝑖𝑗  (𝑥𝑖 − 𝑦𝑖)(𝑥𝑗 − 𝑦𝑗)𝑚𝑛
𝑖,𝑗=1 = (𝑥 − 𝑦)𝑇𝐺(𝑥 − 𝑦)  (7) 

If the vectors have different lengths, G is a diagonal matrix; otherwise, G is the identity 

matrix. 

Because the perceptual assessment of a similarity measure has always been the goal 

for related research areas, (Chou & Hsu, 2011; Wang, Maldonado, & Silwal, 2011) 

argue that traditional metric-based measures — like peak signal to noise ratio (PSNR) 

and mean square error (MSE) — lead to inconsistent similarity evaluations and do not 

reflect human judgement. They investigate a group of similarity measurements to find 

the difference of luminance, contrast, and structure or geometry, and (Chou & Hsu, 

2011) investigate the metric-based distance by combining several measurements. 

Their measurement uses the mean of intensity of luminance, luminance contrast, and 

geometrical distribution; while (Wang et al., 2011) evaluate the quality of similarity 

measures using a structural similarity measure (SSIM). The SSIM index is the 

similarity product of the luminance, contrast, and structures. 

In (Kobayashi, 2016), measurement of similarity is investigated based on three groups 

of similarity functions involving the mean, the standard deviation, and the correlation 

of each pair of images. Another metric for similarity is investigated in (Xiaohang & 

Dianhui, 2004). They calculate the similarity between pairs of images based on a 

content retrieval technique. This technique does not compare pixel by pixel to 
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determine similarity; instead, it compares region by region. The regions are divided 

into five: the top-left, top-right, bottom-left, bottom-right, and the centre. 

Set-theoretic based measurement compares sets of features between a pair of images 

or objects (Tversky, 1977; Tversky & Gati, 1978). Tversky proposes the similarity 

between two features, A and B, is as illustrated in Figure 2.22. 

 

Figure 2.22: An illustration of the relation between two feature sets 

By using Tversky’s linear similarity model, the similarity (s) between objects a and b 

can be defined as in (Cazzanti & Gupta, 2006): 

𝑠(𝑎, 𝑏) = ∅𝑓(𝑎 ∩ 𝑏)−∝ 𝑓(𝑎\𝑏) − 𝛽𝑓(𝑏\𝑎)                            (8) 

where f is a positive saliency function, and θ, α, and β are fixed positive real numbers. 

Objects a and b are more similar if their intersection is bigger. Improved set-theoretic 

similarity measurement has been investigated in several works, such as the comparison 

of fuzzy sets in (F. Zhao & Ma, 2006), the matching of shapes in (Hasanbelliu, Giraldo, 

& Príncipe, 2014), and the similarity measurement between songs in (Foster, Dixon, 

& Klapuri, 2015).  

Signal-detection theory points out the similarity between objects or patterns based on 

three different types of task: yes/no tasks, rating tasks, and forced-choice tasks 

(Stanislaw & Todorov, 1999). A yes/no task gives a ‘yes’ response if the decision 

variable is sufficiently high enough, based on the given criterions, and a ‘no’ response 

if no signal is presented. (Stanislaw & Todorov, 1999) illustrate the decision 

distribution as shown in Figure 2.23. 

A-B

B-A

A∩B
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Figure 2.23: The distribution of decision for a ‘yes/no’ task 

A ‘yes’ response is illustrated by the highlighted signal distribution, while a ‘no’ 

response is shown by the noise distribution.  

2.4.3. Classification Methods 

Classification is the process of allocating a pattern or object to a specific class or group 

based on the similarity of their attributes. (Costa & Cesar, 2000) state that 

classification is a general, broad, and not completely developed area. However, 

classification has played an important role in many areas, from biology to human 

sciences, and anyone interested in pattern classification should be prepared to accept 

a broad variety of perspectives. 

(Costa & Cesar, 2000) define the basic concepts of classification in four ways as 

follows: 

 Conducting a hierarchical classification that makes a class with several sub-

classes, each of which inherit the properties of the respective superclass. 

 Removing redundancy to anticipate the repetition of memorising or conducting 

the same tasks. 

 The act of assigning classes to objects, which can be supervised or 

unsupervised. 

 Organising a feature space into regions corresponding to several classes. There 

is the expectation that to treat the additional objects a new training process is 

not required. 
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According to (Patil & Patil, 2013), there are three popular classification methods: k-

nearest neighbours (k-NNs), artificial neural networks (ANNs) and support vector 

machines (SVMs). Localised versions of these methods are very popular because they 

offer certain advantages in terms of computation time and performance (Bischl, 

Schiffner, & Weihs, 2013).  

Classification is widely used in fields like pattern recognition and data mining. 

(Savchenko, 2016) proposes that to solve problems involving feature vectors of fixed 

size, there are three classification methods that can be used: linear discriminant 

analysis (LDA), feed-forward multilayer perceptron (MLP), and a support vector 

machine (SVM). 

A performance comparison between k-NN and nested generalised exemplar (NGE) is 

conducted in (Wettschereck & Dietterich, 1995). The experimental results indicate that 

the k-NN performance grows linearly with the number of training samples. The k-NN 

classification also performs well in many situations and applications (Steinbach & Tan, 

2009). However, there is no single method that can be called the best for all tasks. It is 

common that a particular method is the best for specific tasks (Shavlik, Mooney, & 

Towell, 1991). Another possibility is the combining of classifiers (Xu, Krzyzak, & 

Suen, 1992).  

k-NN classification seeks to find, in the training set, the closest group of k objects to 

the test object (Steinbach & Tan, 2009). The k variable plays an important role during 

classification. Results are sensitive to noise if k is too small. On the other hand, 

parameters from other classes may be included if k is too large. Figure 2.24 illustrates 

the k-NN with various k variables, from small to large. 
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Figure 2.24: k-NN classification with small, medium, and large k (Steinbach & Tan, 

2009) 

SVM is the classification method that finds a hyperplane to separate two classes of 

given samples. According to (Xue, 2009), SVM is not only a well-performing 

classification, but it also has high accuracy when predicting future data. Figure 2.25 

shows a hyperplane separating two classes with SVM. The hyperplane can be defined 

by the following discriminant function g(x): 

𝑔(𝑥) = 𝑤𝑇𝑥 + 𝑏     (9) 

where w and b are the weight vector and bias of the optimal hyperplane, respectively.  

 

Figure 2.25: An illustration of hyperplane for a linear separable case (Xue, 2009) 
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The margin of separation ρ is determined by the shortest geometrical distance r from 

the two classes. It can be calculated as: 

𝑟 =
𝑔(𝑥)

||𝑤||
      (10) 

The principal component analysis (PCA), also known as an eigenfaces approach in 

early works, is proposed by (Turk & Pentland, 1991) to solve 2-D face recognition 

problems. With PCA, the images of faces are converted into a feature space defined 

by the eigenvectors within the set of faces. The following steps are followed in face 

recognition using PCA: 

1. Calculate the eigenfaces in the set of images. 

2. Calculate a set of weights, based on the input image and the eigenfaces, by 

projecting the input image onto each of the eigenfaces. 

3. Check if the image is sufficiently close to the feature space. 

4. Classify the weight pattern as either known or unknown. 

Figure 2.26 shows an example of a 2-D dataset and its two principal components as 

demonstrated by (Vidal, Ma, & Sastry, 2016). 

 

Figure 2.26: An example of 2-dimensional dataset and its two principal components 

(Vidal et al., 2016) 

In Figure 2.26, the two eigenvectors are u1 and u2. Eigenvector u1 shows a large 

variance within the data, while eigenvector u2 does not.   
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In another work, to solve the problem of face recognition, (Belhumeur, Hespanha, & 

Kriegman, 1997) propose a method based on Fisher’s linear discriminant called LDA. 

This method has lower error rates compared with PCA and is proposed to enhance 

PCA in face recognition under variations of lighting and facial expressions. 

2.5. Summary 

The literatures show that the development in the field of artificial intelligence 

algorithm has been moving very fast. In general, the big picture of the artificial 

intelligence development since it is introduced has been drawn in Figure 2.5 by (Sze 

et al., 2017). However, HTM is not included in the picture. Since Hawkin’s idea in the 

book “On Intelligence” was published, HTM has played important rule in brain-

inspired algorithm. HTM could be placed in the big picture of artificial intelligence 

development as illustrated in Figure 2.27. 

Artificial

Intelligence

Machine

Learning

Brain-

Inspired

SNN NN

Deep

Learning

HTM

 

Figure 2.27. Artificial Intelligence, Machine Learning, and Brain-Inspired Algorithm 

Majority of intelligence algorithm grows from basic concept of neuron or neural 

network, even SNN itself could be a part of neural network. A review of the literature 

reveals that pattern recognition or classification has three important components, 

namely: feature extraction, recognition, and classification. Since its early 

development, 2-D images have been used in pattern recognition and classification, and 

still to this day, the representation of features by pixels is widely implemented in image 

recognition and classification methods. 
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HCN and HTM use a receptive field to extract features, even though they both start 

the scanning process from the lowest level by sensing the pixels’ values. In HTM, the 

probability of lower layer features is propagated to the next layer up. Extracting 

features gradually — from lower to higher levels, or from smaller to larger areas —

may be aligned with the process of how humans see objects and images; however, this 

concept has not been widely investigated. One of the most prominent objectives of this 

research is to investigate the concepts of hierarchical feature extraction, similarity 

measurement, and classification. 
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Chapter 3  

Methodology 

 

 

 

 

 

The literature review in Chapter 2 shows that there are some significant gaps in the 

literature regarding feature extraction related to concatenation in pattern recognition 

applications. The research reported in this thesis aims at understanding the nature of 

the gaps and finding ways to fill them. A summary of the findings are written below: 

1. The use of other patterns’ features in feature extraction has not been deeply 

investigated. 

2. The way to combine lower layer’s features and to activate a higher layer’s 

patterns in hierarchical networks has not been explored. 

3. There is no investigation on position exchange of the reference and tested 

pattern during feature extraction that can lead the different result. 

4. There is no experimental information to investigate several classification 

process that is started from the closest process to the way humans do. 

This chapter presents the methodology required to verify the hypothesis that has been 

addressed in this thesis. According to (Jha, 2008), there are two types of research 

method: the first is qualitative and the second is quantitative. 

The qualitative method involves two types of data. Firstly, there are empirical 

materials such as case studies, personal experiences, introspective accounts, life 

stories, interviews, observational accounts, historical accounts, interactions, and also 

visual texts. Secondly, there are activities and routines, and also problematic moments 

and meaning in an individual’s life. The data that are used in a qualitative research 
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could be descriptions of situations, events, people, interactions, observations, 

experiences, beliefs, correspondences, records, and history cases. 

The quantitative method, on the other hand, is frequently referred to as hypothesis 

testing research. This is a common research operation in investigation. The hypothesis 

drives the research to produce the proof. Based on the above definitions of qualitative 

and quantitative research methods, it can be seen that this research falls in the area of 

quantitative research.  

(Jha, 2008) states that quantitative research has several stages. It begins with the 

theory, and continues with a review of previous works. After the review, the hypothesis 

is generated, and the next step is to collect the data. Once the strategy has been 

confirmed, the data are then analysed based on the hypothesis. (Crnkovic, 2012), on 

the other hand, suggests that the research should consist of three stages: the question 

to be answered, the strategy to get results, and the validation to verify the results. Some 

examples of (Crnkovic, 2012)’s question-strategy-validation approach are summarised 

in Table 3.1. 

Table 3.1: Research methodology suggested by (Crnkovic, 2012) 

Question Strategy Validation 

Feasibility: 

Is it possible to do X? 

Qualitative model: 

Report interesting 

observations 

Persuasion: 

I thought hard about 

this, and I believe… 

Characterisation: 

What are the 

characteristics of X? 

Technique: 

Invent new ways to do 

some of the tasks, 

including implementation 

techniques 

Implementation: 

Here is a prototype of a 

system 

Method: 

Can X be done better? 

System: 

Build a Y 

Evaluation: 

Measure Y, and 

compare to X 

Selection: Analytical model: Experience: 
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Question Strategy Validation 

How do I decide if X or 

Y? 

Develop structural models 

that permit formal analysis 

Report on use in 

practice 

The guidelines proposed by (Jha, 2008) and (Crnkovic, 2012) are used for guidance in 

this research. This thesis commences with the theories reviewed in Chapter 2 and the 

rationale stated in Chapter 1. The following three chapters in this thesis provide an 

overview of the hierarchical concatenation concept for pattern recognition, feature 

extraction using a hierarchical concatenation network, and pattern classification using 

hierarchical concatenation networks. The methodology used in each chapter to address 

the research question is shown in Table 3.2. 

Table 3.2: Research methodology in this thesis 

Method Question Strategy Validation 

Chapter 4: 

An overview of the 

hierarchical 

concatenation 

concept for pattern 

recognition 

Feasibility 

method 

Technique Implementation 

Chapter 5: 

Feature extraction 

using hierarchical 

concatenation 

networks 

System Technique Implementation 

and evaluation 

Chapter 6: 

Pattern 

classification using 

hierarchical 

concatenation 

networks 

System Technique Implementation 

As this research was supposed to replicate the way humans see objects into a computer 

algorithm, several experiments needed to be conducted to validate the proposed 
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method. The research questions stated in Chapter 1 guided this thesis to focus on 

feature extraction, concatenation, activation, and similarity measurement and 

classification. For this objectives, the experiment required datasets. A decision was 

made to start with simple datasets and increase complexity as the research progressed. 

Experiments started with simple datasets with the assumption that they had been 

normalized. Complex datasets included patterns with various levels of noise 

(extremely rotated or extremely noisy). Once this kind of data was applied to the HCN, 

its performance would degrade as the tested patterns’ complexity. As the thesis focus 

on hierarchical feature concatenation, the image datasets used in this thesis should 

represent the different groups of data without considering real noisy image. A data in 

each group should be different in terms of style. In this stage, the ten digits of numbers 

with ten different style (font and thicknes) are used to see if the representation of 

similarity measurement. Once the proposed algorithm is able to show its ability 

presenting the same digits from different groups with closer percentage of similarity, 

the validation then moves to publicly available dataset. In this thesis, the handwritten 

datasets (USPS and MNIST) are used. This dataset contains huge number of digits 

which are written by many different people. USPS dataset has 7291 train and 2007 test 

images, while MNIST has 60,000 and 10,000 for training and testing images 

respectively. That means the style of writing will have many variations. At the end, 

two existing methods (LDA and PCA) were used to compare the ability of the 

proposed algorithm when applying small and large datasets. 

In term of pattern recognition, the methods in this thesis did not use extremely distorted 

datasets. For example, the datasets with high degree orientation, large-scale changes, 

and high noise are not used. They might be used after extensive pre-processing. 

3.1. Feature Extraction Using Hierarchical Concatenation 

Networks 

The questions that need to be addressed to implement hierarchical concatenation for 

pattern recognition and classification are:  

 How are the concatenated patterns in the upper layers activated?  
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 How does the position exchange of a pattern affect the similarity rate between 

a pattern and its extracted pattern? 

To answer the questions above, the feasibility of applying hierarchical concatenation 

to pattern recognition is verified by implementing and testing a network. A layer-by-

layer analysis of experimental results is conducted to test the hypothesis against human 

perception. 

3.2. Pattern Classification using Hierarchical 

Concatenation Networks 

After implementing feature extraction and comparing the pattern and its extracted 

pattern, another question arises:  

 Which combination of HCN’s feature extraction method and similarity 

measures can produce a better performance rate? 

To answer this question, several explorations on feature extraction (activation and the 

position exchange) are conducted. For the quantitative analysis, similarity 

measurements are investigated in order to see which activation method and which 

similarity measures will produce better classification rates. 

3.3. Summary 

The two main research methodology types are qualitative and quantitative. Since the 

quantitative research method is commonly used in hypothesis testing research, this 

method is selected to verify the hypothesis in this research. Several questions that need 

to be answered in the remaining chapters have been listed in Sections 3.1 and 3.2. 
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Chapter 4  

An Overview of Feature Extraction, 

Similarity Measurement, and 

Classification using 

Hierarchical Concatenation Networks 

 

 

 

 

 

This chapter presents the concept of hierarchical concatenation networks (HCNs) 

applied to pattern recognition, which is based on the way humans make sense of the 

world using vision as reference. The idea comes from the process we use to recognise 

visual patterns. To recognise an object, we rapidly scan it, looking for key features. 

The process is known as saccadic eye movement. The brain then uses unique 

information contained in such features to identify the complete object. This concept 

gives the idea to replicate the process within computer programming by looking at the 

way how computers scan the image. The discussion in this chapter begins with the 

process of concatenation — the process of linking things together in a series — from 

a human perspective, and continues with the implementation of a computer algorithm. 

It then concludes with a brief description of the classification process involved.  

In general, the process of feature extraction using HCN is shown in Figure 4.1. 
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Figure 4.1: A general flow diagram of HCN for feature extraction 

4.1. Hierarchical Concatenation from the Human 

Perspective 

To explain hierarchical concatenation, the two patterns shown in Figure 4.2 are used 

as examples. Both images are simple 2-D representations of familiar objects. It would 

not be difficult for an adult human to identify the image on the left (in Figure 4.2) as a 

monkey’s head, and the image on the right as some kind of fruit. Even animals (e.g. 

cats, dogs, rats, etc.) can identify various objects. An animal’s brain often performs in 

a similar way to the human brain when recognising objects. 

 

Figure 4.2: 2-D image examples 

The explanation in this chapter uses the image of a monkey’s head as a reference image 

and the image of a fruit as a test image.  

In humans, real objects are reflected as an image on the retina through the cornea and 

crystalline as discussed in Herman (Herman, 2016). To be able to focus on this image 

on the retina, light is needed. Without light, objects cannot be reflected onto the retina. 

A comprehensive work of eyes’ behaviour when interpreting the world, including the 
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focussing process of the corneal system, is presented by Nishino (Nishino & Nayar, 

2006). 

The eye can only focus on a specific object with a specific coverage area. Other objects 

outside the focus area are not clearly reflected, or they are perceived as blurred images 

(Herman, 2016). The behaviour of the eye in terms of words recognition is a letter-by-

letter scan, illustrated below: 

U   n i v e r s i t y 

For example, a sighted and literate person to decide what that word is, the eyes’ focus 

might move from the first letter to the last. At time t=1, when the eyes are focusing on 

the first letter (i.e. the letter ‘U’), the eyes might not able to recognise other letters at 

the same time. The eyes would focus sequentially in time to the rest of the letters. 

When focus is at the end of the letters, the whole word is recognised as ‘University’. 

By the decision could be made with the word’s meaning as ‘an institution to conduct 

teaching and learning at the highest level in several programs studies and authorised 

to confer both undergraduate and graduate degrees’ (www.dictionary.com). 

The process of reading the above word may be similar to the process of recognising 

the two 2-D images in Figure 4.2. When reading, the combination of letters forms a 

word that has a specific meaning, and when recognising images, the combination of 

features also forms a pattern that has meaning. 

The eyes’ rapid movement to see the features of an object is known as a saccade. To 

recognise objects, research shows that a specific extraction process from the whole 

pattern takes place (Chernyak & Stark, 2001; Holland & Komogortsev, 2013; 

Kresevic, Marinovic, Johnston, & Arnold, 2016; Mata, Morales, Romero, & Rubio, 

2015; Wong, 2014; M. Zhao, Gersch, Schnitzer, Dosher, & Kowler, 2012). The 

process of recognition is conducted by extracting individual features from the given 

object and then comparing them to features that have been seen in the past. To identify 

the objects in Figure 4.2, features — like the eyes, nose, mouth, ears, leaves, and other 

curves — are firstly individually identified and then combined in the brain to be 

recognised as a monkey’s head, or a fruit, or something else.  

http://www.dictionary.com/
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Figure 4.3 shows the labels for individual features of both the images in Figure 4.2. 

These features must be recognised and assembled (concatenated) before a decision can 

be made on what the object is. The way the human eye examines individual letters as 

the features, and then combines the known letters as a word, is similar to the image 

recognition process for Figure 4.3.  

 

Figure 4.3: Example of feature extraction as part of the object recognition process 

Vertebrates perform all the described tasks involved in object-recognition very easily 

and almost unconsciously. This is because each individual part of the object has 

previously been seen. Even though the right-side image can be easily identified as a 

fruit, deciding what kind of fruit it is remains difficult to establish. This is because the 

information provided by the edged image is not enough to make a decision. The 

monkey image has more features, and hence more information, to assist the decision.  

It is not easy for computer algorithms to replicate that kind of process. Some feature 

extraction algorithms, which are supposed to achieve this, remain far removed from 

matching the ability of the vertebrate’s brain. This research is one way of exploiting 

the ability of computers to process extracted and concatenated information 

hierarchically. 

Computers-based vision systems can capture every single feature of an image (i.e. the 

image’s pixels) and extract their value (Gupta & Panchal, 2011; Mahalanobis, Shilling, 
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Muise, Hines, & Neifeld, 2016; Tirunelveli, Gordon, & Pistorius, 2002; Wu, Zhang, 

Wei, & Ozcan, 2016). By knowing the size of an image, computer algorithms can 

analyse every single pixel of the image sequentially from the top left to the bottom 

right of the image area. This process is analogous to saccades in vertebrates’ visual 

systems. 

For example, if the size of a colour image is 32x32 pixels, then the total number of 

pixels is 1024. Each pixel stores values in the range 0 to 255, and the pixel’s value 

range indicates the colour intensity of the image. In this thesis, the images are black 

and white. If one pixel represents the smallest part or feature of the image, its 

individual value is limited and does not provide sufficient information for a computer 

algorithm to make a decision regarding the given whole image. Pixels are simply a 

collection of numbers (0 and 1 for black and white images).  

In Chapter 2, several pattern recognition methods are presented. Since the early 

development of these algorithms, researchers have tried to enhance the capability of 

existing recognition or classification methods, while a pixel of an image is still used 

to represent the smallest feature of the image.  

Figure 4.4 shows the structure of a HCN with four layers. By using the image that 

measures 32x32 pixels, Layers 1, 2, 3, and 4 have 256, 64, 16, and 4 nodes, 

respectively. The node in Layers 2 to 4 is the concatenation of the four nodes in its 

lower layer. 

In this thesis, nodes are used to temporarily store patterns in the network’s layers after 

scanning. The node in Layer 1 is the concatenated four pixels of the image, while the 

node in Layers 2 to 4 is the concatenated four nodes of Layers 1 to 3, respectively. 
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Figure 4.4: Structure of HCN 

Let’s assume the network has only two layers (Layers 1 and 2). In Table 4.1, the image 

has been divided into 64 parts (organised in an array of eight rows and eight columns). 

It is assumed that these 64 parts are each the smallest division of the image in Layer 

1. In a real image, the smallest part is represented by a pixel. 

Table 4.1: Example of an image that has its smallest features divided into 64 parts 
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1 2 3 4 5 6 7 8 
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Layer 1's Nodes
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Table 4.2 shows an assumption of patterns in Layer 2 or in the highest level of the two-

layer network. Each feature in Layer 2 emerges from the concatenation of the features 

in Table 4.1. The concatenation means combining four nodes of Table 4.1 (within a 

2x2 square node) to form one node of Table 4.2. This is the basic idea behind this 

process.  

Table 4.2: Image from Figure 4.2 after it has been divided into 16 parts 

Cols 

Rows 
1 2 3 4 

1 

    

2 

    

3 

    

4 

    

The purpose of the research in this thesis is to investigate and explore the possibility 

of hierarchical concatenation for image recognition and classification. As explained 

previously, the basic idea is illustrated in Tables 4.1 and 4.2. As the features in Table 

4.2 are the concatenation of features in Table 4.1, Table 4.2’s features are the features 

on the highest layer and may provide further information to support the decision 

regarding recognition or classification. 

Even though the features in the upper layer are the concatenation of the lower layer’s 

features, the upper layers’ features in this thesis are not directly combined. This is 

because each 4-square cell from Table 4.1 forms a cell of features in Table 4.2. There 

is an activation process, which needs to be conducted to activate the upper layer’s 

features. For example, the partial image in Table 4.2, located at position (1, 1), is the 

product of the concatenation features in Table 4.1, located at (1, 1), (2, 1), (1, 2), and 

(2, 2). However, the representative feature in this cell should be the product of an 

activation process. The activation process of the upper layers’ features is explained in 

Sub-Chapter 4.1.2.2. 
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The following subsections present the process of concatenation from both the point of 

view of a human (a high-level perspective) and a computer algorithm. 

4.1.1. The Scanning Process from a High Level Perspective 

This subsection uses the image of the monkey’s head in Figure 4.2 to explain the 

scanning and grouping processes. This example image uses a network with two layers 

for concatenation. The layers above Layer 2 conduct the same process. The algorithm 

also implements sequences of the scanning process. Sequential scanning in this thesis 

means shifting the input image circularly by one column to the left (see Figure 4.6). 

The example in Figure 4.5 shows that the image has eight columns and therefore eight 

sequences. It also shows the whole image within the first sequence. All sequences are 

shown in Figure 4.6. 

The smallest parts of the image in Table 4.1 are used as the input for Layer 1 as shown 

in Figure 4.5. The smallest parts of the image in Figure 4.5 form the basis of the 

features in Layer 2. The red square in Figure 4.5 is a coincidence array that measures 

2x2 square cells. The coincidence array in layer 1 is used to scan the features in Layer 

1 by concatenating the features of the four cells within it. Upper layers’ coincidence 

arrays do scanning in their layer. Scanning features means recording the features that 

are covered by the coincidence array. To scan all the features in Layer 1, the 

coincidence array is shifted across the image from coordinate (1, 1) to (8, 8).  

 

Figure 4.5: Coincidence array used to scan each single part of the pattern 

Scanning is the process of extracting features from the whole pattern using coincidence 

arrays. Figure 4.5 shows a coincidence array about to start scanning an image from the 

first node to the last node. The coincidence array moves from the top-left to the bottom-
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right of the image. Each single movement of the coincidence array records four 

features that are temporarily stored in an associated node that is covered by the 

coincidence array. There are 16 nodes in Layer 1 (see Table 4.2). The upper layer has 

four nodes as shown in Table 3.  

Table 4.3: Image from Figure 4.2 after it has been divided into four parts 

Cols 

Rows 
1 2 

1 

  

2 

  

The number of nodes in each layer (nNodesLn) is shown in Equation 4.1. As the image 

is a square image, the image’s height and width is the same. Equation 4.1 requires the 

width or height of the input image to calculate layer n (widthLn). 

𝑛𝑁𝑜𝑑𝑒𝑠𝐿𝑛 =  (
𝑤𝑖𝑑𝑡ℎ𝐿𝑛

2
)

2

    (4.1) 

By applying Equation 4.1, the movement of the coincidence array has no overlap 

between nodes. This thesis chooses not to implement overlapping within the 

coincidence array movement, but instead adopts the sequential scanning process 

presented below. 

Figure 4.6 shows the sequence of image input, which shifts the image by one column 

to the left during scanning. The first sequence image in Figure 4.6 is the original input 

into Layer 1 of the HCN. In this example, the total number of features that are stored 

in each node is eight — one per every shift of the image.  
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Figure 4.6: The sequences of patterns 

Table 4.4 shows the features within the nodes of Layer 1, which are also the outputs 

of scanning process. For every sequence, a node receives four features. Some nodes 

have similar features after scanning, i.e. Node 16 has the same features at the first, 

second, and third sequence.  

Table 4.4: Scanning process 

Nodes 
Sequences 

1 2 3 4 5 6 7 8 

1 

        
2 

        
3 

        
4 

        
5 

        
6 

        
7 

        
8 

        
9 

        
10 

        
11 

        
12 
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Nodes 
Sequences 

1 2 3 4 5 6 7 8 

13 

        
14 

        
15 

        
16 

        

Implementation of a sequential scanning process allows each node to see more 

features, instead of one feature with no sequences. The differences between 

implementing a sequence and not implementing a sequence are presented in Chapter 

5. Both methods give different results. 

4.1.2. The Grouping Process 

Grouping is conducted after the scanning process. It involves two processes. The first 

process is the grouping of the features in each node based on patterns’ similarity. These 

are called node groups. The second process is the grouping of four nodes that will 

activate the upper layer’s patterns. These are called activation groups. The following 

two subsections describe in detail each of these processes. 

4.1.2.1. Node Groups 

Node grouping reduces memory use by removing redundant features in each node. 

Table 4.5 shows the group of unique features in each node after removing all repeats. 

As shown in Table 4.4, after the scanning process, Node 1 has 32 features. Features 

that appear more than once are removed from the group, and after grouping, Node 1 

has nine unique features. 

Table 4.5: Group of unique features in each node 

Nodes Group of Features 
No. 

of Pat 
Nodes Group of Features 

No. 

of Pat 

1  9 9 

 

16 

2  9 10 

 

16 

3  9 11 

 

16 

4  9 12 

 

16 
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Nodes Group of Features 
No. 

of Pat 
Nodes Group of Features 

No. 

of Pat 

5 

 

17 13  7 

6 

 

17 14  7 

7 

 

17 15  7 

8 

 

17 16  7 

Scanning and grouping in Layer 1 are part of the features extraction process in the 

proposed network. Layer 1 is the lowest layer in the network that does not conduct the 

activation process, which activates features on a layer. Layer 1’s features are a product 

of direct concatenation of the four smallest input features within the coincidence array. 

4.1.2.2. Activation Groups 

Activation grouping determines the features’ activation groups in an upper layer. The 

research in this thesis has investigated two ways of activation called HCN-I and HCN-

II. The differences between them are presented in Chapter 5. The explanation in this 

chapter uses HCN-I. Since the number of features in four concatenated nodes may not 

be similar, the upper layer’s patterns are represented by the number of unique features 

within the nodes. For example, if a node has three unique features, the feature in this 

node is represented by binary ‘111’ or decimal ‘7’.  

The example in Figure 4.7 shows how Node 1 in Layer 2 is the concatenation of Nodes 

1, 2, 5, and 6 from Layer 1.  

 

Figure 4.7: The concatenated nodes 

Table 4.6 shows the unique features in Nodes 1, 2, 5, and 6. It should be noted that 

Nodes 1 and 2 have the same features, while Nodes 5 and 6 share the same set. 
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Table 4.6: The activation group of concatenated nodes 

Nodes 
Group of Unique Features in Each 

Node 

Activation Group to 

Activate Node 1 of 

Layer 2 

Number of Patterns 

in the Group 

1  

 

26 patterns 

2  
5 

 
6 

 

To create a concatenated group of features, the union operation is performed as 

described in Equation 4.2. 

𝑛1 ∪ 𝑛2 ∪ 𝑛5 ∪ 𝑛6 =  { 𝑝 ∶ 𝑝 ∈ 𝑛1 𝑜𝑟 𝑝 ∈ 𝑛2 𝑜𝑟 𝑝 ∈ 𝑛5 𝑜𝑟 𝑝 ∈ 𝑛6}  (4.2) 

A closer inspection of the features in each node (as shown in Table 4.5) shows that 

nodes within the same row have the same patterns. This is because of the horizontal 

movement of the coincidence array from left to the right over the image’s area. 

By performing a union operation, the features in Nodes 1, 2, 5, and 6 are grouped to 

create only 26 unique patterns. This group is then propagated in Layer 2 to activate 

Layer 2’s features. 

4.1.3. Activating the Upper Layer’s Patterns 

So far in our example, the scanning process in Layer 1 produces the features shown in 

Table 4.4. These features are then grouped as shown in Table 4.5. The concatenated 

nodes within the coincidence array create the activation group as shown in Table 4.6. 

This activation group is used to activate the upper layer’s features. There is a difference 

between the activation process for a reference image and the activation process for a 

tested image. A reference image uses its own activation group, while a tested pattern 

will use the activation group of the reference image. The figure below shows Node 1 

in Layer 2 of the monkey’s head as a reference image. 

After the scanning process in Layer 2, the features in this layer must be activated. The 

two activation methods can be imagined as when we see an object and we find an eye 

as a part of that object. At this time we can recognize the eye if we have seen it 

previously. We could not make the final decision of what the object is until we finish 
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scan all parts of the object. The eye itself is a form of several shapes and constructed 

from several materials. The collection of information of shapes and materials lead the 

temporary decision be pointed to an eye. The experiment in this thesis was focused on 

the shapes of the images, hence the two proposed activation methods were established 

to find the possibility of representing the upper layer’s features. The activation features 

in Node 1 of Layer 2 are shown in Figure 4.8.  

 

Figure 4.8: An illustration of an upper layer's feature 

When referring to Table 4.6, Node 1 in Layer 2 is the concatenation of Nodes 2, 5, and 

6 of Layer 1. The activation group for this node has 26 different features. The features 

in the upper layers’ nodes are represented as binary numbers. Hence, the features have 

the same number of bits as the number of features within the activation groups. A bit 

will be active if the coincidence array sees a similar feature to the features within the 

activation group. Active bits are indicated by ‘1’ and inactive bits are ‘0’. 

Node 1 of Layer 2 is used in this example. Table 4.7 shows all nodes in Layer 2, where 

each node is the concatenation of four Layer 1 nodes within the coincidence array of 

Level 2.  

 

1 1 1 1 10 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
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Table 4.7: Layer 2 nodes, which are concatenated from Layer 1 nodes 

Layer 1 Concatenated Nodes Layer 2 Nodes 

1, 2, 5, 6 1 

3, 4, 7, 8 2 

9, 10, 13, 14 3 

11, 12, 15, 16 4 

After the features in Node 1 are activated, the process continues, activating features in 

the rest of the nodes. The activation process explained above is based on Figure 4.5 

and applied to the first sequence of the input image in Figure 4.6. The remaining 

sequences as shown in Figure 4.6 then follow the same process. 

4.1.4. Similarity Measurements 

Similarity measures are important when distinguishing two objects or patterns. Some 

similarity measures have been presented in Chapter 2. In this thesis, the similarity 

between two patterns is measured in a simple way. 

For example, let’s assume there are two vectors: A = [0 4 8 12 13 14 15] and B = [0 1 

5 7 8 10 14 15]. The similarity between the vectors is calculated by counting the 

number of similar elements in each vector, A and B, and then dividing the largest 

element number between the two vectors. In this example, there are ‘2’ similar 

elements between A and B, which are ‘0’ and ‘15’, and the largest element number is 

‘8’ (from vector B). Hence, the percentage of similarity between vector A and B is 

(2/8)*100 or 25%. 

The similarity between the images in Figure 4.2 — the reference image of the 

monkey’s head and the tested image of the fruit — is calculated node by node in both 

Layer 1 and Layer 2. Before measuring the similarity between the two images, the 

features of the fruit must be extracted using HCN.  

Table 4.8 shows the features of the image presented to Layer 1. 
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Table 4.8: Example of a tested image presented to Layer 1 

Cols 

Rows 
1 2 3 4 5 6 7 8 

1         

2         

3         

4         

5         

6         

7         

8         

After performing the scanning process on Layer 1, the features of each node in every 

sequence are as shown in Table 4.9. 

Table 4.9: Tested image's features after scanning in Layer 1 

Nodes 
Sequence 

1 2 3 4 5 6 7 8 

1 
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Nodes 
Sequence 

1 2 3 4 5 6 7 8 

15 

 

 

 

 

 

 

 

 

  

 

 

 

 
16  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HCN then performs node grouping on the tested image. Activation groups for the 

higher layers are not required, because the features in the upper layers use the 

activation groups from the reference image. The unique features in each node of the 

tested image are shown in Table 4.10. 

Table 4.10: Group of unique features in each node of the tested image 

Nodes Group of Features 
No. 

of Pat 
Nodes Group of Features 

No. 

of Pat 

1 

 

13 9  5 

2 

 

14 10  5 

3 

 

15 11  
 

5 

4 

 

15 12  
 

5 

5 

 

11 13  

 

11 

6 

 

11 14 

 

11 

7  9 15 

 

12 

8 

 

12 16 

 

12 

The features of the fruit image are shown from a high-level perspective in Table 4.11, 

and represent Layer 2 with four nodes. 
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Table 4.11: Layer 2 perspective of the fruit image 

Cols 

Rows 
1 2 

1 

  

2 

  

To activate the features in Layer 2 of the fruit image, the activation group is required 

from Node 1 in Layer 2 of the reference image (the monkey’s head). The process of 

features activation is similar to the process that is conducted using the monkey’s head 

as shown in Figure 4.9. 

 

Figure 4.9: Features activation in Node 1, Layer 2 of the tested image 

In the first sequence, the first node in Layer 2 now contains a feature 

‘10110000000000000000000000’. 

The explanation of similarity measurement in this chapter uses the first node of both a 

reference image and a tested image as the example. Table 4.12 shows the process to 

 

1 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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calculate the percentage of similarity between the first node of the tested image and 

the first node of the reference image. 

Table 4.12: Example of similarity measurement between Node 1 of reference image 

and Node 1 of tested image  

First node in Layer 2 of Tested Pattern ‘11110000111111111000000000’ 

First node in Layer 2 of Learnt Pattern ‘10110000000000000000000000’ 

Similarity in bits 16 bits 

Similarity in % (16/26)*100 = 62% 

To count the total percentage of similarity between the two images, the similarity 

calculation has three steps. These steps are: 

1. Similarity node by node (sim_node), which compares similarity node by node 

between the reference image (R) and tested image (T) (Equation 4.3). 

2. Similarity layer by layer (sim_Layer), which calculates the average of the 

nodes’ similarity in each layer (Equation 4.4). 

3. Total similarity (sim_tot), which takes the average similarity from all layers 

(Equation 4.5). 

𝑠𝑖𝑚_𝑛𝑜𝑑𝑒𝑛 =  
𝑛𝑢𝑚_𝑠𝑖𝑚_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑅,𝑇)𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠
    (4.3) 

𝑠𝑖𝑚_𝐿𝑎𝑦𝑒𝑟𝐿 =
∑ 𝑠𝑖𝑚_𝑛𝑜𝑑𝑒𝑛

𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝐿
1

𝑛𝑢𝑚_𝑛𝑜𝑑𝑒𝐿
    (4.4) 

𝑠𝑖𝑚_𝑡𝑜𝑡(𝑅,𝑇) = ∑ 𝑠𝑖𝑚_𝐿𝑎𝑦𝑒𝑟𝐿
𝐿=𝑚
𝐿=1      (4.5) 

4.2. Applied Hierarchical Concatenation Algorithm  

The structure of the hierarchical concatenation network (HCN) is shown in Figure 4.4, 

while an illustration of how the detailed features of an image are seen from a human 

perspective is presented in Section 4.1. This section will present the implementation 

of a HCN to extract the features from each image and measure their similarity. Once 

again, the image of the monkey’s head and the image of a fruit will be used as the 

reference image and tested image, respectively. 
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The feature extraction process using HCN is shown in Figure 4.1, and this acts as the 

guide to splitting the features from both the reference and tested patterns. The 

following example presents the feature extraction process for the reference image first 

and then the tested image. After features from both images are extracted from all 

layers, the similarity measures are presented. 

4.2.1. Feature Extraction of a Reference Image 

Before an image is applied to a HCN, it needs to be converted into a binary image. The 

image of the monkey’s head has the binary features shown in Figure 4.10. 

 

Figure 4.10: Binary features of the reference image 

Each bit in the binary image is a feature of the HCN input. The HCN then conducts 

the scanning process to extract the image’s features from Layer 1 using Algorithm 4.1. 
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Algorithm 4.1: Scanning in Layer 1 

1: For k from 1 to nSeq 

2: nNodesL1 ← 1 

3: For i from 1 to nRowsL1-1 

4: For j from 1 to nColsL1-1 

5: pix1 ← patLn(l)(i, j) 

6: pix2 ← patLn(l)(i, j+1) 

7: pix3 ← patLn(l)(i+1, j) 

8: pix4 ← patLn(l)(i+1, j+1) 

9: pLn ← [pix1 pix2 pix3 pix4] 

10: dec ← 0 

11: Loop m from 1 to 4 

12: dec ← dec + pLn(m) * (2 ^ (4-m)) 

13: End Loop m 

14: nodeL1(l)(nNodesL1, k) ← dec 

15: nNodesL1 ← nNodesL1 + 1 

16: End Loop j 

17: End Loop i 

18: End For k 

Within every sequence (k) from 1 to 32 (if the width of the image is 32, nSeq will be 

32), each pixel of the image is captured using a 2x2 pixels coincidence array (pix1, 

pix2, pix3, and pix4). One movement of the coincidence array captures one feature of 

a node in Layer 1. A four-bit feature is then converted to a decimal value to make it 

easy for further calculations. After one sequence, Layer 1 produces a vector with 256 

elements. The 256 elements in that vector represent the features of 256 nodes in Layer 

1. There are 256, 64, 16, and 4 nodes in Layers 1, 2, 3, and 4, respectively. The numbers 

of nodes in Layer n (n_nodeLn) can be calculated using Equation 4.6. 

𝑛_𝑛𝑜𝑑𝑒𝐿𝑛 = (
𝑤𝑖𝑑𝑡ℎ_𝑃𝑎𝑡𝐿𝑛−1

2
)

2

    (4.6) 

Where width_PatLn-1 is the width of pattern that comes to Layer n. 

The pattern in Layer 1, after the first sequence of the scanning process, is shown in 

Figure 4.11. This pattern is then used as the input to Layer 2 for its first sequence.  
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Figure 4.11: Layer 1's pattern of the reference image at the first sequence 

At the end of the scanning process, each node in Layer 1 has 32 features. Some of 

these features are repeated, but using the HCN node group process, the repeated 

features are removed. Each node then contains only unique features. The table below 

shows the unique features in each node. 

Table 4.13: Unique features of nodes in Layer 1 

Nodes Features Nodes Features Nodes Features 

1 - 16 [15] 97 - 112 
[5 7 8 9 10 

12 14 15] 
193 - 208 

[0 1 2 3 7 

10    11 15] 

17 - 32 [15] 113 – 128 

[0 3 5 7 10 

11 13 14 

15] 

209 - 224 
[4 7 9 10 13    

14 15] 

33 - 48 
[3 6 11 12 

13 14 15] 
129 - 144 

[1 3 4 9 10 

11 12 13 14 

15] 

224 - 240 [3 7 11 15] 

48 - 64 
[3 6 7 9 11 

13 14 15] 
145 - 160 

[1 2 5 6 7 9 

10 11 12 13 

14 15] 

241 - 256 [15] 

65 - 80 

[3 5 6 7 8 9 

11 12 13 14 

15] 

161 - 176 

[1 3 5 6 7 8     

9 10 11 14    

15] 

  

80 - 96 

[2 3 5 6 7 9 

10 11 13 14 

1] 

177 - 192 
[5 6 7 10 11    

13 14 15] 
  

As shown by the flow diagram in Figure 4.1, an activation group is created after 

performing the node grouping process. The algorithm to create the activation group in 

Layers 2 to 4 is shown in Algorithm 4.2. 
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Algorithm 4.2: Creating an activation group 

1: For k from 1 to nSeq 

2:   nNodesLn+1 ← 1 

3:   For i from 1 to nRowsPatLn-1 increase by 2 

4: For j from 1 to nColsLn-1 

 Act_GroupLn(l,nNodesLn) ← node_Ln(l,j) U node_Ln(l,j+1) U 

node_Ln(l+1,j) U node_Ln(l+1,j+1) 

5: nNodesLn ← nNodesL2+1 

6: End For j 

7:   End For i 

8: End For k 

An activation group is created in every sequence. The activation group that is created 

in Layer Ln=1 has as many the numbers of nodes in Layer 2 (nNodesLn+1). Each 

activation group of nodes in Ln+1 is a product of the union process of the four nodes 

in Ln within Ln+1’s coincidence array. Using Equation 4.6, the number of nodes in 

Layer 2 is calculated as 64 nodes. Hence, there are 64 activation groups required to 

extract Layer 2’s features. 

Figure 4.12 shows the activation groups used to activate Layer 2’s features within its 

nodes. The red squares in Figure 4.12 indicate the activation group, which is based on 

four concatenated nodes of Layer 1. The first activation group has four elements of the 

same value, ‘15’, so the repeated values are then removed to show only one value of 

‘15’. The activation group 61 has elements ‘3’, ‘3’, 15’, and ‘15’, which after removal 

of the repeated values, will show only two values: ‘3’ and ‘15’. 

After the activation groups are created, the scanning process continues to pattern in 

Layer 2. The scanning process of Layers 2 to 4 is conducted using Algorithm 4.3. The 

activation process for the higher layers’ features is also shown in Algorithm 4.3, Lines 

10 to 21. 
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Figure 4.12: Activation groups for Layer 2's feature extraction 

Algorithm 4.3: Scanning Process in layer n (2 – 4) 

1: For k from 1 to nSeq 

2: nNodesLn ← 1 

3: For i from 1 to nRowsLn-1 

4: For j from 1 to nColsLn-1 

5: pix1 ← patLn(l)(i, j) 

6: pix2 ← patLn(l)(i, j+1) 

7: pix3 ← patLn(l)(i+1, j) 

8: pix4 ← patLn(l)(i+1, j+1) 

9: pLn ← [pix1 pix2 pix3 pix4] 

10: For m from 1 to numActivationGroup_Ln-1 

11: For n from 1 to length_pLn 

12: If pLn = ActivationGroup_Ln-1(l,nNodesLn)(m) 

13: tempPatLn ← 1 

14: End If 

15: End For n 

16: End For m 

17: dec ← 0 

18: For m from 1 to numActivationGroup_Ln-1 

19: dec ← dec + tempPatLn (m) * (2 ^ (numActivationGroup_Ln-1-m)) 

20: End For m 

21: nodeLn(l)(nNodesLn, k) ← dec 

22: nNodesLn ← nNodesLn + 1 

23: End For j 

24: End For i 

Activation group 1

Activation group 56Activation group 57
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Algorithm 4.3: Scanning Process in layer n (2 – 4) 

25: End For k 

The scanning process in the upper layers is similar to the process in Layer 1; however, 

while Layer 1 uses its coincidence array to capture pixels, Layers 2 to 4 use their 

coincidence arrays to record nodes within the layer below them. These layers also 

require the activation process to activate their features. 

For example, the activation of features in Nodes 1 and 56 of Layer 2. Figure 4.12 

shows that Node 1 has features [15 15 15 15]. Using Algorithm 4.2, which includes a 

union operation on Line 4, the activation group of this node is calculated as ‘15’. 

Because this node has only one unique feature, this node’s features are represented as 

a vector [1]. The process for the reference pattern is illustrated in Figure 4.8, and the 

process for the tested pattern is shown in Figure 4.9. 

Node 56 has features [0 0 3 3], however due to its activation group, this becomes two 

features [0 3]. These features are represented by a vector [1 1], and using this vector, 

the value of the features in this node is ‘3’. The value of the features in Nodes 1 and 

56 at the first sequence are indicated with red circles in Figure 4.13.  

As shown in Figure 4.11, the width of the input pattern for Layer 2 is 16 columns; 

therefore, using Equation 4.6, the number of nodes in this layer is calculated as 64. 

The nodes are then arranged within the size of Layer 3’s input pattern. Figure 4.13 

shows the output pattern of Layer 2 that can be used as the input pattern of Layer 3. 

Layers 3 and 4 perform the same process. The input for Layers 3 and 4 is the output 

of Layers 2 and 3, respectively. After scanning and conducting the activation process, 

the patterns in Layers 3 and 4 at the first sequence are presented in Figure 4.14. 
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Figure 4.13: Layer 2’s patterns for the reference image at the first sequence 

 

Figure 4.14: Layer 3's pattern (a) and Layer 4's pattern (b) for the reference image at 

the first sequence 

4.2.2. Feature Extraction of a Tested Image 

After extracting all the nodes’ features from the reference image, the feature extraction 

process continues on the tested image. An important part of feature extraction using 

HCN is that the tested image does not need to create the activation group; instead, it 

uses the activation group of the reference image to activate its features. Other processes 

such as scanning and node grouping are similar. 

Using the fruit image in Figure 4.2 as the tested image, Figures 4.15 to 4.18 show its 

patterns at Layers 1, 2, 3, and 4 after conducting the scanning and grouping process at 

the first sequence. 

(a) (b)
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Figure 4.15: Binary features of the tested image 

 

Figure 4.16: Layer 1's pattern in the tested image at the first sequence 
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Figure 4.17: Layer 2's pattern in the tested image at the first sequence 

 

Figure 4.18: Layer 3's pattern (a) and Layer 4's pattern (b) in the tested image at the 

first sequence 

4.2.3. Similarity Measurement of Reference and Tested Images 

As mentioned in Subsection 4.1.4, there are three steps that must take place to measure 

the similarity between the reference image and the tested image. This calculation uses 

Equations 4.3, 4.4, and 4.5.  

Figures 11, 13, 14, 16, 17, and 18 are examples of features within nodes at the first 

sequence. By shifting the input image as many the patterns’ width, each node has 32 

features (image with 32x32 pixels). Similar features are then reduced so that the node 

has a group of unique features. 

Using Equation 4.3, the ratio of similarity of nodes between the reference pattern and 

the tested pattern can be calculated. Table 4.14 shows the similarity of each node 

(Nodes 1 to 256) in Layer 1. The first node is located on the first row and in the first 

column, and the last node is on the last row and in the last column. 

 

(a) (b)
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Table 4.14: Similarity of nodes between reference image and tested image at Layer 1 

Node similarity in Layer 1 

 

25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 33.3 100.0 100.0 

14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 16.7 25.0 25.0 25.0 50.0 100.0 

42.9 42.9 42.9 28.6 28.6 28.6 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3 

25.0 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 14.3 14.3 14.3 14.3 14.3 14.3 

33.3 33.3 33.3 33.3 33.3 22.2 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 

30.0 30.0 30.0 30.0 30.0 40.0 40.0 40.0 40.0 40.0 40.0 30.0 30.0 20.0 30.0 30.0 

40.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 40.0 40.0 40.0 40.0 

40.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 40.0 30.0 30.0 30.0 30.0 50.0 50.0 50.0 

27.3 27.3 27.3 36.4 45.5 45.5 36.4 36.4 54.5 54.5 45.5 45.5 45.5 45.5 45.5 45.5 

41.7 41.7 33.3 33.3 25.0 25.0 41.7 41.7 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 

40.0 40.0 40.0 40.0 40.0 30.0 10.0 10.0 20.0 20.0 20.0 30.0 30.0 30.0 30.0 30.0 

40.0 40.0 40.0 20.0 20.0 20.0 20.0 20.0 20.0 40.0 40.0 40.0 40.0 28.6 28.6 28.6 

16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7 50.0 66.7 66.7 66.7 66.7 

25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 

25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Using Equation 4.4, the similarity percentage in Layer 1 (sim_Layer1) is 35.18%. 

Layer 2 shows a 56.68% similarity, which is detailed in Table 4.15. 

Table 4.15: Similarity of nodes between reference image and tested image in Layer 2 

Node similarity in Layer 2 

25.0 25.0 25.0 25.0 25.0 25.0 25.0 50.0 

33.3 33.3 33.3 33.3 33.3 33.3 33.3 100.0 

25.0 25.0 40.0 50.0 50.0 50.0 50.0 40.0 

25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 

50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 

50.0 66.7 66.7 100.0 25.0 25.0 25.0 25.0 

100.0 100.0 100.0 100.0 100.0 100.0 50.0 50.0 

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

The similarity of nodes in Layers 3 and 4 is shown in Tables 4.16 and 4.17, 

respectively. 
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Table 4.16: Similarity of nodes between reference image and tested image at Layer 3 

Node similarity in Layer 3 

25.0 25.0 25.0 33.3 

0.0 33.3 33.3 33.3 

33.3 40.0 28.6 28.6 

100.0 100.0 100.0 40.0 

Table 4.17: Similarity of nodes between reference image and tested image in Layer 4 

Node similarity in Layer 4 

0.0 33.3 

40.0 33.3 

The similarity percentage between the image of the monkey’s head and the image of 

the fruit is 42.43% in Layer 3 and 26.67% in Layer 4. This shows that HCN is 

discriminative towards the higher layers compared to the lower layers.  

The similarity rate in Layer 2 increases by slightly more than 1.5 times. From Layer 

2, the similarity rate goes down by about 15% in Layer 3 and by double in Layer 4. 

Therefore, after taking an average of the layers’ similarity using Equation 4.5, the 

similarity percentage between the two images is 39.24%. The similarity rate between 

the sample images is different when the position of the reference image and the tested 

image is interchanged. After interchanging the position of the reference pattern and 

the tested pattern to extract the features, the similarity rate is 64.27%. This difference 

is discussed in Chapter 5. 

4.3. Feature Extraction Test with Simple Images 

A preliminary work using a hierarchical concatenation network (HCN) is tested in 

(Ramli & Ortega-Sanchez, 2015) using simple images as shown in Figure 4.19. 

 

Figure 4.19: Six simple patterns to test using a HCN 

The HCN used in this experiment has only two layers. The work investigates the 

difference between the coincidence array movement using overlap and no overlap 

A1.png A2.png A3.png A4.png C.png T.png
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during the scanning process. The movement of the coincidence array using overlap 

means that the coincidence array moves across the pattern’s area one pixel at a time. 

Without overlap means that the coincidence array moves across the pattern by the size 

of itself, and this method of movement is used in the HCN (as explained at the 

beginning of this chapter) because it produces better results than the overlap method.  

This subsection presents the use of a four-layer HCN to test the simple patterns in 

Figure 4.19. Using these images as the reference and tested pattern, the similarity rates 

between them are as shown by the graphs in Figure 4.20. 

 

Figure 4.20: Similarity rate in (a) Layer 1, (b) Layer 2, (c) Layer 3, and (d) Layer 4 

Within all layers, the similarity rate between the reference image and itself as the tested 

image is 100%, while the rates goes down significantly from the first layer to the top 

layer between other pairs of reference and tested images. 

 

(a) (b)

(c) (d)
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4.4. Classification with HCN 

This subsection provides a brief overview of how classification might be conducted. 

The ability to recognise given objects or patterns is the ability to classify them into 

existing groups that have some similarity of features. Humans and mammals might 

show this ability in either a supervised or unsupervised learning process. A supervised 

learning process is when the subject requires constant feedback while the learning is 

taking place. For example, when kids first start to learn their numbers, they must be 

supervised. Parents may say the name of a number out loud and also show its shape. 

After several repetitions, kids are able to recognise numbers based on their name and 

shape. 

Unsupervised learning is undertaken alone. Let’s use the example of a cat that can 

recognise the difference between milk and water. The cat’s owner has never taught 

him to understand which one is which, but the cat can recognise the difference. The 

cat does not understand the meaning of milk or water from a human point of view, but 

she can understand the difference of colour, smell, and taste. 

The two examples above show that both supervised and unsupervised learning can 

help intelligent creatures recognise objects. These learning processes have been 

studied for decades by the artificial intelligence community (C. H. Lee & Yang, 2007; 

C. S. G. Lee & Lin, 1992; Manohar, Kumar, & Kumar, 2016; Sapkal, Kakarwal, & 

Revankar, 2007; Wosiak, Zamecznik, & Niewiadomska-Jarosik, 2016). As presented 

in Chapter 2, researchers have tried to develop machine algorithms that replicate 

intelligent behaviour. 

Similarity measurement is the basic process to quantify the difference between a given 

pattern and patterns that were previously learned. The general process of similarity 

measurement involves comparing all features that form the whole pattern. The 

pattern’s features can be lines, curves, dots, etc. As per the discussion at the beginning 

of this chapter, intelligent creatures might recognise objects by identifying and 

concatenating smaller features. Figure 4.2 illustrates how easy it is to identify two 

images as a monkey’s head based on their features.  
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Once the recognition process is complete, the developed method must prove its ability 

to perform classification. Figure 4.6 shows the classification of objects based on their 

shape. Let’s assume the classification method needs a supervisor to label the class of 

each object. When a new object is presented, its features are compared to the features 

within each labelled class. The shape that has the closest similarity of features to a 

specific class is assigned to that class.  

 

Figure 4.21: Pattern classification based on geometric similarity 

What happens to the star shape? It does not have any class. This means the 

classification method has never learnt the star shape. Even though the star shape has 

no class, the method still produces a similarity measurement. The star shape has a 

small part of the square’s lines that can assign it to the class of square with some small 

value of similarity. 

There three two ways to classify objects or images into available classes in this thesis. 

The first is called classification by union. Classification by union replicates the process 

that is explained at the beginning of this subsection. Firstly, only the unique features 

of the group’s images are retained, and then a given image’s features are compared to 



84 

 

the unique features of that group. When a given image shows the highest number of 

similar features to a particular group, it will be assigned to that group. The second 

method measures the similarity of the tested image’s features against the average of 

similarity of features of each class. The class with the closest similarity to the given 

image is chosen for that image. This classification method is called classification by 

average. The last investigation has been conducted based on the distance measures. 

Further investigation and exploration into the way the tested pattern is classified into 

a specific class using HCN is presented in Chapter 6. Feature extraction is 

implemented in Chapter 5. 
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Chapter 5  

Feature Extraction using Hierarchical 

Concatenation Networks 

 

 

 

 

 

Chapter 4 discusses the general concept of the hierarchical concatenation method to 

extract an image’s features and its similarity measurements, node by node and layer 

by layer. By increasing the coverage area of the coincidence array from layer to layer, 

the similarity rate between the reference pattern and tested pattern becomes 

discriminative (Ramli & Ortega-Sanchez, 2015). This indicates that the extracted 

features in the lower layers have a higher similarity rate than the higher layers, because 

the lower layers perceive smaller features (compared to the higher layers). In the 

highest layer, features are represented in their largest form, which causes the 

perception of the features in the different objects to be discriminative. Similarity is 

measured by calculating the average similarity rate within all layers. 

This thesis explores feature extraction and patterns activation within the network’s 

layers. There are two different ways to activate the representation of the upper layers’ 

patterns, and these are discussed in this chapter. These two feature extraction methods 

are called HCN-I and HCN-II. 

After presenting the possibility of using hierarchical concatenation to extract features 

in the previous chapter, this thesis now investigates the designed network’s ability to 

recognise objects or patterns. As the recognition process of the way how humans see 

is difficult to understand, attempting to replicate it as a computer algorithm requires 



86 

 

specimens to test the algorithm’s ability. The specimens should represent identified 

objects or patterns from a human’s point of view. If the specimens exist and are 

familiar in the world, the performance of the computer algorithm can be clearly 

compared to the way humans see.  

There are many complex datasets with high-level distortion, but those kinds of dataset 

need pre-processing before feeding to the specific algorithm. The proposed algorithm 

in this thesis excludes complex pre-processing as it is supposed to proof the ability of 

the proposed algorithm to perform recognition or classification. The experiments in 

this thesis used two kinds of datasets. The first is ‘digit dataset’ that was produced 

using freeware and the second is publicly available handwritten (USPS and MNIST) 

datasets. These datasets were used in the experiments due to: they are easy for human 

to identify them compared with others that could lead misinterpretation, the proposed 

algorithm was designed to perform the concatenation process during feature 

combining, and the proposed algorithm needs to show its ability in recognition by 

using the specimens which are familiar to human. Other similar datasets with high-

level distortion for example high degrees rotated shaped or other kinds of noisy images 

were not used in this thesis. 

The ‘digit dataset’ is chosen in the experiment as it is easy to investigate if the proposed 

algorithm is able to achieve the objective of recognition or not.  For this reason the 

dataset is produced using free software called ‘imagemagick’, which can be 

downloaded from www.imagemagick.com. With this software the less distorted 

images can be produces, for example the images can have has different style (font, 

thickness, and tilt). The images are drawn on 32 x 32 pixels of canvas with no noise 

within the canvas.  

For the purpose of this investigation, each class of numbers contains 10 members. This 

is because the human can accurately recognise shapes with different thicknesses, 

positions, sizes, and angles. This thesis seeks to reproduce this ability by pre-

processing the inputs before applying the designed algorithm. This chapter presents 

the HCN algorithm that must to prove its ability to follow the concept of features 

recognition as presented in Chapter 4. 

http://www.imagemagick.com/
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In Chapter 4, the features of a monkey’s head are used to extract a fruit’s features. The 

pattern that is used to extract the other pattern is called the reference pattern, while the 

extracted pattern is called the tested pattern. In this example, the image of the 

monkey’s head is the reference pattern, and the image of the fruit is the tested pattern.  

Feature extraction using HCN extracts the features of a pattern using another pattern’s 

features. The extraction process is conducted hierarchically from the lowest to the 

highest layer. On the lowest layer, the smallest extracted features are the pixels itself 

that represented in binary numbers. Features on upper layers are the concatenation of 

features from the below layer. On the other word, the combination of active features 

at the lower layer represent the upper layers’ features. Within the earlier experiment 

as discussed in (Ramli & Ortega-Sanchez, 2015, 2016), when a feature of the tested 

pattern is similar to a feature of the reference pattern within the correspond node, the 

feature of upper layer that represented by assigning value ‘1’ on the correspond bit. 

After several investigation this method represented the same feature for different 

comparisons. For example, the first comparison between a tested pattern tp that 

represented by vector [1 2 3 4] and a reference pattern rp = [1 2 3 4] produce a new 

feature on upper layer represented by vector [1 1 1 1]. The elements of that vector is 

assigned by ‘1’ due to each feature of the tested pattern is similar to the feature of the 

reference pattern. Let us see the second comparison. If a tested pattern has [2 3 5 6] 

and a reference pattern has also have [2 3 5 6] then a feature on upper layer will be [1 

1 1 1]. Even though this method is still able used in recognition or classification 

process but it influence the results and time consumption to run the algorithm. 

After several experiments, the second method was defined as another way of upper 

layer’s feature activation. In this method, the occurrence of a feature was considered 

to play important role to activate upper layers’ features. By using the first comparison 

above, each reference pattern has one time of occurrences. By having the same feature 

between the tested and reference pattern, the upper layer’s feature will be [1*1 + 2*1 

+ 3*1 + 4*1] which is ‘10’. Therefore, the upper layer’s feature of the second 

comparison above will be [2*1 + 3*1 + 5*1 + 6*1] which is equal to ‘16’. With this 

second method, two different pattern comparisons show two different feature 

representations on upper layer. The first method in this thesis is then called as HCN-I 
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and the second method is HCN-II. The detail algorithm of both are presented in sub 

section 5.1. 

In other investigation of the feature activation process, it can be seen that the way the 

HCN extracts features makes the similarity rate between the two patterns different 

when their positions as the reference and tested image are interchanged. This is an 

important find in this research and will be discussed further in this chapter. 

The remaining section in this chapter will present: 

1. the HCN-I and HCN-II feature extraction methods, 

2. the concept of ‘many to one’ and ‘one to many’, 

3. the results of an investigation into the different feature extraction methods, 

using sequential and non-sequential scanning, and the possibility of involving 

the middle area of the image. 

5.1. HCN-I and HCN-II Feature Extraction 

HCN-I and HCN-II apply the same feature activation method to Layer 1, because this 

layer is directly connected to the input (pre-processed input). They are different on 

upper layers. The HCN-I activates the feature by giving value ‘1’ if the coincidence 

array sees the feature in it is similar to the feature of reference pattern, while the HCN-

II activates the feature by multiplying the numbers of seen feature by the coincidence 

array with its weight.  

Figure 5.1 shows an example of HCN-I feature extraction and activation in Layers 1 

and 2. 
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Figure 5.1: Feature extraction and activation in HCN-I 

As Layer 1 is connected to the input (pre-processed input), its nodes contain the 

concatenation of four bits of the input. For example, Layer 1’s first node in Figure 5.1 

is the concatenation of binary ‘0010’, which is represented as a ‘2’ in decimal value. 

This means that the first node in Layer 1 has a feature represented as ‘2’. All the 

features in Layer 1’s nodes are used to activate the features in Layer 2. The activation 

process for the features in each node requires activation grouping (as discussed in 

Chapter 4.1.2.2). In this example, there are only three active bits in the activation group 

(‘0111’). This vector represents a feature in the first node of Layer 1 as decimal value 

‘7’. If the input is similar to the reference pattern, all bits of the activation group are 

active. The first node in Layer 2 is ‘1111’, or ‘15’ as a decimal value. 

In the above example, the first node of Layer 2 is ‘7’, which is different to the reference 

pattern’s first node in Layer 2. Hence, the similarity between the first node of input 

and the reference pattern can be measured by ratio or distance. The measurement using 

ratio gives the similarity rate (7/15)x100% = 46.67%, while the distance measurement 

is √(7 − 15)2 = 8. 

The HCN-II has a different activation process. It uses weight to represent the upper 

layers’ features. Figure 5.2 illustrates feature extraction and activation in Layers 1 and 

2 of HCN-II. 

1st Layer

2nd Layer

7 = 0 1 1 1

12
8
5
2

0010 = 2
1000 = 8

0101 = 5

1000 = 8

activation group on 
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representation on 
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input



90 

 

1st Layer

2nd Layer

23 = 0x1 + 8x2+ 5x1 + 2x1

12
8
5
2

0010 = 2
1000 = 8

0101 = 5

1000 = 8

feature activation 
on layer 2

a feature 
representation on 

layer 2

input

nodes’ features weight
1
1
1
1

27

 

Figure 5.2: Feature extraction and activation in HCN-II 

The activation group (or activation feature) in HCN-II can be calculated by multiplying 

the number of the feature itself with the number of its occurrences within the 

concatenated node. For example, in Figure 5.2, the activation group is ‘27’, which 

comes from ‘12x1’+’8x1’+’5x1’+’2x1’, and the input has a feature of ‘23’ in the first 

node on Layer 2. Hence, similarity by ratio is (23/27)x100% = 85.18%, and distance 

is √(23 − 27)2 = 16. 

The above example calculations of similarity and distance show that the difference 

between HCN-I and HCN-II is 38.51% in similarity and 8 in distance. Therefore, the 

results of both HCN methods are presented in this chapter, and Chapter 6 explores 

their classification abilities with these methods. 

5.2. ‘Many To One’ And ‘One To Many’ Methods, 

Sequential and Non-Sequential Scanning, and 

Overlapping the Middle Area of Images 

The difference in the rate of similarity when the position of the reference and tested 

image is interchanged is the idea behind the ‘many to one’ and ‘one to many’ methods. 

This section presents their differences. 
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In this thesis, feature extraction using hierarchical concatenation is used to separate 

the attributes of a second pattern based on the features of the first, or vice versa, and 

is shown in Figure 5.3. 

 

Figure 5.3: An example of two patterns that can extract each other 

From a human point of view, the patterns will seem similar when comparing the first 

pattern to the second pattern, and vice versa. The HCN, however, produces different 

results when the reference pattern and tested pattern are interchanged. In Figure 5.3, 

the blue line represents the first pattern being used as reference, while the red line 

represents the second pattern being used as reference. Following the direction of blue 

line, the HCN algorithm produces a similarity rate between these two patterns of 

45.24%. This rate decreases to 30.95% when the second pattern is used as reference 

(following the direction of the red line). 

Based on this difference, the position of the reference patterns when extracting the 

tested patterns, or vice versa, plays an important role. Further investigation using a 

dataset is conducted in this thesis to study the difference between the two positions. 

Figure 5.4 illustrates the interchanging positions between a set of reference and tested 

patterns. 

1st 2nd
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Figure 5.4: Representation of exchanging positions between reference and tested 

patterns where blue and red lines indicate source of extraction 

Figure 5.4 shows six patterns on the left-hand side and three patterns on the right-hand 

side. Let’s assume that the left-hand side patterns are the reference patterns, and the 

right-hand side patterns are the tested patterns. The blue lines in this figure represent 

the feature extraction process from the reference patterns’ point of view, meaning 

feature extraction is based on reference patterns. This method is called ‘many to one’. 

In this method, each reference pattern extracts the tested patterns’ features using the 

features of the reference pattern. The reverse process is represented by the red lines, 

which indicate the activation process from the tested patterns’ point of view. This is 

called the ‘one to many’ method, and in this method, the tested patterns extract the 

features of the reference patterns based on the tested patterns’ features. 

Using the ‘many to one’ method, the six patterns on the left-hand side see all tested 

patterns based on their features. For example, Pattern 1 extracts the tested pattern by 

searching for its vertical and horizontal lines (its features) within the first tested 

pattern. If Pattern 1 sees similar features in the tested pattern (1), those features are 

then activated within the tested pattern (see Section 4.1.3 in Chapter 4). 

Correspondingly, the tested pattern (1) has its own features based on the reference 

1

2

3

4

5

6

7

8

9

Tested patternsReference patterns
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pattern (1). These two patterns are then compared to calculate the similarity rate 

between them. Patterns 2 to 6 follow the same process, and the similarity rates for each 

pair of patterns (1–7 to 6–9) are shown in Table 5.1. In the ‘one to many’ method, on 

the other hand, the three patterns on the right-hand side use their own features to 

activate the six reference patterns. The similarity rates for each pair of patterns (7–1 to 

9–6) are also shown in Table 5.1. 

Table 5.1: Similarity rates when position of reference pattern and tested pattern is 

interchanged 

Reference Patterns 

Extract 

Tested Patterns 

Similarity 

Rate (%) 

Tested Patterns 

Extract 

Reference Patterns 

Similarity 

Rate (%) 

1 – 7 32.53 7 – 1 47.40 

1 – 8  39.13 7 – 2 45.45 

1 – 9  30.40 7 – 3 45.24 

2 – 7  76.23 7 – 4 36.78 

2 – 8  57.38 7 – 5 39.38 

2 – 9  50.19 7 – 6 38.81 

3 – 7  51.17 8 – 1 39.00 

3 – 8  44.12 8 – 2 32.19 

3 – 9  43.44 8 – 3 31.20 

4 – 7  31.11 8 – 4 35.80 

4 – 8  29.25 8 – 5 33.59 

4 – 9  32.22 8 – 6 29.17 

5 – 7  33.46 9 – 1 22.25 

5 – 8  32.89 9 – 2 24.10 

5 – 9  27.66 9 – 3 24.88 

6 – 7  25.43 9 – 4 31.94 

6 – 8  24.36 9 – 5 31.31 

6 – 9  27.80 9 – 6 28.19 

In Table 5.1, each pair of patterns, 6–8 and 8–6 (highlighted in light green), show that 

the similarity rate between them is different when their position to extract the features 

is exchanged. If Pattern ‘6’ uses its own features to extract the features of Pattern ‘8’, 

the similarity rate between them is 24.36%. On the other hand, when Pattern ‘8’ 

extracts the feature of Pattern ‘6’, the similarity rate is 29.17%. Another example in 

Table 5.1, which shows a difference in similarity rates when positions are 

interchanged, is highlighted in light blue. In this example, the left-hand side pattern 

(‘6’) uses its features to extract the features of Pattern ‘9’, and on the right-hand side, 

the features of Pattern ‘9’ are used to extract the features of Pattern ‘6’. This difference 
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in the similarity rate occurs because the features of the extracted pattern are activated 

based on the features of the extracting pattern (see Section 4.1.3 in Chapter 4). 

Another illustration of using the ‘many to one’ and ‘one to many’ methods to extract 

features is as follows:  

Consider a person arriving at a place where some people are wearing clothes of 

different colours (see Figure 5.5). A decision must be made as to which person he 

should join, based on the colour of the clothes he himself is wearing. 

From the point of view of the person who has just arrived, his group partner is to be 

chosen based on the clothes they are wearing. This is the ‘one to many’ concept. This 

person examines each single part of his clothes and compares them against the clothes 

of every other person’s clothes in the room. Calculating the highest similarity rate 

between his clothes (shirt, pants and shoes) and the clothes of others will allow him to 

decide which group partner to join. 

The people already in the room must draw the attention of the newcomer based on 

their costumes’ similarity. In Figure 5.5, one of the people in the room asks the new 

person to join him because their pants are similar, while others say similar things based 

on the rate of similarity between their clothes. This is the ‘many to one’ concept. Using 

the ‘many to one’ method, the decision is made by the person in the room who has the 

highest rate of similarity to the newcomer’s clothes. 

Both of these methods actually perform the same feature extraction process: scanning, 

grouping, and activation, as described in Chapter 4, but the reason this thesis must 

explore the methods further is that they produce different results (as presented in Table 

5.1). The differences between these two methods are presented by the results in the 

next sections. 
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Figure 5.5: ‘Many to one’ and ‘one to many’ concept 

Using the digits dataset, which is meaningful from a human perspective, this chapter 

presents some experiments. The experiments implement sequential scanning (as 

presented in Chapter 4) as well as non-sequential scanning, and the results are 

investigated further by involving the middle area of the image during the scanning 

process. 

The concept of sequential scanning is discussed in Chapter 4. Implementation using 

non-sequential scanning does not shift the image during scanning. A case where 

overlapping is used in the middle area of the image is also considered so that any 

improvement in performance rate can be assessed. The algorithm presented in Chapter 

4 uses the whole image area in its early implementation of hierarchical concatenation. 

In the following example, overlapping the middle area means that feature extraction is 

also performed within the middle area of the image, as presented in Figure 5.6. 

Which one is similar to 

me???

Hey … your shirt and 

pant are similar to me!!!

Hey … your pant is 

similar to me!!!

Hey … your costume is 

similar to me!!!

Hey … your pant is 

similar to me!!!

Hey … your shirt is 

similar to me!!!

Hey … your pant is 

similar to me!!!
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Figure 5.6: Overlapping the middle area of image 

The image at the bottom of Figure 5.6 shows the scanning area of the image with no 

overlapping. The horizontal and vertical lines in the middle of the image indicate the 

borders of the scanning area. The coincidence array does not cover the pixels on those 

lines. The image at the top of Figure 5.4 illustrates the overlapping area in the middle 

of image. This overlap produces five divisions, which are labelled as ‘mid-centre’, 

‘mid-top’, ‘mid-left’, ‘mid-bottom’, and ‘mid-right’. The ‘mid-right’ division covers 

the image area indicated by the yellow arrows. The black arrows represent the middle 

area covered by the ‘mid-top’ division, and the ‘mid-left’ location is shown by the 

green arrows. The ‘mid-bottom’ and ‘mid-right’ divisions are the areas indicated by 

the red and blue arrows, respectively. Each division has one quarter of the image size, 

or 16x16 pixels. 

The different results — with and without overlapping the middle part of the images — 

are explored in the next subsections. The investigation uses both numbers and letters 

for the purpose of recognition. The experiments are setup to test the HCN’s ability to 

extract features using both the ‘many to one’ method and the ‘one to many’ method. 

The capability of these methods to recognise the tested patterns is also investigated by 

implementing overlapping in the middle area of the pattern. If a tested pattern is 

supposed to have a higher similarity rate with its own group, the failure of the HCN 

method to recognise or place the tested patterns into the correct group is measured as 

the basis for its performance. 

Mid-Top
Mid

Mid-Right

Mid-Left

Mid-Bottom
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Classification is another application of the hierarchical concatenation concept 

presented in this thesis. Classification is the ability of the network to classify patterns 

into groups based on hierarchical feature extraction, and this is presented in Chapter 

6. 

5.3. The Exploration of Recognition 

To explore the concept of the hierarchical concatenation network (HCN), a dataset is 

produced using ‘imagemagick’ and used during the experiment (Curtin, 2013). This 

thesis investigates the results produced by the HCN when recognising members from 

each set of digits, and then determines its ability to place patterns from the same class 

into the highest similarity rate.  

Table 5.2 shows 10 groups of digits, where each digit ranges from ‘0’ to ‘9’. Each 

group contains 10 members from the dataset of numbers and is produced using 

Algorithm 5.1. 

Algorithm 5.1: Producing Image 

1: For digit from 0 to 9 

2: For i from 1 to 10 

3: Font ←fontlist.lib 

4: Convert size into 32x32 xc:white  -font(i) -pointsize 28 fill black -gravity center -draw 

tmp.png 

5: Convert tmp.png –fuzz 0% -trim +repage tmp2.png 

6: Convert tmp2.png –resize 32x32! tmp3.png 

7: Convert tmp3.png digits_i.png 

8: End for i 

9: End for digit 

The digit dataset has 10 classes from 0 to 9, and each class has 10 members that are 

represented in the second row as 1 to 10. The image is drawn in black within a white 

background measuring 32x32 square pixels. The font style is chosen from the font 

library with the font size of 28. 
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Table 5.2: Ten groups of digits 

Member 

Groups 

0 1 2 3 4 5 6 7 8 9 

0           

1           

2           

3           

4           

5           

6           

7           

8           

9           

In the discussion that follows, the patterns in Table 5.2 are identified using their digit 

name followed by their group number. For example, the first ‘0’ in Group 0 is 

identified as ‘0_0’, while the fifth ‘3’ in Group 3 is identified as ‘3_5’. 

The following section presents the experiments’ results within the following 

frameworks: 

- Similarity rate between a given tested pattern and the whole dataset. 

- Sorting the position of the datasets based on their similarity to the tested pattern 

and in a descending order. 
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HCN feature activation (HCN-I and HCN-II) is discussed for each of the following 

methods: 

1. The ‘many to one’ method using: 

a. non-sequential and sequential scanning over the whole image area, and 

b. an overlapping middle area during feature extraction. 

2. The ‘one to many’ method using: 

a. non-sequential and sequential scanning over the whole image area, and 

b. an overlapping middle area during feature extraction. 

5.3.1. Recognition using the ‘Many to One’ Method 

A brief description of the ‘many to one’ method is provided at the beginning of this 

chapter. The first experiment implements a hierarchical concatenation feature 

extraction without sequential scanning. This is conducted by setting the number of the 

sequence (nSeq) as ‘1’ (see Algorithm 4.1 in Chapter 4). 

Table 5.3. shows a comparison of the first 10 digits with the highest similarity rate 

between the tested and reference patterns. The first 10 sets of 10 digits (100 numbers) 

are then compared against each one of the tested patterns. The rows in Table 5.3 show, 

for each tested pattern, the 10 digits with the highest similarity rate as calculated by 

the algorithm using non-sequential scanning. Feature activation in the upper layer uses 

the HCN-I method. 
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Table 5.3: ‘Many to one’ method with no sequential scanning in HCN-I. 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

The digits with blue borders are the numbers that are recognised correctly. As each 

group of numbers has 10 digits, if the first 10 highest similarities between the reference 

and tested patterns are from the group of the tested pattern, then the recognition rate 

of the tested pattern is 100%. In Table 5.3, only 37 out of 100 digits are correctly 

recognised by the HCN across the whole image area with no shifting of the image 

patterns during scanning. 

The next step involves the middle area of the image during scanning. Overlapping the 

middle area increases the total number of nodes in each layer. If each middle division 

measures 16x16 pixels and the number of nodes in each layer is calculated using 

Equation 4.1 in Chapter 4, 64 more nodes are added to Layer 1 in each division. Layers 

2 to 4 are increased by 16, 4, and 1 node, respectively. When combining the entire 

middle area of the image (five divisions), each layer has five times the number of 
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additional nodes. In this instance, Layers 1 to 4 have 576, 144, 80, and 9 nodes, 

respectively. 

Table 5.4: ‘Many to one’ method involving middle area of pattern with no sequential 

scanning in HCN-I. 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

It can be seen that when including the middle area of the images during scanning to 

extract features, non-sequential scanning does not give better results (Table 5.4). It 

actually exhibits a similar performance to when the additional middle area is not used. 

These results indicate that involving the middle divisions of an image does not improve 

the HCN’s ability to recognise the tested patterns. 

The following investigation implements sequential scanning, which is presented in 

Chapter 4. Table 5.5 shows the performance of the HCN using the ‘many to one’ 

method along with sequential scanning. 
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Table 5.5: ‘Many to one’ method with sequential scanning in HCN-I. 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

When implementing sequential scanning for feature extraction of the tested patterns 

based on the reference patterns, recognition performance almost doubled to 64%. This 

indicates that sequential scanning, when applied to the ‘many to one’ method, produces 

better results than non-sequential scanning Although sequential scanning gives a better 

performance of recognition, the time it takes to run the algorithm is 18 times longer 

than without sequential scanning. 

The following table (Table 5.6) presents the results when the middle area of an image 

is included within the sequential scanning process. 
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Table 5.6: ‘Many to one’ method involving middle area of pattern with sequential 

scanning in HCN-I. 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

         
 

 

           

           

           

           

           

           

When involving the middle area of the image, the ability of the algorithm to extract a 

tested pattern’s features and compare their similarity decreases to 55%. This indicates 

that using the ‘many to one’ feature extraction method in HCN-I has the highest 

similarity rate for the first 10 reference patterns (at 64%). 

Table 5.7 presents the first 10 most similar reference patterns (compared to the tested 

patterns) using HCN-II feature extraction with the ‘many to one’ method. 
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Table 5.7: ‘Many to one’ method with no sequential scanning in HCN-II. 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

By sorting the first 10 highest similarity rates between the reference pattern and the 

tested pattern, HCN-II using the ‘many to one’ feature extraction method without 

sequential shifting of the images gives 70 out of 100 digits in the correct place. Let’s 

see the results in Table 5.8 when the middle area of image is included in the 

measurement. 
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Table 5.8: ‘Many to one’ method involving middle area of pattern with no sequential 

scanning in HCN-II. 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

When involving the middle area of the images, HCN-II does not improve the 

placement of reference patterns. Only 54% of digits are located close to the tested 

patterns. This indicates that inclusion of the middle area of the image, which increases 

feature comparison, does not enhance the similarity rate of patterns within the same 

group. 

Table 5.9 presents the investigation in HCN-II with sequential shifting and when the 

middle area of the image is not involved. 
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Table 5.9: ‘Many to one’ method involving middle area of pattern with sequential 

scanning in HCN-II. 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

The implementation of sequential scanning increases time consumption by 40 times, 

but the number of correct digits placed close to the tested patterns is 70 out of 100 as 

shown in Table 5.9. This number is similar to when HCN-II is implemented without 

sequential scanning. This indicates that HCN-II does not improve the correct 

placement of the reference patterns when shifting the image by as many pixels as the 

number of sequences.  

Let’s look at the results when the middle area of the image is included during the 

scanning process along with sequential implementation as shown in Table 5.10. 
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Table 5.10: ‘Many to one’ method involving middle area of pattern with sequential 

scanning in HCN-II. 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

Table 5.10 shows the similarity measurements for all the tested patterns within the 

dataset and that the number of the first 10 closest digits to the tested patterns is similar 

to using sequential and non-sequential scanning in HCN-II. Both have 54 out of 100 

patterns. Sequential scanning consumes more time than non-sequential scanning as 

shown in Table 5.11. 
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Table 5.11: Comparison of time consumption and number of correct placements 

between HCN-I and HCN-II using ‘many to one’ method 

Feature Extraction 
Time 

Consumption (s) 

Number of 

Correct 

Placements 

HCN-I:   

- No sequential scanning 7.06 37 

- Sequential scanning 127.32 64 

- No sequential scanning with 

middle area 

17.03 37 

- Sequential scanning with 

middle area 

308.27 55 

HCN-II:   

- No sequential scanning 35.47 70 

- Sequential scanning 91.97 70 

- No sequential scanning with 

middle area 

6.84 54 

- Sequential scanning with 

middle area 

201.02 54 

Upon evaluation of the performance of the ‘many to one’ method for feature 

extraction, it can be seen that the implementation of sequential scanning in HCN-I 

produces better results compared to non-sequential scanning. However, HCN-II 

provides more correct placements of the reference patterns when compared with the 

tested patterns. HCN-II gives the same number of placements (70 out of 100) when 

either including or excluding the middle area of the image. Opposite to HCN-I, HCN-

II gives better results when sequential scanning is not implemented. This means that 

HCN-II is 3.6 times faster (see Table 5.11, 125.32s / 35.47s) than HCN-I in terms of 

time consumption. 

5.3.2. Recognition using the ‘One to Many’ Method 

Experiments similar to those reported in Section 5.2.1 are now conducted to analyse 

the results produced by the ‘one to many’ method. Table 5.7 presents the performance 

of this method without sequential scanning. 
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Table 5.12: ‘One to many’ method without sequential scanning in HCN-I 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

When extracting and recognizing the similarity of tested and reference patterns, 

performance improves slightly to 61% when using non-sequential scanning with the 

‘one to many’ method; this is compared to when the ‘many to one’ method is used. 

Table 5.8 shows the results when the middle area of the images during non-sequential 

scanning is included.  
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Table 5.13: ‘One to many’ method involving middle area of pattern without 

sequential scanning in HCN-I. 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

Similar to the ‘many to one’ method, the ‘one to many’ method with no sequential 

scanning and including the middle area of image shows a lower performance than 

when the middle area is not involved. Its performance rate decreases by about 5% to 

56%. 

The following table shows the recognition results when using the ‘one to many’ 

method and scanning the whole image sequentially. 
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Table 5.14: ‘One to many’ method with sequential scanning in HCN-I 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

When implementing sequential scanning, the performance rate goes up significantly 

to 75%. Table 5.10 shows the recognition results when involving the middle area of 

image. 
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Table 5.15: ‘One to many’ method involving middle area of pattern with sequential 

scanning in HCN-I 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

When including the middle area of the image, this method improves the performance 

rate slightly by 3% to 78%. The results of the investigation into similarity measures in 

HCN-II are shown in the following tables. Table 5.16 shows the results of 

implementing HCN-II without sequential scanning and without inclusion of the middle 

area of the image. 
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Table 5.16: ‘One to many’ method without sequential scanning in HCN-II 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

When feature activation is implemented in HCN-II, only 47 digits are placed close to 

their tested patterns. In this case, the scanning process excludes the middle area of the 

image. Table 5.17, on the other hand, shows the results when the middle area of the 

image is involved using non-sequential scanning. 
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Table 5.17: ‘One to many’ method involving middle area of pattern without 

sequential scanning in HCN-II. 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

The number of correct digits placed close to the tested patterns increases by 8 digits to 

55 out of 100. The results in Table 5.18 are when feature extraction is implemented in 

HCN-II without involving the middle area of the image and when sequential scanning 

is used. 
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Table 5.18: ‘One to many’ method with sequential scanning in HCN-II 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

Here, the number of digits correctly placed within the same row decreases by 10 

numbers to 45%. The results show that implementing sequential scanning does not 

improve the number of correct placements. 

Table 5.19. shows the results of the investigation that implements sequential scanning 

when the middle area of the image is involved.  
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Table 5.19: ‘One to many’ method involving middle area of pattern without 

sequential scanning in HCN-II 

Test 

Pats 

Reference Patterns 

1 2 3 4 5 6 7 8 9 10 

           

           

           

           

           

           

           

           

           

           

Within Table 5.19, the number of correct placements is 55 out of 100. This indicates 

that there is no improvement when implementing sequential scanning in the HCN-II 

feature extraction. Further exploration of HCN-II is summarised in Table 5.20. 
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Table 5.20: Comparison of time consumption and number of correct placements 

between HCN-I and HCN-II using ‘one to many’ method 

Feature Extraction 
Time 

Consumption (s) 

Number of 

Correct 

Placement 

HCN-I:   

- No sequential scanning 3.58 61 

- Sequential scanning 22.82 75 

- No sequential scanning with 

middle area 

8.69 56 

- Sequential scanning with 

middle area 

57.17 78 

HCN-II:   

- No sequential scanning 1.68 47 

- Sequential scanning 49.67 45 

- No sequential scanning with 

middle area 

3.9 55 

- Sequential scanning with 

middle area 

111.94 55 

Table 5.20 indicates that HCN-I is better than HCN-II in terms of the correct placement 

of reference patterns related to the tested patterns. HCN-I produces 78 correct 

placement out of 100 patterns when involving the middle area of the image with 

sequential scanning. 

5.4. Discussion and Summary 

Feature extraction using hierarchical concatenation seeks to implement a mechanism 

similar to the one humans use for feature extraction and object recognition. HCN-I 

using the ‘one to many’ method produces the best results, because features are 

extracted from the tested patterns’ point of view; however, it consumes 1.6 times more 

time than HCN-II, which has the best result with the ‘many to one’ method. In both 

methods (‘many to one’ and ‘one to many’), the tested patterns find their match in a 

similar way to how a person selects a partner based on the similarity of their clothes 

(see Figure 5.3). Feature extraction from a pattern uses another pattern’s features. 

By selecting one number (‘0_5’, ‘1_6’, ‘2_0’, ‘3_7’, ‘4_6’, ‘5_5’, ‘6_0’, ‘7_0’, ‘8_6’, 

and ‘9_0’) from each group, this thesis compares feature extraction in a hierarchical 

concatenation network between the ‘one to many’ method and the ‘many to one’ 



118 

 

method. Both methods will be implemented for the purpose of classification in Chapter 

6.  

This chapter presents the results of pattern recognition within a hierarchical 

concatenation network. A tested pattern extracts a reference pattern using its own 

features. Its compares each reference pattern to itself and sorts the comparison results. 

For all experiments, the 10 highest similarity rates are presented. 

Even though both methods show the concept of feature extraction based on a group of 

reference patterns, not all of the 10 highest similarities are correct matches. 

For example, in Table 5.14, only tested pattern ‘4_6’ was 100% successful in 

extracting all elements from Group 4, while other groups also produced several 

misrecognitions. For example, when ‘0_5’ is used as the tested pattern, the algorithm 

allocates number ‘6_5’ in seventh position and ‘0_4’ in Position 8. From a human 

perspective, these results are not correct  

Figure 5.7 shows the tested and reference patterns with coincidence arrays overlaid. 

The red square in these figures represents the coincidence array in Layer 1, while the 

blue, green and yellow squares represent the coincidence arrays in Layers 2, 3, and 4, 

respectively. 

 

Figure 5.7: Numbers within coincidence arrays. Image '0_5' is the tested pattern, and 

'6_5' and '0_4' are reference patterns 

When the features are extracted hierarchically from layer to layer within the 

coincidence arrays, the feature similarity rates between the pair ‘0_5’ and ‘0_4’ and 

the pair ‘0_5’ and ‘6_5’ are shown in Table 5.12. 

‘0_5’‘6_5’ ‘0_4’
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Table 5.21: Similarity rates within layers for pairs '0_5 - 0_4' and '0_5 - 6_5' 

 
Tested Pattern 

Similarity Rate (%) 

 Reference Patterns 

L
ay

er
 

‘0_5’ ‘0_4’ ‘6_5’ 

1 71.55 61.99 

2 54.49 66.13 

3 16.44 17.50 

4 0.13 0.66 

Average Rate 35.65 36.57 

The similarity rates for ‘0_5’ and ‘0_4’ are 10% higher than for ‘0_5’ and ‘6_5’ in 

Layer 1. In Layers 2, 3, and 4, on the other hand, the similarity rates for pair ‘0_5’ and 

‘6_5’ are higher than the pair ‘0_5’ and ‘0_4’. As the similarity calculation is based 

on an average of all layers, the second pair (‘0_5’ and ‘6_5’) shows a better similarity 

rate percentage than the first pair (‘0_5’ and ‘0_4’). 

In summary, this chapter analyses the ability of a hierarchical concatenation network 

to perform feature extraction and measure the similarity rate between a pair of patterns 

based on their features. Both the ‘one to many’ method and the ‘many to one’ method 

have their own benefits in terms of recognition performance and the time it takes to 

extract the patterns. Both methods are discussed further in terms of pattern 

classification in the next chapter. 
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Chapter 6  

Pattern Classification using a 

Hierarchical Concatenation Network 

(HCN) 

 

 

 

 

 

6.1. Introduction 

The recognition process using HCN compares the features of the tested image against 

the features of the reference image. The different ways to extract features using a HCN 

are presented in Chapter 5. However, in brief, the HCN extracts the features of an 

image in a hierarchical process from layer to layer. Features are also extracted using a 

coincidence array in each layer.  

This chapter presents a classification method, which is inspired by the way humans 

classify objects and which will improve the performance of HCN classification. 

Classification cannot be separated from recognition. To classify an object into a 

specific class, out of several available classes, a classification method should be able 

to recognise the given object first. Classification is then based on the highest 

recognition rate between the given object and a class. 

Chapter 5 presents two feature activation frameworks (HCN-I and HCN-II), each 

implementing two different ways to extract the features (using the ‘many to one’ and 

‘one to many’ methods). This chapter further explores these methods and investigates 
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their results. The results of the classification rate will enable a decision as to which 

method bests represent the HCN. 

The way classification is explored in this research, using HCN feature extraction, is 

shown in Figure 6.1. 

 

Figure 6.1: Classification exploration using HCN feature extraction 

The difference between HCN-I and HCN-II is the way in which the upper layers’ 

features are activated. HCN-I activates the upper layers’ features based on the 

similarity of the lower layers’ concatenated features with the activation group 

represented by bits of vector. HCN-II multiplies the features within the concatenated 

features with their frequencies, and also activates the upper layers’ features based on 

the threshold value. 

HCN is a feature extraction method, which extracts the features of a pattern using other 

patterns’ features. In Chapter 5, this research finds that the the way in which features 

are extracted (i.e. by using the ‘one to many’ method or the ‘many to one’ method) 

plays an important role; this is because the method implies the position of the tested 

and reference patterns. The ‘one to many’ method is when the tested pattern extracts 

its own features before using its own features to extract the features from the reference 

pattern, while the ‘many to one’ approach is when the reference pattern extracts the 

features of the tested pattern.  

Once both patterns (tested and reference) are extracted, the process continues to the 

classification step. Figure 6.2 shows that there are three different methods of 

HCN-I

“One to Many” “Many to One”

HCN-II

Classification 

by Union

Classification 

by Average

Classification 

by Distance

Distance 

to Mean

Mean 

of Distance

Minimum 

Distance

Feature 

Extraction

Classification
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classification. The first method is called ‘classification by union’. This method unifies 

the features of all reference patterns from the same class, then measures the similarity 

between the unified features and the features of the tested pattern. The second method 

is ‘classification by average’. This method measures the similarity rate between all 

tested patterns and reference patterns in the same class, and then calculates the average 

of those similarities. The last method is ‘classification by distance’, which is divided 

into three categories: ‘distance to mean’, ‘mean of distance’, and ‘minimum distance’. 

‘Distance to mean’ measures the distance between the features of the tested patterns 

and the average of the reference patterns’ features within the same class. ‘Mean of 

distance’ measures each single distance between the tested and reference patterns 

within the same class, and then calculates the average of those distances. The 

‘minimum distance’ is similar to the ‘mean of distance’, as it measures the distance 

between every pair of tested and reference patterns, but at the end, it chooses the 

minimum distance. 

Before presenting the classification method using HCN, this thesis explores the pattern 

recognition process from a human perspective by illustrating the features that form the 

patterns in the following example. Let’s assume that the pattern in Figure 6.2 is an 

unknown pattern. In other words, it does not have a specific meaning. It can be 

recognised by examining its features.  

 

Figure 6.2: An example of a pattern 

This pattern is formed by some features. It has two lines that stand almost vertical. The 

edges of the lines are connected at the top by a horizontal line, while the other ends at 

the bottom are not. There is another horizontal line that connects the two vertical lines 

at around their middle point. 

If the patterns in Figure 6.3 are to be recognised, the patterns in Figure 6.2 could be 

used as reference. The tested patterns are examined in terms of their feature similarity 

to the reference pattern in Figure 6.2. 
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Figure 6.3: Examples of some other patterns 

Looking at the features of Figure 6.3.(a), it has two standing lines, which are joined 

together at their top-end. It has one horizontal line, which connects the two standing 

lines. The other ends of the standing lines are open. It can be concluded that Figure 6.3 

(a) has similar features to the pattern in Figure 6.2. Their similarity rate, however, 

would be less than 100%, because they are not exactly the same. 

The next tested pattern is shown in Figure 6.3 (b). This pattern has one vertical line on 

its left side and two curved lines on its right side. The top-end of the vertical line 

connects with the top curve, and the bottom-end of the vertical line joins with the 

bottom curve. Based on these features, the similarity rate between the pattern in Figure 

6.3 (b) and the pattern in Figure 6.2 is smaller than the similarity rate between Figure 

6.3 (a) and Figure 6.2. The same feature similarity comparison can be applied to the 

remaining two patterns in Figure 6.3 ((c) and (d)).  

The classification process groups a recognised object with other objects showing 

similar features. As the human brain is very powerful at recognition and classification, 

this chapter presents an idea that sprung from the three hypothetical questions below: 

1. Can the classification process be conducted by comparing the features of a 

tested pattern against the group of features that belong to all patterns within a 

class (i.e. union features)? 

2. Does it make a difference to performance if the classification process is 

conducted using the average similarity rate for each pair of tested patterns and 

all patterns within a class?  

3. How is the performance rate affected when a distance measure (standard 

Euclidean distance) is used for classification? 

To answer these hypothetical questions, classification in this thesis is divided into the 

three different methods discussed previously. The ‘classification by union’ method is 

(a) (b) (c) (d)
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used to answer the first question; the ‘classification by average’ method is used for the 

second question; and the ‘classification by distance’ method is used for the last 

question. These methods are used to group similar images into the same class. 

With these hypothetical questions in mind, experiments are conducted using datasets 

to explore the ability of the HCN to classify tested patterns into a class of reference 

data. The experimental datasets are the datasets used in Chapter 5, being USPS (United 

State Postal Service) data, which is accessed from 

(http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html), and the MNIST datasets, 

which are accessed from (https://github.com/myleott/mnist_png). The datasets used in 

Chapter 5 are produced using the imagemagick software (www.imagemagick.com).  

The remainder of this chapter presents the concept, the algorithm, and the experimental 

results for proposed methods HCN-1 and HCN-2, as well as validation and discussion 

of the HCN network’s performance by exploring several similarity measures. Both 

HCN-1 and HCN-2 in this chapter implement the ‘one to many’ and ‘many to one’ 

method for feature extraction. 

Feature extraction using HCN is presented in Chapter 5. In this section, the use of this 

feature extraction for classification is presented. It involves classification by union, 

average, and distance measure. 

6.2. HCN Classification by Union Operation 

As the name implies, in the ‘classification by union’ method, the features of a class are 

defined using the union operation. Figure 6.4 illustrates some patterns that have been 

classified according to the similarity of their features. 

In a HCN network, each pattern is extracted using feature extraction, and this is 

presented in Chapter 5. In Figure 6.4., after feature extraction takes place, the features 

of the patterns in Class 1 are labelled from ‘1’ to ‘9’, while the features of the patterns 

in Class 2 are labelled from ‘a’ to ‘g’.  
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Figure 6.4: Classes of patterns with their class features 

The features of a class are the product of a union process that results in classes with 

unique features. Different classes could show similar features, as shown in the above 

example, where Feature ‘g’ in Class 2 is similar to Feature ‘8’ in Class 1. With this in 

mind, Pattern 6 in Class 2 might show a certain similarity rate to Pattern 3 in Class 1. 

Figure 6.5 shows an example image, and its features when classified. 

 

Figure 6.5: An example of a pattern to be classified 

Figure 6.5 shows a pattern with some features that define it. Feature ‘3’ is a part of 

Class 1, and Feature ‘d’ is a part of Class 2. Another of its features could be part of 

either class. and the feature labelled with the question marks does not belong to any of 

the known classes. 

The classification process by union compares the features of a given pattern to the 

unique features in each available class. The tested pattern in Figure 6.5 has a 50% 

similarity rate with Class 1, when looking at Features ‘3’ and ‘8’, and has also a 50% 
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similarity rate to Class 2, when looking at Features ‘d’ and ‘g’. The feature labelled 

with the question marks could have a certain similarity rate with Features ‘5’, ‘6’, ‘7’, 

‘8’, and ‘9’ from Class 1, and also with Features ‘f’ and ‘g’ from Class 2. Based on 

these possibilities, the given tested pattern in Figure 6.5 shows a certain similarity rate 

with both classes. Also based on the highest similarity rate to the classes, it can be 

classified into Class 1 or Class 2. 

In general, the HCN union classification process follows the steps below: 

1. Extraction of features as discussed in Chapter 5. 

2. Union operation to eliminate similar features of the reference images within 

the same class. 

3. Calculation of the similarity rate between the tested images and all available 

classes of the reference patterns. 

4. Classification of the tested image into a class of images based on the highest 

similarity rate between the tested image and the class of reference images. 

The method to extract the features of the reference and tested image is presented in 

Chapter 5. Each tested or reference pattern extracts all their pairs; hence the features 

of each extracted tested or reference pattern are different. 

6.2.1. Union Operation 

The main objective of the ‘classification by union’ approach is the grouping together 

(union) of the same features into a node. This process is described in Algorithm 6.1.  

Algorithm 6.1: Union operation for the reference pattern’s features in the same 

class 

1: For each tested pattern (n_TPat), set the class number (class) to be 1 

2: For all reference patterns (n_RPat), all members in each class (nPatClass)  

3: For all layers (Ln, 1 to 4) 

4: For each node in the current layer (nNodesLn), perform union operation of 

the same node for all class members: 

 

𝑛𝑜𝑑𝑒𝐿𝑛𝐶𝑅 = ⋃ 𝑛𝑜𝑑𝑒𝐿𝑛𝑖
𝑛𝑃𝑎𝑡𝐶𝑙𝑎𝑠𝑠
𝑖=1                                (6.1) 

 

3: Repeat Line 4 until the last node in the current layer, Line 3 until the last 

layer, and Line 2 until the last reference pattern. 

4: Increase the class number (class = class +1), and repeat Line 2 
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Using Algorithm 6.1, the union operation is conducted as many times as the number 

of reference patterns (n_RPat). For the ‘one to many’ method, each reference pattern 

is extracted by all the given tested patterns (n_TPat), while for the ‘many to one’ 

method, each tested pattern is extracted by all the available reference patterns. The 

number of reference patterns in each class (n_PatClass) is defined in advance. For the 

explanation of the algorithm in this chapter, 100 digit datasets are used. Each class has 

10 different shapes of digit; the first seven of them are used as reference images and 

the remaining three as tested images. This means n_PatClass is defined as 7. 

For all members in the same class (class), the features in the equivalent node’s number 

(nNodesLn) are assigned to the union operation. Therefore, a class of reference patterns 

that are extracted by a tested pattern (tp) have unique features in each node (nodeLnCR) 

for every layer (Ln). 

The sequential implementation of feature extraction in HCN-I (using ‘one to many’) 

gives a better result than a non-sequential implementation in HCN-I (using ‘one to 

many’). Table 6.1 shows an example of using union operation to determine the features 

of Class ‘0’. In this example, Class ‘0’, which is extracted by pattern ‘0_7.png’, 

contains seven patterns. Table 6.1 shows the extracted features of the reference 

patterns in each node of Layer 4, and after union operation is performed, it shows the 

features of every node in Class ‘0’. Using the ‘one to many’ method, all reference 

patterns are extracted by all given tested patterns, while using the ‘many to one’ 

method, the process is vice versa. As features are represented numerically (see Chapter 

4), the features in Table 6.1 are an example of seven reference patterns extracted by 

only one tested pattern (using the ‘one to many’ method). If there are three given tested 

patterns, there are 21 possible extracted patterns in each class of reference patterns. 
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Table 6.1: Pattern ‘0’ and Class ‘0’ features in Layer 4 

Node 

Feature of each image ‘0’ and Class ‘0’ by union in Layer 4 

       
Class ‘0’ 

1 0 2 3 4 

6 8 

0 2 3 4 

5 6   7 

8 12 

0 2 3  4 

8 

0 2 3 

4 7 8 

0 2 3     

4 6 8 

0 2 3     

4 6 8 

0 2 4     

6 8 

0 2 3 4 5     

6 7 8 12 

2 0 2 3 4 

6 8 

0 2 3 4 

5 6   7 

8 12 

0 2 3  4 

8 

0 2 3 

4 7 8 

0 2 3     

4 6 8 

0 2 3     

4 6 8 

0 2 4     

6 8 

0 2 3 4 5     

6 7 8 12 

3 0 2 3 4 

6 

0 1 2    

3 4 6    

7 

0 2 4 6 0 1 2 

3 4     

6 

0 2 4     

6 

0 1 2     

3 4 5     

6 

0 2 3     

4 6 

0 1 2 3 4     

5 6 7 

4 0 2 3 4 

6 

0 1 2    

3 4 6    

7 

0 2 4 6 0 1 2 

3 4     

6 

0 2 4     

6 

0 1 2     

3 4 5     

6 

0 2 3     

4 6 

0 1 2 3 4     

5 6 7 

5 0 2 3 4 0 2 3 4 

6 7 14 

0 2 4 0 2 3 

4 6 7 

8 

0 2 4 

6 

0 2 4 6 

8 

0 2 3 

4 

0 2 3 4 6 

7 8 14 

6 0 2 3 4 

6 8 

0 2 3 4 

5 6 7 8 

2 

0 2 3 4 

8 

0 2 3 

4 7 8 

0 2 3 

4 6 8 

0 2 3 4 

6 8 

0 2 4 

6 8 

0 2 3 4 5 

6 7 8 12 

7 0 2 3 4 0 2 3 4 

6 7 14 

0 2 4 0 2 3 

4 6 7 

8 

0 2 4 

6 

0 2 4 6 

8 

0 2 3 

4 

0 2 3 4 6 

7 8 14 

8 0 2 3 4 

6 

0 1 2 3 

4 6 7 

0 2 4 6 0 1 2 

3 4 6 

0 2 4 

6 

0 1 2 3 

4 5 6 

0 2 3 

4 6 

0 1 2 3 4 

5 6 7 

9 0 2 3 4 0 2 3 4 

6 7 14 

0 2 4 0 2 3 

4 6 7 

8 

0 2 4 

6 

0 2 4 6 

8 

0 2 3 

4 

0 2 3 4 6 

7 8 14 

6.2.2. Similarity Measure 

After the union operation, each node of Class ‘0’ contains representative features from 

each of its members. The similarity between each tested pattern and the available 

classes is measured by calculating the ratio of similarity as described in Algorithm 6.2. 

Algorithm 6.2: Similarity measure 

1: For all given tested patterns (n_TPat) 

2: For all classes of reference pattern (nClass) 

3: For all layers (Ln 1 to 4) 

4: For all nodes in the current layer (nNodesLn) 

5: Check if the number of features in the tested pattern (n_Feat_T) is smaller 

than the number of features in the current class (n_Feat_C): 

 

𝑠𝑖𝑚𝑁𝐿𝑛 = (
𝑛_𝐹𝑒𝑎𝑡_𝑇

𝑛_𝐹𝑒𝑎𝑡_𝐶
) ∗ 100                             (6.2) 

 

Otherwise: 
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Algorithm 6.2: Similarity measure 

𝑠𝑖𝑚𝑁𝐿𝑛 = (
𝑛_𝐹𝑒𝑎𝑡_𝐶

𝑛_𝐹𝑒𝑎𝑡_𝑇
) ∗ 100                             (6.3) 

 

Repeat Line 4 for all nodes in Layer n, Line 3 until the last layer, and Line 2 

until the last class 

 

6: Calculate the similarity features in the current layer Ln: 

 

𝑠𝑖𝑚𝐿𝑛 =
∑ 𝑠𝑖𝑚𝑁𝐿𝑛𝑛𝑁𝑜𝑑𝑒𝑠𝐿𝑛

𝑛=1

𝑛𝑁𝑜𝑑𝑒𝑠𝐿𝑛
                                (6.4) 

 

The feature similarity rate between each node in all layers of the network (simNLn) is 

calculated by working out the ratio between the features of the given tested pattern 

(n_Feat_T) and the features of the class (n_Feat_C). 

The number of similar features between a tested pattern and a class of reference 

patterns is defined by an intersection operation. For example, if A is a vector [1 2 3 4] 

and B is a vector [3 4 5 6 7], the number of elements in A is 4 (denoted as x) and the 

number of elements in B is 5 (denoted as y). The similar elements (intersection) 

between A and B (denoted as z) are 3 and 4, or 2 elements. As B has more elements 

than A, then the similarity between A and B is calculated by finding their ratio (z/y) = 

0.4 or 40%. 

The overall similarity of features between a tested pattern and a class in layer Ln 

(simLn) is the average of the nodes’ similarities (simNLn). Table 6.2 shows a similarity 

comparison between the features of a tested pattern (‘0_7.png’) and the features of its 

class in Layer 4. 
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Table 6.2: Similarity rate between features of Pattern '0' and the features of its class 

Nodes 

Features of 
Similarity Rate 

(%) 
 

Class ‘0’ 

1 3     7    15 0 2 3 4 5 6 7 8 12 22.22 

2 3     7    15 0 2 3 4 5 6 7 8 12 22.22 

3 1     3     7 0 1 2 3 4 5 6 7 37.5 

4 1     3     7 0 1 2 3 4 5 6 7 37.5 

5 1     3     7    15 0 2 3 4 6 7 8 14 25 

6 3     7    15 0 2 3 4 5 6 7 8 12 22.22 

7 1     3     7    15 0 2 3 4 6 7 8 14 25 

8 1     3     7 0 1 2 3 4 5 6 7 37.5 

9 1     3     7    15 0 2 3 4 6 7 8 14 25 

Average similarity rate in Layer 4 (simNL4) 28.24 

In Node 9, Image ‘0_7.png’ has four features [1 3 7 15], while Node 9 of Class ‘0’ has 

eight features [0 2 3 4 6 7 8 14]. The similar features between Node 9 of Image 

‘0_7.png’ and Node 9 of Class ‘0’ are ‘3’ and ‘7’; hence, the similarity rate for Node 

9 between the tested image and Class ‘0’ is (2/8) x 100% = 25%. The average similarity 

of all nodes in Layer 4 is 28.24%. 

The inclusion of the middle area of an image gives better results in terms of similarity 

between tested and reference patterns using HCN-I (as discussed in Chapter 5). 

Therefore, Layers 1, 2, 3, and 4 have an average node similarity rate of 576, 144, 36, 

and 9, respectively. This is compared to an average rate of 256, 64, 16, and 4 nodes, 

respectively, when the middle area of the image is not included. HCN-II, however, 

produces better results without the middle area of image. A specific class is chosen for 

the tested pattern by calculating the highest similarity rate between it and the available 

classes. Similarity rates are defined by selecting the layer (or the average of all layers) 

that produces the highest classification rate. 

6.2.3. Classification Results with Union Operation 

A classified pattern is defined by choosing the highest similarity rate between a tested 

pattern and the available classes. Table 6.3 shows example similarity rates between the 

tested pattern (‘0_7.png’) and the Class ‘0’ pattern for each layer in HCN-I using the 

‘one to many’ method. 
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Table 6.3. Similarity rate for each layer 

Layer Similarity Rate (%) 

1 74.53 

2 30.79 

3 29.09 

4 28.24 

Average Similarity 40.67 

Classification in Layer 1, which has the highest similarity rate, can be seen in Table 

6.4. The bold values indicate the highest similarity rate between the tested images and 

the predicted class. 

Table 6.4 shows the classification results of 30 tested patterns against 10 reference 

classes. The 30 tested patterns are the last three members of each class in the digit 

datasets used in Chapter 5. The class features are obtained using the first seven patterns 

of each class in the dataset. 

The values coloured red are misclassified images. In Table 6.4, 10 out of 30 tested 

images are correctly allocated to their own class. This means that the performance rate 

(perf_rate) for the digit datasets in Layer 1 of HCN-I using the union method is 67%. 

The performance rate can be calculated by dividing the number of correct 

classifications (corrclass) by the total number of tested patterns (tottestedPattern). 
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Table 6.4: ‘Classification by union’ similarity rates in Layer 1 of HCN-I using ‘one 

to many’ method 

Tested 

Images 

Similarity Rate to the Predicted Class (%) 

0 1 2 3 4 5 6 7 8 9 

 74.53 72.25 59.12 61.40 61.01 62.29 63.97 69.49 61.90 63.78 

 61.72 58.45 46.40 51.60 48.79 51.15 50.85 54.23 45.47 52.95 

 61.71 52.73 44.69 50.22 47.83 48.35 48.21 48.43 43.22 48.04 

 45.33 61.11 43.34 38.62 46.02 39.28 40.44 55.36 40.41 42.35 

 46.26 52.73 34.33 35.48 41.70 39.81 36.76 45.52 34.93 38.51 

 50.50 54.58 38.94 40.00 45.20 43.39 39.88 46.88 39.37 42.58 

 60.54 69.12 71.22 52.92 61.01 50.13 53.82 71.46 58.46 57.42 

 58.05 65.82 71.35 51.10 61.76 48.15 52.32 67.45 57.03 55.74 

 56.29 61.22 69.00 49.91 57.93 47.12 50.80 62.95 52.80 55.92 

 60.42 60.86 53.68 69.10 55.47 63.86 62.34 58.09 60.14 64.19 

 50.42 53.58 51.64 67.30 49.31 56.53 58.17 50.73 61.75 57.68 

 47.23 47.83 45.91 59.74 44.69 51.40 52.33 45.60 55.98 52.55 

 64.09 75.76 59.20 50.29 68.86 59.42 54.05 73.95 52.67 54.99 

 65.38 69.72 58.95 51.67 68.07 55.72 52.68 69.01 53.43 52.24 

 63.36 61.96 59.19 53.63 64.49 53.38 51.04 62.61 54.03 50.85 

 62.17 61.79 49.04 57.53 55.36 63.05 56.73 60.79 54.74 59.09 

 49.66 52.48 38.61 50.44 44.11 55.58 49.92 47.84 47.34 49.39 

 48.81 51.12 38.07 48.31 39.89 57.46 49.63 47.59 48.14 48.59 

 69.13 66.02 53.96 64.30 56.80 68.79 63.87 61.95 59.33 64.67 

 65.71 71.03 59.21 65.92 64.39 69.80 70.74 67.76 64.84 68.80 

 53.95 59.32 46.50 58.94 50.48 63.89 62.01 54.83 56.08 58.82 

 51.00 64.23 53.77 41.05 56.07 47.10 45.46 65.70 45.38 46.09 

 51.08 57.95 46.06 37.14 50.27 39.34 41.39 58.48 41.70 41.55 

 44.40 55.10 38.33 34.25 43.74 35.64 37.77 51.24 34.91 38.94 

 64.31 69.85 62.68 70.38 64.91 67.81 71.37 64.44 74.60 71.23 

 64.38 65.22 65.81 65.28 62.71 65.60 71.15 64.63 72.29 72.39 

 51.13 46.38 53.53 50.65 46.98 47.24 52.92 45.97 56.95 53.68 

 72.11 74.05 64.89 65.25 59.40 68.11 66.87 67.45 66.33 71.61 

 67.45 72.97 64.04 63.85 61.45 68.25 65.59 70.01 64.73 70.27 

 52.90 55.66 51.35 54.23 49.79 57.86 57.70 53.78 56.81 60.46 

By counting the number of correct classifications (corr_class), the HCN recognition 

performance rate (perf_rate) for this digit dataset can be calculated as: 

𝑝𝑒𝑟𝑓_𝑟𝑎𝑡𝑒 =  (
𝑐𝑜𝑟𝑟𝑐𝑙𝑎𝑠𝑠

𝑡𝑜𝑡𝑡𝑒𝑠𝑡𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠
) ∗ 100%   (6.5) 

Table 6.5 shows the performance rate of classification in HCN-I using a union 

operation in all layers. 
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Table 6.5: Performance rate of ‘classification by union’ in all layers of HCN-I using 

‘one to many’ and ‘many to one’ methods. 

Layer Performance Rate (%) 

HCN-I (‘one to many’) HCN-I (‘many to one’) 

1 67 NA 

2 17 0 

3 47 3 

4 63 NA 

Average similarity 

all layers 

83 13 

In Table 6.5, the performance rate of HCN-I using the ‘one to many’ method in Layer 

1 is higher (at 67%) than in the other layers. The rate decreases sharply to 17% in 

Layer 2, and increases slightly for each layer until the last layer, which is Layer 4 at 

63%. The average of all layers shows the highest rate at 83%. This indicates that the 

overall performance rate of HCN-I using the ‘one to many’ method should not be based 

on the performance rate of the top layer. Instead, the rate should be established by 

basing it on the highest performance rate of all layers or the average performance rate 

of all layers. The reason for this is because the features might look similar in smaller 

pieces compared to bigger pieces, and vice versa.  

Using HCN-I with the ‘many to one’ method, several performance rates are labelled 

with ‘NA’ meaning ‘not available’. This means that the tested pattern can be classified 

into more than one class. In other words, it shows a similarity to more than one class. 

This result indicates that HCN-I does not give a better result when using the ‘many to 

one’ method with ‘classification by union’. 

The HCN-II feature extraction method, however, does not need to implement 

sequential shifting of the image to give better results in terms of similarity as discussed 

in Chapter 5; nor does it need to include the middle area of the image. With various 

threshold values for feature activation, Table 6.6 shows the union classification 

performance rates in HCN-II feature extraction. 
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Table 6.6: Performance rate of HCN-II using union classification 

Activation 

Threshold 

(%) 

Performance Rate (%) 

HCN-II (‘one to many’) HCN-II (‘many to one’) 

L1 L2 L3 L4 Average L1 L2 L3 L4 Average 

0 73 60 13 17 27 80 60 30 NA 70 

0.1 73 67 7 17 33 80 33 30 NA 67 

0.2 73 67 7 23 37 80 23 20 NA 60 

0.3 73 70 13 21 40 80 30 20 NA 60 

A threshold value of up to 70% for feature activation in the upper layers of HCN-II 

(using the ‘one to many’ method) shows the highest performance rate in Layer 1 (at 

73%). Using the ‘many to one’ method in the same layer, on the other hand, gives a 

performance rate of 80%. By averaging the similarity rate of all layers, the ‘0’ 

threshold value gives the highest classification rate in HCN-II using ‘many to one’. 

6.2.4. Summary of Classification by Union 

When performing union operation in the HCN-II feature extraction method, it does not 

need the threshold value for feature activation in the upper layers. In terms of the 

performance rate, HCN-I is better at 83% (using the ‘one to many’ method) compared 

to HCN-II at 80% (using the ‘many to one’ method); however, HCN-I consumes more 

time to extract the features (Chapter 5, Tables 5.11 and 5.20). 

6.3. HCN Classification by Average 

In this thesis, if ‘classification by union’ groups the features of patterns within the 

same class and then compares those features to the features of a tested pattern, 

‘classification by average’ compares a tested pattern’s features to all patterns in all 

classes and then measures the average similarity between a tested pattern and all 

classes. Classification is then based on the highest similarity rate between a tested 

pattern and one of the available classes. 

The following example in Figure 6.6 illustrates the ‘classification by average’ process. 

Each feature of the tested pattern is compared to all features of all patterns in all 

classes. Using the ‘one to many’ method, the features of the reference patterns are 

extracted using each tested pattern’s features. Therefore, the comparison between the 

tested and reference patterns is conducted only between the tested and reference 
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patterns extracted by the tested patterns themselves. However, using the ‘many to one’ 

method, the comparison is measured between the tested patterns extracted by the 

reference patterns. 

The comparison of each pair gives a certain similarity rate. The average similarity rate 

is calculated for all pairs in a class, and afterwards, each tested pattern and its class has 

a certain similarity rate.  

 

Figure 6.6: Feature similarity comparison between a tested pattern with all patterns in 

all classes 

The tested pattern is classified into the class that shows the highest similarity rate with 

the tested pattern. All features of the tested pattern in Figure 6.6 are compared with all 

features of all patterns in each class. The comparison process, which produces the 

similarity rate, is similar to when the ‘classification by union’ method is used.  

The ‘classification by average’ process in the HCN follows the steps below: 

1. Extraction of the reference patterns’ features in each class. 

2. Feature similarity measure between each tested pattern and all patterns in each 

class.  

3. Calculation of the similarity average between the tested pattern and all patterns 

in all available classes. 

Class 1 Class 2

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6

1 3 1 3

2

4

2

4

2

1 3

4

1 2

3

1
2

3

1

3

2

A tested pattern

1

2

3

4
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6.3.1. Similarity Measure 

If the ‘classification by union’ process measures the similarity between the tested 

patterns and the group of patterns in the class, the ‘classification by average’ process 

measures the similarity between the tested patterns and all members within the class, 

and then calculates the average of similarities. The following algorithm (6.3) describes 

the process of a similarity measure between the features of the tested and reference 

patterns.  

Algorithm 6.3: Features similarity measure 

1: For all given tested patterns (n_TPat), start at Class 1 

2: For all reference patterns (n_RPat) and for all nodes in layer n (nNodesLn), 

initial the temporary similarity rate of a node on layer n (tmpSimNLn) with 

‘0’ 

3: For all patterns in the current class 

4: Count the number of similar features between both patterns (n_simFeat) 

5: Check if the number of features in the current node’s tested pattern 

(n_featTPat) is less than the number of features in the the current node’s 

reference pattern (n_featRPat), and count the simNLn as: 

 

𝑠𝑖𝑚𝑁𝐿𝑛 =
𝑛_𝑠𝑖𝑚𝐹𝑒𝑎𝑡

𝑛_𝑓𝑒𝑎𝑡𝑅𝑃𝑎𝑡
∗ 100                                (6.6) 

 

If the n_featTPat is greater than the number of features in the reference 

pattern n_featRPat, count the simNLn as: 

 

𝑠𝑖𝑚𝑁𝐿𝑛 =
𝑛_𝑠𝑖𝑚𝐹𝑒𝑎𝑡

𝑛_𝑓𝑒𝑎𝑡𝑇𝑃𝑎𝑡
∗ 100                                (6.7) 

 

Add the similarity rate of the current node into the temporary similarity rate 

of layer n: 

 

𝑡𝑚𝑝𝑆𝑖𝑚𝑁𝐿𝑛 = 𝑡𝑚𝑝𝑆𝑖𝑚𝑁𝐿𝑛 + 𝑠𝑖𝑚𝑁𝐿𝑛                          (6.8) 

 

Repeat Line 3 until the last pattern of the current class 

4: Calculate the similarity rate within the current layer (simLn) by 

accumulating the value in tmpSimNLn, dividing by the number of patterns in 

the class (n_PatClass), and then dividing by the number of nodes in the 

current layer (n_NLn): 

 

𝑠𝑖𝑚𝐿𝑛 =
(∑ 𝑡𝑚𝑝𝑆𝑖𝑚𝑁𝐿𝑛

𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑛
𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑛 )/𝑛_𝑃𝑎𝑡𝐶𝑙𝑎𝑠𝑠

𝑛_𝑁𝐿𝑛
             (6.7) 

 

5: Increase the class number 

6: Repeat Line 2 until the last pattern in the last class 

7: Repeat Line 1 until the last tested pattern 
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Within Algorithm 6.3, the similarity of features in each node (simNLn) is the 

comparison between the total number of similarities (n_SimFeat) and the larger 

number of features in the tested or reference pattern (n_FeatTPat) or (n_FeatRPat). 

Table 6.7 shows the example similarity rates between the features of a tested pattern 

(image ‘0_7.png’) and the features of Class ‘0’ in Layer 4’s nodes (using HCN-I with 

‘one to many’ feature extraction). 

Table 6.7: Similarity rates between a tested pattern ‘0_7.png’ and all members of 

Class '0' in the nodes of HCN-I Layer 4 using ‘one to many’ method 

Member 

of Class 

‘0’ 

Similarity Rate of Features in Layer 4’s Nodes 

1 2 3 4 5 6 7 8 9 

1 16.67 16.67 20 20 25 16.67 25 20 25 

2 22.22 22.22 42.86 42.86 28.57 22.22 28.57 42.86 28.57 

3 20 20 0 0 0 20 0 0 0 

4 33.33 33.33 33.33 33.33 28.57 33.33 28.57 33.33 28.57 

5 16.67 16.67 0 0 0 16.67 0 0 0 

6 16.67 16.67 28.57 28.57 0 16.67 0 28.57 0 

7 0 0 20 20 25 0 25 20 25 

Average 17.97 

The similarity rate between image ‘0_7.png’ and Class ‘0’ in Layer 4 is 17.97%. This 

similarity rate is the average of the nodes’ similarity in Layer 4 (simL4). Table 6.8 

shows the similarity rate between pattern ‘0_7.png’ and Class ‘0’ in all layers. 

Table 6.8: Similarity rate in each layer 

Layer Similarity Rate (%) 

1 87.01 

2 32.15 

3 26.91 

4 17.97 

Average Similarity 

(simLn) 

41.01 

6.3.2. Classification Results with Average Operation 

The decision to classify a tested pattern into a certain class is based on the highest 

average similarity rate between the tested pattern and all available classes. Table 6.9 

shows the percentage of similarity between the tested images and the available classes 
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using HCN-I feature extraction with the ‘one to many’ method. Both the dataset and 

the proportion of the tested and reference patterns are similar to those used in the 

experiment in an HCN using the ‘classification with union’ method. The first seven 

members of each class are used as references, and the remaining three are used as 

tested data. 

 

Table 6.9: Similarity rates between the tested images and all classes in all layers 

Tested 

Images 

Similarity Rate to the Actual Class (%) 

0 1 2 3 4 5 6 7 8 9 

 41.01 35.14 32.31 36.38 31.53 35.06 35.89 34.63 33.72 32.22 

 36.33 36.19 29.79 31.19 30.61 32.33 32.27 30.91 30.19 33.06 

 47.48 32.35 35.49 41.65 31.80 38.15 38.32 31.11 37.39 38.74 

 33.45 36.65 34.25 32.51 35.77 34.03 32.28 36.28 33.10 30.80 

 45.52 46.64 39.81 40.88 43.41 41.44 41.92 43.66 38.38 41.38 

 41.92 48.79 38.39 36.29 37.94 36.35 37.58 43.99 37.24 37.53 

 29.67 26.92 40.96 29.18 31.91 26.35 27.12 32.61 30.01 33.43 

 29.59 30.71 40.31 29.76 31.67 29.13 30.54 32.82 31.89 32.81 

 30.38 27.95 43.60 30.09 29.87 26.09 27.17 31.73 30.87 34.72 

 31.76 29.00 28.53 39.21 25.00 33.98 30.97 28.00 32.70 31.07 

 32.91 31.34 33.56 40.94 26.90 34.51 33.71 30.14 38.15 35.58 

 35.50 29.69 32.28 43.76 28.19 37.33 34.78 31.79 40.64 34.98 

 31.92 35.15 32.16 27.03 39.64 31.45 29.24 35.96 28.03 29.13 

 32.02 33.27 33.17 30.15 36.76 30.34 29.94 35.54 29.29 31.52 

 29.35 30.70 32.63 28.51 33.92 26.62 29.44 30.84 27.37 28.62 

 33.77 33.22 26.57 31.15 29.65 38.89 32.76 30.53 29.46 29.45 

 30.11 35.27 28.44 33.56 29.43 39.08 32.86 31.42 30.46 29.64 

 37.21 36.83 32.85 41.04 33.45 48.33 38.55 32.96 40.58 34.44 

 34.94 30.50 26.93 34.54 27.73 34.50 37.92 29.35 31.23 28.96 

 33.66 32.41 30.94 35.42 31.44 34.94 35.75 32.28 33.69 31.81 

 30.09 27.41 24.72 36.06 26.74 32.86 37.46 26.99 31.40 27.17 

 29.50 33.25 33.06 30.48 32.36 30.89 31.30 38.95 27.31 29.65 

 35.52 38.95 35.08 31.92 35.08 32.11 34.11 35.86 33.29 33.04 

 34.19 37.08 33.61 32.49 35.03 32.06 33.40 35.86 32.17 32.40 

 32.41 26.26 29.97 35.91 27.02 31.55 33.96 25.31 39.61 30.31 

 30.64 25.64 29.85 31.12 27.19 29.47 30.86 28.11 38.78 30.52 

 28.20 21.83 29.55 34.55 27.91 30.48 33.98 25.81 41.83 32.64 

 34.32 30.87 32.14 31.05 26.00 30.12 30.41 31.07 31.24 35.88 

 33.17 31.96 31.72 32.82 29.96 36.01 33.66 33.48 34.12 36.70 

 34.31 27.17 30.94 32.85 25.61 32.29 29.55 26.41 32.38 38.18 
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In Table 6.9, the similarity rates in the bold font show the highest similarity rate 

between the tested pattern and a predicted class. The similarity rates of misclassified 

patterns are represented by the red-coloured font. In HCN-I, using the ‘one to many’ 

method, there are two misclassified patterns out of a total of 30. The second seven 

members have a similarity rate of 38.95% with Class 1 and only 35.86% with Class 7. 

The third seven members also have higher similarity rate to Class 1 (37.08%) than its 

own class (35.86%). In other words, this classification process has a performance rate 

of 93% (28 out of 30). 

Table 6.10: Performance rate of ‘classification by average’ in HCN-I using ‘one to 

many’ method 

Layer 

Performance Rate (%) 

of HCN-I with  

‘one to many’ 

Performance Rate (%) 

of HCN-I with  

‘many to one’ 

1 70 30 

2 37 80 

3 67 20 

4 53 13 

Average similarity 

in all layers 
93 33 

In Table 6.10, the average performance rate of all layers is highest using the ‘one to 

many’ method (93%), although the ‘many to one’ method gives the highest 

classification rate in Layer 2 (80%). The ‘many to one’ method gives a 33% average 

for all layers. 

Table 6.11 shows the performance rates of HCN-II using the ‘classify by average’ 

approach with different methods of feature activation. 

Table 6.11: Several threshold tests on the performance rate using ‘classification by 

average’ in HCN-II with ‘one to many’ 

Activation 

Threshold 

(%) 

Performance Rate (%) 

of HCN-II using  

‘one to many’ 

Performance Rate (%) 

of HCN-II using  

‘many to one’ 

L1 L2 L3 L4 Average L1 L2 L3 L4 Average 

0 60 73 33 50 50 60 73 20 47 83 

0.1 60 70 33 47 50 60 70 20 47 83 

0.2 60 70 33 53 53 60 70 20 50 80 
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Activation 

Threshold 

(%) 

Performance Rate (%) 

of HCN-II using  

‘one to many’ 

Performance Rate (%) 

of HCN-II using  

‘many to one’ 

L1 L2 L3 L4 Average L1 L2 L3 L4 Average 

0.3 60 70 33 53 53 60 70 27 50 80 

Comparing the results between Tables 6.10 and 6.11, it can be seen, when the average 

similarity rate between a tested pattern and all patterns in a class is measured, 

performance rates are lower in HCN-II than in HCN-I. Table 6.11 shows that the 

majority of the highest performance rates in HCN-II are in Layer 1 (73%), while the 

average of all layers is 53% using the ‘one to many’ method and 83% using ‘many to 

one’. 

6.3.3. Summary of Classification by Average 

According to Tables 6.10 and 6.11, the ‘classification by average’ method gives the 

best performance rate in HCN-I using the ‘one to many’ method. Its best rate is the 

average similarity rate of all layers in the network. It is 10% higher than in HCN-II 

using ‘many to one’. 

6.4. HCN Classification with a Distance Measure 

A known similarity measure, using Euclidean distance, has also proved popular when 

comparing a pattern with other patterns. Using the same feature extraction method, 

this section investigates the use of Euclidean distance in three different measurement 

methods: ‘distance to mean’, ‘mean of distance’, and ‘minimum distance’. 

6.4.1. The Concept of Distance Measure using HCN 

As illustrated in Figure 6.7, ‘distance to mean’ compares the distance of a tested pattern 

with the average features value of all reference patterns within the same class  
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Figure 6.7: An illustration of ‘distance to mean’ 

Within the illustration in Figure 6.7, Class 1 of the reference patterns contains patterns 

R1-1 to R1-4 while Class 2 contains R2-1 to R2-4. The mean of all patterns in Class 1 

is denoted as ‘mean of R1’, and the mean of all patterns in Class 2 is called the ‘mean 

of R2’. The distances between the tested pattern (T1-1) and the two classes are 

respectively:  

 the distance between T1-1 and the ‘mean of R1’, and  

 the distance between T1-1 and the ‘mean of R2’ 

Algorithm 6.4 shows the process of measuring the distance by ‘distance to mean’. 

Algorithm 6.4: Distance to Mean 

1: For all tested patterns (n_TPat), start a class from 1 

2: For all reference patterns (n_RPat) within the current class, initial the mean 

of the pattern in each layer (meanPatLn) with the first pattern (patLn1) in the 

class 

3: From the second to the last pattern (m) in the current class: 

 

𝑚𝑒𝑎𝑛𝑃𝑎𝑡𝐿𝑛 = ∑ 𝑚𝑒𝑎𝑛𝑃𝑎𝑡𝐿𝑛 + 𝑝𝑎𝑡𝐿𝑛𝑚
𝑚
2                  (6.8) 

 

4: Calculate the mean of the patterns within the current class: 

 

𝑚𝑒𝑎𝑛𝑃𝑎𝑡𝐿𝑛 =
𝑚𝑒𝑎𝑛𝑃𝑎𝑡𝐿𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑃𝑎𝑡𝑡𝑒𝑟𝑛 𝑖𝑛 𝑎 𝑐𝑙𝑎𝑠𝑠
                      (6.9) 

 

5: Increase the number of classes, and repeat from Line 1 

6: Measure the distance within each layer (Ln): 

 

𝑑𝑖𝑠𝑡𝐿𝑛 = √(𝑝𝑎𝑡𝐿𝑛_𝑇 − 𝑝𝑎𝑡𝐿𝑛)2                        (6.10) 
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Using the same dataset in HCN-I with the ‘one to many’ method gives the best 

performance rate. This approach classifies the tested patterns by calculating the 

average distance to the reference patterns from all layers (Table 6.13). The detailed 

similarity rates are shown in Table 6.12. 

Table 6.12: Classification in HCN-I using the ‘one to many’ method and ‘distance to 

mean’ 

Tested 

Images 

Similarity Rate to the Predicted Class (%) 

0 1 2 3 4 5 6 7 8 9 

 24.42 44.83 42.01 36.35 46.84 35.30 35.48 49.07 36.80 36.07 

 37.60 49.07 45.58 42.33 53.64 45.53 44.07 51.23 44.57 43.81 

 20.68 46.52 38.95 34.56 46.12 35.86 34.08 50.20 33.69 33.32 

 44.66 31.30 34.74 36.62 34.43 41.23 43.76 34.58 41.57 38.34 

 47.72 32.75 39.38 43.63 42.72 43.11 45.12 38.77 46.83 43.72 

 49.86 32.63 38.92 44.46 45.02 43.51 46.14 40.41 46.75 44.67 

 40.92 39.21 25.26 39.14 46.99 42.35 45.18 41.46 41.75 37.53 

 46.14 38.49 30.86 42.26 45.83 46.08 48.51 38.07 46.39 39.93 

 40.95 40.08 22.06 38.88 47.03 43.33 46.39 42.96 41.83 35.77 

 39.71 42.87 41.66 29.65 46.46 34.30 38.27 48.34 35.81 44.38 

 42.11 36.75 38.72 32.47 44.24 37.86 40.53 41.25 37.88 41.63 

 37.11 37.31 35.12 23.26 43.32 33.13 36.71 42.17 30.34 38.35 

 46.19 37.62 43.86 40.92 24.53 40.65 39.75 44.63 42.26 43.73 

 44.20 41.58 46.25 45.36 33.80 42.89 40.84 48.79 44.22 45.03 

 48.20 41.62 47.49 43.58 26.73 41.98 39.25 51.81 42.54 47.00 

 37.08 41.25 42.52 35.43 44.40 30.41 35.69 45.55 38.09 41.56 

 42.70 40.01 42.30 39.88 45.32 33.65 35.85 44.93 40.58 44.06 

 37.47 39.17 39.53 30.64 42.85 23.38 29.10 45.59 30.88 41.56 

 34.01 46.42 46.79 37.37 44.86 30.80 30.24 51.31 34.01 42.62 

 39.18 43.07 45.99 38.67 42.72 35.03 34.55 48.68 37.06 42.66 

 41.63 43.96 46.66 39.63 40.39 32.64 30.28 51.24 34.77 44.49 

 49.34 34.10 40.50 44.01 45.12 45.51 47.65 27.37 47.88 44.21 

 46.86 34.60 40.64 41.80 39.31 43.53 45.90 33.59 45.72 40.80 

 43.89 37.09 37.22 39.14 41.11 44.13 48.20 35.58 43.51 36.35 

 40.57 47.69 45.53 35.92 46.29 36.34 36.86 51.26 28.20 43.55 

 39.15 44.54 43.58 37.01 43.48 38.22 37.74 48.02 32.13 38.45 

 33.58 47.99 41.86 35.37 47.29 37.26 36.08 51.70 26.44 36.47 

 35.41 46.01 41.12 41.30 49.15 40.15 43.74 50.26 40.95 32.62 

 38.73 40.31 40.78 39.60 44.89 39.97 42.53 43.15 40.29 32.96 

 37.93 45.93 40.56 40.22 49.31 40.60 43.83 47.33 38.00 28.82 

Table 6.12 shows the average similarity rates for all layers, and it can be seen that there 

are no misclassified patterns. This means that the performance rate of HCN-I using 

‘one to many’ is 100%. 
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The classification rates for other layers using both the ‘one to many’ and ‘many to one’ 

methods are shown in Table 6.13. 

Table 6.13: Performance rate of HCN-I using a ‘distance to mean’ similarity measure 

Layer 

Performance Rate (%)  

of HCN-I using  

‘one to many’ 

Performance Rate (%)  

of HCN-I using 

‘many to one’ 

1 97 97 

2 43 13 

3 67 13 

4 50 13 

Average distance of 

all layers 
100 90 

Even when implementing the ‘many to one’ method, Layer 1 has the highest 

performance rate when compared to other layers. Its performance rate is 10% lower 

than when the ‘one to many’ method is used for the feature extraction in HCN-I. 

In HCN-II, using both the ‘one to many’ method and the ‘many to one’ method, the 

best performance rate is on Layer 2. Table 6.14 shows the similarity rates between the 

tested patterns and all available classes. The similarity rates are based on Layer 2’s 

results when implementing the ‘many to one’ method in HCN-II. 
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Table 6.14: Classification in HCN-II using a ‘distance to mean’ similarity measure 

Tested 

Images 

Similarity Rate to the Predicted Class (%) 

0 1 2 3 4 5 6 7 8 9 

 97.736 244.59 230.95 192.55 251.95 183.75 182.43 279.15 194.81 185.33 

 173.07 234.21 229.83 211.79 273.15 228.34 220.22 260.58 237.62 217.35 

 89.015 277.61 235.58 207.52 272.23 206.57 197.23 307.84 203.27 190.19 

 263.7 166.95 193.57 200.71 181.82 236.33 256.83 195.75 247.48 219.03 

 270.62 141.29 211.41 227.64 217.33 225.62 240.72 199.98 264.62 239.65 

 315.16 176.42 233.66 265.72 265.74 262.47 278.87 238.76 290.75 277.69 

 211.75 192.37 103.53 192.09 248.44 215.9 239.17 218.12 221.3 193.63 

 234.02 170.07 137.6 199.71 228.95 226.62 243.81 177.62 241.79 200.6 

 226.68 207.65 92.906 202.82 261.86 238.17 263.34 233.51 232.47 195.57 

 190.26 197.56 193.7 121.2 229.33 156.48 183.89 235.73 171 216.12 

 220.67 160.58 188.11 152.2 219.38 183.99 201.33 196.17 206.25 210.74 

 202.12 176.88 169.67 87.093 219.8 154.15 189.78 218.38 162.4 196.65 

 252.15 186.81 241.19 210.64 99.183 216.21 209.23 241.9 228.29 231.48 

 232.57 207.86 242.86 226.01 155.22 221.82 210.64 258.68 233.3 235.68 

 272.31 221.71 263.01 233.05 118.42 225.75 206.32 295.87 226.12 261.56 

 187.7 213.57 228.68 181.64 241.14 143.6 182.11 243.91 201.5 217.9 

 220.31 185.4 214.94 189.01 232.86 156.65 183.32 218.43 210.14 220.53 

 206.92 206.12 217.62 153.98 230.84 100.59 150.18 253.63 163.56 224.57 

 150.02 239.03 243.31 179.21 227.24 140.1 128.4 267.94 155.75 208.72 

 182.72 196.53 224.99 177.55 201.56 150.31 146.38 237.13 178.9 201.36 

 215.47 236.43 258.42 207.73 206.58 148.9 129.68 291.37 164.92 235.93 

 284.61 181.36 230.99 241.42 259.21 256.95 274.04 127.83 271.85 250.12 

 272.84 179.83 225.4 229.7 214.45 248.37 267.07 175.04 270.56 229.21 

 267.27 205.51 216.3 226.68 239.62 257.12 289.06 189.52 266.12 213.68 

 181.79 227.53 221.41 152.42 214.87 152.69 153.84 258.94 103.74 196.74 

 173.89 187.96 191.75 150.7 190.78 153.79 155.78 216.7 139.83 153.76 

 168.17 262.35 221.77 179.47 248.13 183.38 177.64 292.29 115.55 181.49 

 153.61 226.31 203.88 194.97 242.26 189.4 208.73 259.97 194.23 129.45 

 188.63 187.65 201.28 190.46 219.39 191.15 208.76 212.47 207.03 139.6 

 195.04 246.15 210.1 217.28 267.67 215.43 236.58 265.82 202.93 120.19 

To get the results in Table 6.14, the threshold value for feature activation in the upper 

layers is set at 0.3. This indicates that HCN-II can recognise the current digit dataset 

with a 100% performance rate using a ‘distance to mean’ distance measure in Layer 2. 

Performance rates within all layers using different activation thresholds are shown in 

Table 6.15. 
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Table 6.15: Performance rate in all layers using a ‘distance to mean’ distance 

measure  

Activation 

Threshold 

(%) 

Performance Rate (%) 

HCN-II using ‘one to many’ HCN-II using ‘many to one’ 

L1 L2 L3 L4 Average L1 L2 L3 L4 Average 

0 97 100 77 57 90 97 100 43 40 77 

0.1 97 100 80 57 90 97 100 47 40 77 

0.2 97 100 83 63 93 97 100 40 40 73 

0.3 97 100 90 70 93 97 100 40 40 80 

A threshold value of up to 70% (0.3) for feature activation, using both the ‘many to 

one’ and ‘one to many’ method, gives a 100% performance rate in Layer 2 when 

classifying the tested patterns into the correct class. 

‘Mean of distance’ is the average measurement of distance between a tested pattern 

and all patterns in a class. It is illustrated in Figure 6.8. 

 

Figure 6.8: An illustration of ‘mean of distance’ 

Based on the illustration in Figure 6.8, there are two steps to calculate the mean of 

distance. Firstly, the distance is measured between a tested pattern and all reference 

patterns in Classes 1 and 2. Secondly, the distance between a tested pattern and the 

class is calculated by averaging the distance between the tested and reference patterns 

within the same class.  
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The concept of a distance measure using ‘mean of distance’ is described in Algorithm 

6.5. 

Algorithm 6.5: ‘Mean of Distance’ 

1: For all tested patterns (n_TPat), start a class from 1 

2: For all reference patterns (n_RPat) within the current class, calculate the 

distance in all layers (dLn) between the tested pattern (TPat) and each 

reference pattern (RPat) within the current class: 

 

𝑑𝐿𝑛 = √(𝑇𝑃𝑎𝑡 − 𝑅𝑃𝑎𝑡)2                           (6.11) 

 

3: Calculate the average distance between the tested pattern and all patterns 

(from 1 to m) within the current class (distLn): 

 

𝑑𝑖𝑠𝑡𝐿𝑛 =
∑ 𝑑𝐿𝑛𝑚

𝑚
1

𝑚
                                (6.12) 

 

  

Table 6.16 shows the similarity rates between a tested pattern and all classes. This 

table refers to the classification rate in HCN-I using the ‘one to many’ method in Layer 

1, because this layer shows a 97% performance rate. Within this table, there is only 

one image (‘1-png’) misclassified into Class ‘7’. 
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Table 6.16: Classification in HCN-I using ‘one to many’ method with a ‘mean of 

distance’ distance measure 

Tested 

Images 

Similarity Rate to the Predicted Class (%) 

0 1 2 3 4 5 6 7 8 9 

 96.74 164.70 151.46 133.30 167.13 133.60 134.63 167.17 135.82 136.34 

 120.82 158.76 148.47 137.05 171.68 148.67 144.92 155.24 148.48 144.21 

 86.68 173.64 147.31 131.80 170.03 137.71 132.72 173.85 131.36 130.01 

 161.92 129.94 132.09 137.63 131.13 155.11 164.30 124.73 157.10 145.68 

 174.66 131.43 149.90 160.03 159.43 162.22 167.16 137.76 174.62 165.32 

 178.07 123.96 144.23 158.48 162.59 160.10 166.90 140.47 169.69 165.83 

 139.17 143.04 98.65 133.70 161.34 146.83 155.88 138.13 145.65 137.30 

 153.32 140.66 114.30 141.60 158.18 157.11 164.65 127.27 158.74 143.03 

 143.60 149.34 90.54 136.23 168.73 155.06 165.55 141.95 149.74 134.72 

 132.94 149.42 139.42 105.38 159.18 126.05 137.53 150.73 126.24 151.09 

 142.80 136.36 133.81 114.62 153.76 136.03 143.23 131.98 136.06 144.69 

 133.47 141.52 126.46 93.32 155.54 125.59 137.04 139.26 117.40 138.88 

 160.55 143.65 155.13 144.53 104.95 148.92 146.46 150.12 152.08 158.21 

 148.73 147.73 152.77 147.85 122.75 147.95 143.39 154.48 150.14 154.50 

 164.61 151.52 161.99 148.95 104.15 149.03 140.15 170.63 147.84 164.13 

 131.77 153.98 152.44 128.63 159.77 118.64 134.40 152.01 138.76 150.20 

 148.54 146.93 149.03 137.46 159.57 126.34 134.03 144.47 145.20 155.65 

 137.99 152.41 146.08 119.15 159.30 103.07 119.61 155.76 121.81 151.83 

 115.57 163.83 157.10 128.47 155.44 116.66 114.42 163.59 121.77 146.10 

 133.26 150.93 153.87 131.80 148.81 126.72 126.27 152.84 132.51 149.01 

 142.04 161.73 162.59 137.91 146.27 119.91 113.65 171.60 123.26 157.94 

 169.68 134.52 146.90 151.88 163.27 161.61 169.63 95.85 167.20 159.09 

 168.73 139.48 150.32 151.91 148.16 161.40 169.61 119.72 168.85 154.19 

 160.33 144.46 139.82 144.92 155.00 161.66 175.46 120.91 161.45 140.23 

 130.94 161.65 151.67 119.82 153.13 126.46 128.38 161.56 101.48 146.16 

 128.16 150.86 141.81 119.39 145.97 130.68 131.00 145.76 113.13 131.82 

 117.76 170.60 143.24 122.78 163.10 132.87 129.52 169.45 100.44 129.80 

 117.86 159.59 141.70 138.84 163.56 138.87 148.27 160.57 140.92 117.74 

 133.55 146.36 141.87 138.01 155.22 140.88 149.12 140.97 144.32 122.53 

 130.35 164.12 141.31 141.95 170.83 146.55 155.85 156.58 137.94 108.07 

Table 6.17 shows both feature extraction methods (‘one to many’ and ‘many to one’) 

in HCN-I. 
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Table 6.17: Performance rate of HCN-I using a ‘mean of distance’ similarity measure 

Layer 

Performance Rate (%) 

of HCN-I using  

‘one to many’ 

Performance Rate (%) 

of HCN-I using  

‘many to one’ 

1 97 97 

2 37 10 

3 53 17 

4 50 13 

Average distance of 

all layers 
97 93 

Both methods give the best performance rate in Layer 1 at 97%. When calculating the 

average similarity rate in all layers, the ‘one to many’ method gives a better rate (97%) 

than the ‘many to one’ method (93%). 

A ‘mean of distance’ distance measure is implemented in HCN-II using both the ‘one 

to many’ and ‘many to one’ feature extraction method. The similarity rates for the 

tested patterns and all available classes in HCN-II using ‘one to many’ are shown in 

Table 6.18. 
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Table 6.18: The results of classification in HCN-II using a ‘mean of distance’ 

distance measure 

Tested 

Images 

Similarity Rate to the Predicted Class (%) 

0 1 2 3 4 5 6 7 8 9 

 96.739 164.7 151.46 133.3 167.13 133.6 134.63 167.17 135.82 136.34 

 120.82 158.76 148.47 137.05 171.68 148.67 144.92 155.24 148.48 144.21 

 86.678 173.64 147.31 131.8 170.03 137.71 132.72 173.85 131.36 130.01 

 161.92 129.94 132.09 137.63 131.13 155.11 164.3 124.73 157.1 145.68 

 174.66 131.43 149.9 160.03 159.43 162.22 167.16 137.76 174.62 165.32 

 178.07 123.96 144.23 158.48 162.59 160.1 166.9 140.47 169.69 165.83 

 139.17 143.04 98.654 133.7 161.34 146.83 155.88 138.13 145.65 137.3 

 153.32 140.66 114.3 141.6 158.18 157.11 164.65 127.27 158.74 143.03 

 143.6 149.34 90.543 136.23 168.73 155.06 165.55 141.95 149.74 134.72 

 132.94 149.42 139.42 105.38 159.18 126.05 137.53 150.73 126.24 151.09 

 142.8 136.36 133.81 114.62 153.76 136.03 143.23 131.98 136.06 144.69 

 133.47 141.52 126.46 93.321 155.54 125.59 137.04 139.26 117.4 138.88 

 160.55 143.65 155.13 144.53 104.95 148.92 146.46 150.12 152.08 158.21 

 148.73 147.73 152.77 147.85 122.75 147.95 143.39 154.48 150.14 154.5 

 164.61 151.52 161.99 148.95 104.15 149.03 140.15 170.63 147.84 164.13 

 131.77 153.98 152.44 128.63 159.77 118.64 134.4 152.01 138.76 150.2 

 148.54 146.93 149.03 137.46 159.57 126.34 134.03 144.47 145.2 155.65 

 137.99 152.41 146.08 119.15 159.3 103.07 119.61 155.76 121.81 151.83 

 115.57 163.83 157.1 128.47 155.44 116.66 114.42 163.59 121.77 146.1 

 133.26 150.93 153.87 131.8 148.81 126.72 126.27 152.84 132.51 149.01 

 142.04 161.73 162.59 137.91 146.27 119.91 113.65 171.6 123.26 157.94 

 169.68 134.52 146.9 151.88 163.27 161.61 169.63 95.849 167.2 159.09 

 168.73 139.48 150.32 151.91 148.16 161.4 169.61 119.72 168.85 154.19 

 160.33 144.46 139.82 144.92 155 161.66 175.46 120.91 161.45 140.23 

 130.94 161.65 151.67 119.82 153.13 126.46 128.38 161.56 101.48 146.16 

 128.16 150.86 141.81 119.39 145.97 130.68 131 145.76 113.13 131.82 

 117.76 170.6 143.24 122.78 163.1 132.87 129.52 169.45 100.44 129.8 

 117.86 159.59 141.7 138.84 163.56 138.87 148.27 160.57 140.92 117.74 

 133.55 146.36 141.87 138.01 155.22 140.88 149.12 140.97 144.32 122.53 

 130.35 164.12 141.31 141.95 170.83 146.55 155.85 156.58 137.94 108.07 

The distance values in Table 6.18 show the distances between the tested patterns and 

the available classes in Layer 1. The ‘one to many’ method in HCN-II gives the highest 

performance rate (97%) in Layer 1 compared to the other layers (see Table 6.19). 
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Table 6.19: Performance rate of HCN-II in all layers using a ‘mean of distance’ 

distance measure 

Activation 

Threshold 

(%) 

Performance Rate (%) 

HCN-II (‘one to many’) HCN-II (‘many to one’) 

L1 L2 L3 L4 Average L1 L2 L3 L4 Average 

0 97 93 67 53 77 97 93 40 33 67 

0.1 97 93 67 53 77 97 93 37 33 67 

0.2 97 93 70 60 83 97 93 33 33 67 

0.3 97 93 73 60 83 97 93 40 33 70 

In Table 6.19, both methods give the same performance rate in Layers 1 and 2 at 97% 

and 93%, respectively; however, the ‘one to many’ method gives a better performance 

rate on the average of all layers. 

As illustrated in Figure 6.8, ‘minimum distance’ chooses the closest distance between 

a tested pattern and all available reference patterns in a class  

 

Figure 6.9: An illustration of ‘minimum distance’ 

Similar to the ‘mean of distance’ concept, ‘minimum distance’ measures the distance 

between a tested pattern and all the patterns in a class. If ‘mean of distance’ calculates 

the average distance, ‘minimum distance’ chooses the minimum value of distance 

between the tested pattern and the class. For example, in Figure 6.9, the shortest 

distance between T1-1 and Class R1 is the distance between T1-1 and R1-4, while the 

minimum distance between T-1 and Class R2 is the distance between T1-1 and R2-4. 
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The distance measure algorithm using ‘minimum distance’ is presented in Algorithm 

6.6. 

Algorithm 6.6: ‘Minimum Distance’ 

1: For all tested patterns (n_TPat), start a class from 1 

2: For all reference patterns (n_RPat) within the current class, calculate the 

distance in all layers (dLn) between the tested pattern (TPat) and each 

reference pattern (RPat) within the current class: 

 

𝑑𝐿𝑛 = √(𝑇𝑃𝑎𝑡 − 𝑅𝑃𝑎𝑡)2                          (6.13) 

 

3: Initial the distance at the current layer (distLn) with the distance of the 

tested pattern and the first pattern in the current class (dLn) 

4: From the second pattern to the last pattern in the current class, replace the 

current distLn with the minimum value of the distance 

5: Increase the class value, and repeat from Line 2 

The similarity rates of classification in Table 6.20 refer to the performance rate in 

Layer 1 of HCN-I using the ‘one to many’ method. This layer has the highest 

classification rate when compared to the other layers (see Table 6.21). 
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Table 6.20: The results of classification in HCN-I using a ‘minimum distance’ 

distance measure 

Tested 

Images 

Similarity Rate to the Predicted Class (%) 

0 1 2 3 4 5 6 7 8 9 

 19.87 42.45 40.64 34.71 47.55 36.66 33.34 48.24 36.19 35.23 

 31.03 45.87 41.29 37.87 53.30 43.04 37.50 49.78 40.25 36.42 

 14.43 45.03 38.93 34.13 47.68 35.92 29.35 49.73 31.42 29.58 

 45.59 28.47 35.67 37.25 37.56 42.46 46.11 35.04 42.38 39.45 

 43.97 29.40 36.24 40.96 43.30 41.56 42.27 38.05 44.92 41.73 

 48.28 22.63 41.35 44.26 45.64 45.38 46.46 40.22 47.25 44.59 

 40.16 43.69 24.30 37.93 48.92 42.31 44.49 42.59 39.27 38.84 

 41.00 42.09 27.49 39.11 46.83 44.83 47.37 37.13 44.18 38.58 

 42.60 44.42 16.21 40.43 49.63 45.41 46.13 42.74 43.77 37.93 

 36.17 41.25 40.19 26.78 46.11 35.36 38.21 48.37 31.23 42.49 

 37.40 38.54 39.06 27.32 44.71 37.70 38.60 40.82 33.56 39.04 

 37.95 41.14 36.25 23.62 46.11 35.03 37.63 42.85 33.02 37.90 

 46.59 39.65 44.97 42.17 30.09 43.08 39.06 44.68 43.73 44.15 

 43.87 44.27 45.95 45.34 35.11 43.18 39.08 47.90 44.07 45.38 

 48.77 43.36 48.52 45.45 30.47 44.21 40.22 53.28 43.01 48.97 

 34.40 41.97 43.55 36.00 46.21 29.49 37.26 44.74 38.28 37.26 

 39.76 42.14 41.40 37.13 46.93 29.23 33.99 43.27 36.91 41.88 

 39.35 44.77 39.03 32.26 45.83 20.30 31.54 47.15 33.16 38.38 

 31.31 47.16 44.04 34.40 47.02 31.05 29.75 51.17 32.06 42.13 

 35.30 45.45 44.21 34.81 44.16 33.24 34.87 47.46 35.03 43.00 

 42.59 48.58 44.93 37.97 42.76 30.37 29.16 51.84 35.81 41.66 

 47.22 31.82 39.53 43.67 47.57 45.60 49.48 24.04 47.32 42.85 

 44.73 38.94 38.95 40.33 40.90 42.78 45.51 32.64 44.29 37.67 

 45.25 38.81 39.90 41.02 43.96 46.99 48.80 33.16 45.38 35.63 

 37.16 49.94 45.66 34.49 46.82 37.48 37.69 51.49 26.30 40.35 

 32.75 48.55 43.30 34.58 44.81 37.57 37.44 48.13 27.80 38.04 

 30.87 51.19 40.15 33.04 49.53 37.92 32.93 51.50 25.33 33.30 

 31.18 44.87 41.24 39.22 50.04 41.53 42.77 49.75 40.32 32.26 

 35.63 43.27 39.77 39.09 45.91 39.87 43.26 43.09 39.00 33.36 

 38.80 49.05 39.41 38.91 51.20 42.22 42.62 46.87 38.52 27.10 

The average distance in all layers of HCN-I using the ‘one to many’ method gives a 

classification rate of 93%. Two digits (the second ‘6’, and the first ‘9’) are placed into 

the incorrect class. Other layers have their own classification rate as shown in Table 

6.21. 
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Table 6.21: Performance rate of HCN-I using a ‘minimum distance’ similarity 

measure 

Layer 

Performance Rate (%) 

of HCN-I using  

‘one to many’ 

Performance Rate (%) 

of HCN-I using 

‘many to one’ 

1 90 90 

2 57 10 

3 NA NA 

4 NA NA 

Average distance of 

all layers 
93 90 

The performance rates in Layers 3 and 4, which are labelled as ‘NA’ (not available), 

are not able to be recorded. This is because some tested patterns are classified into 

more than one predicted class. In other words, these patterns share the minimum 

distance with more than one class.  

According to Table 6.21, the average distance of all layers in HCN-I using the ‘many 

to one’ method is 3% lower than when the ‘one to many’ method is used in HCN-I. 

Classification results for HCN-II using a ‘minimum distance’ distance measure are 

shown in Table 6.22. 
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Table 6.22: The results of classification in HCN-II using a ‘minimum distance’ 

distance measure 

Tested 

Images 

Similarity Rate to the Predicted Class (%) 

0 1 2 3 4 5 6 7 8 9 

 74.518 229.73 217.51 181.31 251.03 187.72 168.16 268.93 184.17 167.93 

 132.48 217.57 214.9 191.59 275.31 214.85 175.27 251.53 217.97 173.07 

 58.06 278.13 244.61 209.12 284.71 215.48 162.34 307.3 194.69 170.02 

 262.64 142.7 200.75 213.36 203.37 240.37 272.52 196.29 247.25 216.97 

 235.93 122.36 192.28 211.62 199.41 213.04 214 200.14 244.87 221.22 

 296.07 89.213 252.28 264.44 257.46 273.82 273.18 236.61 289.56 278.54 

 199.44 241.75 93.124 191.05 258.54 216.46 241.11 231.43 201.81 208.06 

 192.06 221.97 113.39 187.11 235.61 210.66 241 165.07 222.29 187.83 

 238.08 238.54 65.169 209.62 288.54 253.64 269.69 226.96 253.68 215 

 167.79 193.88 183.08 100.15 224.18 160.29 184.17 229.14 132.16 206.2 

 173.2 185.79 184.38 114.67 226.13 164.5 188.74 183.73 174.13 202.57 

 199.36 215.76 180.4 88.888 243.71 175.87 205.96 222.38 181.07 206.16 

 246.7 204.01 242.55 221.38 133.49 232.13 205.79 239.19 234.9 225.2 

 218.98 236.18 235.54 220.47 174.69 219.61 200.03 247.47 224.12 233.05 

 272.85 228.49 267.61 242.35 129.17 240.2 205.41 302.05 223.28 275.68 

 168.58 222.26 230.52 177.38 249.54 131.13 195.89 231.66 194.43 196.1 

 178.8 219.62 207.59 155.75 232.61 118.08 171.37 209.17 182.49 213.6 

 217.58 256.96 215.82 165.87 254.03 76.335 173.19 261.17 180.65 208.53 

 134.29 255.53 229.27 161.78 241.42 143.44 122.88 263.02 142.01 217.5 

 150.36 230 205.89 154.05 211.4 126.74 140.31 226.76 166.51 208.47 

 220.23 275.9 248.04 204.59 226.26 133.06 131.81 297.96 170.16 212.87 

 250.59 162.93 219.53 227.95 266.15 240.9 279.75 96.016 256.17 229.7 

 240.17 226.13 206.99 215.04 216.87 233.6 259.48 168.78 251.55 189.17 

 269.88 226.21 230.03 244.48 255.74 271.23 297.99 169.44 269.05 200.92 

 172.77 261.47 222.31 157.48 224.98 160.5 165.44 259.48 103.97 186.05 

 127.97 234.3 197 135.67 200.91 130.08 155.35 215.78 110.94 155.19 

 155.55 292.32 205.59 150.81 266.08 188.07 149.75 286.79 100.57 156.07 

 130.45 226.7 197.64 188.77 237.48 197.81 210.73 254.87 186 128.96 

 157.89 224.63 193.04 185.66 227.17 174.73 210.78 205.95 186.36 140.41 

 198.15 271.44 208.1 209.11 282.72 225.04 223.33 256.65 201.94 104.07 

When using a ‘minimum distance’ distance measure with a threshold value of 0.3, 

HCN-II (using ‘one to many’) can recognise the tested pattern at a 97% performance 

rate in Layer 3. The ‘many to one’ method gives the highest performance rate (90%) 

when using the average distance with the threshold value of 0 to 0.3.  

Table 6.23 shows that certain tested patterns share the minimum distance with more 

than one class. These patterns are labelled ‘NA’.  
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Table 6.23: Performance in all layers using a ‘minimum distance’ distance measure  

Activation 

Threshold 

(%) 

Performance Rate (%) 

HCN-II (‘one to many’) HCN-II (‘many to one’) 

L1 L2 L3 L4 Average L1 L2 L3 L4 Average 

0 0 90 93 NA NA 90 93 NA NA 90 

0.1 0.1 90 93 67 73 90 93 NA NA 90 

0.2 0.2 90 93 77 80 90 93 NA NA 90 

0.3 0.3 90 97 80 87 90 93 53 57 87 

The example of a tested pattern belongs to more than one class is shown in Table 6.24. 

Table 6.24: Multiple minimum distances when using a ‘minimum distance’ distance measure  

Tested 

Images 

Similarity Rate to the Predicted Class (%) 

0 1 2 3 4 5 6 7 8 9 

 54.791 214.11 171.55 161.24 192.82 197.36 190.83 225.81 231.74 219.98 

 70.718 264.27 214.82 205.27 209.85 192.24 223.17 246.43 258.03 231.74 

 0 141.61 143.14 137.16 141.73 107.88 105.58 194.54 171.46 108.66 

 404.61 264.03 222.3 258.43 225.44 349.78 358.11 190.07 441.64 372.7 

 447 242.45 384.12 371 384.27 349.93 347.05 321.38 460.91 422.19 

 350.41 0 218.01 227.38 207.46 211.01 245.5 180 303.59 312.13 

 244.92 205.04 20.149 203.85 193.3 218.3 258.6 157.65 270.72 232.4 

 326.87 299.14 167.96 285.28 277.35 337.13 340.94 215.37 368.46 298.12 

 196.76 117.2 25.239 146.28 151.83 205.08 244.5 95 231.52 113.71 

 208.75 189.43 182.61 88.165 192.7 158.46 224.39 145.94 233.94 304.73 

 328.04 312.85 265.11 189.26 247.57 263.59 308.87 193.79 395.46 344.52 

 232.78 139.45 95.026 48.218 189.95 174.74 216.18 116.85 275.57 242.29 

 420.45 344.31 315.85 293.86 134.63 323.23 291.45 208.09 360.77 386.19 

 365.11 272.92 305.29 292.79 143.14 285.12 237.5 242.45 330.13 341.8 

 306.04 214.13 211.31 161.71 8 137.18 88.363 129.29 187.22 331.27 

 163.81 226.1 192.63 58.771 192.62 95.514 196.8 142.1 223.6 241.34 

 313.13 313.93 336.32 228.99 318.86 185.65 253.57 266.71 368.86 341.36 

 183.56 132.55 155.48 31.828 171.82 33.734 141.51 111.03 200.29 236.69 

 129.03 271.33 194.11 129.17 171.03 104.88 107.9 123.05 171.39 249.26 

 269.03 306.36 330.63 245.95 268.3 201.98 186.99 246.35 287.65 320.81 

 143.77 77.827 137.61 91.897 75 61.205 36 35.228 125.1 177.89 

 415.3 251.92 263.78 365.8 370.35 383.76 419.23 16.155 459.07 310.34 

 483.04 424.96 346.16 397.19 365.32 437.93 494.55 264.58 561 352.62 

 375.05 302.32 264.68 265.81 240.09 322.93 415.95 194.81 442.99 226.13 

 112.89 224.69 118.14 80.474 85.294 62.418 66.858 109.64 90.615 193.4 

 175.57 241.46 185.33 167.24 152.96 153.87 189.9 176.16 219.49 180.96 

 0 3.1623 2.2361 22.361 0 1 29.614 42 32 43.186 

 144.4 226.64 108.8 163.79 167.29 193.57 263.62 195.14 248.2 121.38 

 267.57 293.24 226.47 251.51 254.65 250.17 321.15 263.86 349.94 172.35 

 127.01 71.694 40.719 53.749 107.35 80.075 161.48 79 142.67 0 
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The green cells in Table 6.24 indicate when the distance minimum value can be belong 

to more than one class. In Table 6.24, the third ‘8’ gives a minimum distance of ‘0’ 

with its own class and also Class 4. A decision cannot be made using these ‘NA’ 

results. 

6.5. Discussion and Validation 

This chapter presents a summary of the classification rates in both HCN-I and II, and 

compares the results with existing methods. The research in this thesis explores the 

many different concepts of feature extraction and recognition, combining or 

concatenating the lower level’s features as the features of the higher level. The ability 

of hierarchical concatenation is investigated using classification performance results. 

The hierarchical concatenation network (HCN) seeks to mimic human behaviour when 

recognising patterns or shapes. It examines the smaller features first of all; next, it 

investigates the smaller features’ concatenation; then finally, it makes a decision based 

on the resulting higher level features.  

 

Figure 6.10: Features in a hierarchical examination 

The left picture in Figure 6.10 illustrates the smaller features, while the right picture 

shows the concatenation of the features on the left as bigger features (one block 

rectangle in the right picture is the concatenation of four small rectangles in the left). 

In the left picture, each single block might have a high similarity rate with other blocks 

of picture of a fruit; whereas each block in the right picture more clearly represents a 

feature of a monkey’s head. This means, to recognise the pattern more efficiently, the 

decision should be made at the end of the concatenation process (at the top layer). 
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This research investigates the performance rate of classification by exploring different 

activation methods (i.e. HCN-I and HCN-II) and using various ways to extract the 

features (i.e. ‘one to many’ and ‘many to one’ methods). The results show that the best 

classification rate is not based on the output of the top layer as supposed. Table 6.25 

shows the summary of classification results using the digits dataset. 

Table 6.25: Performance rate of classification summary in the HCN 

Feature 

Extraction 

Method 

Feature 

Extraction 

Position 

Similarity Measure Activation 

Threshold 

(%) 

Performance Rate (%) 

L1 L2 L3 L4 Ave 

HCN-I ‘One to 

any’ 

Ratio by Union NA 67 17 47 63 83 

 Ratio by Average NA 70 37 67 53 93 

  Distance to Mean NA 97 43 67 50 100 

  Mean of Distance NA 97 37 53 50 97 

  Minimum Distance NA 90 57 NA NA NA 

 ‘Many to 

One’ 

Ratio by Union NA NA 0 3 NA 13 

 Ratio by Average NA 87.01 32.15 26.91 17.97 41.01 

  Distance to Mean NA 97 13 13 13 90 

  Mean of Distance NA 97 10 17 13 93 

  Minimum Distance NA 90 10 NA NA 90 

HCN-II ‘One to 

Many’ 

Ratio by Union 0 73 60 13 17 27 

  0.1 73 67 7 17 33 

   0.2 73 67 7 23 37 

   0.3 73 70 13 21 40 

  Ratio by Average 0 60 73 33 50 50 

   0.1 60 70 33 47 50 

   0.2 60 70 33 53 53 

   0.3 60 70 33 53 53 

  Distance to Mean 0 97 100 77 57 90 

   0.1 97 100 80 57 90 

   0.2 97 100 83 63 93 

   0.3 97 100 90 70 93 

  Mean of Distance 0 97 93 67 53 77 

   0.1 97 93 67 53 77 

   0.2 97 93 70 60 83 

   0.3 97 93 73 60 83 

  Min Distance 0 90 93 NA NA NA 

   0.1 90 93 67 73 87 

   0.2 90 93 77 80 87 

   0.3 90 97 80 87 87 

 ‘Many to 

One’ 

Ratio by Union 0 80 60 30 NA 70 

  0.1 80 33 30 NA 67 

   0.2 80 23 20 NA 60 

   0.3 80 30 20 NA 60 

  Ratio by Average 0 60 73 20 47 83 

   0.1 60 70 20 47 83 

   0.2 60 70 20 50 80 

   0.3 60 70 27 50 80 

  Distance to Mean 0 97 100 43 40 77 

   0.1 97 100 47 40 77 

   0.2 97 100 40 40 73 

   0.3 97 100 40 40 80 

  Mean of Distance 0 97 93 40 33 67 

   0.1 97 93 37 33 67 

   0.2 97 93 33 33 67 
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Feature 

Extraction 

Method 

Feature 

Extraction 

Position 

Similarity Measure Activation 

Threshold 

(%) 

Performance Rate (%) 

L1 L2 L3 L4 Ave 

   0.3 97 93 40 33 70 

  Min Distance 0 90 93 NA NA 90 

   0.1 90 93 NA NA 90 

   0.2 90 93 NA NA 90 

   0.3 90 93 53 57 87 

Table 6.25 indicates that both HCN activation methods give their best classification 

results when using the ‘distance to mean’ similarity measure. HCN-I gives the best 

results when calculating the average similarity rate in all layers, while HCN-II 

recognises all the tested images in Layer 2. Both methods are presented in Chapter 5, 

where it can also be seen, however, that HCN-I takes more time to extract the features 

compared to HCN-II. Based on time consumption and the results in Table 6.25, HCN-

II (which only contains two layers) is best able to represent the hierarchical 

concatenation network. 

Table 6.26 presents some other comparisons with two other datasets (USPS and 

MNIST). Due to the input of Hierarchical Concatenation Network is the image with 

the size of 32 x 32 pixels, the images from these datasets need to suit the network input. 

As the original images from USPS dataset are drawn on 16 x 16 pixels, they can be 

fed into the second layer of HCN. This means that the first layer of HCN has 16 x 16 

pixels input, hence the network will have only three layers. MNIST dataset contains 

images which are drawn on 28 x 28 pixels. The images from this dataset cannot be fed 

directly into HCN at any layer. For this reason, they must be normalized by changing 

the size of the image to be 16 x 16 pixels or 32 x 32 pixels. In this thesis, the size of 

images in this dataset were resized to 32 x 32 pixels. The size of 16 x 16 pixels is to 

much reduction from 28 x 28 pixels. 
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Table 6.26: Performance Rate Comparison 

Datasets 
Feature Extraction + 

Classification 

Performance 

Rate (%) 

Digits HCN 100 

(100 data) Binary vector 90 

 LDA 96.67 

 PCA 96.67 

USPS HCN 70 

(100 data) Binary vector 33 

 LDA 50 

 PCA 43.33 

MNIST HCN 67 

(100 data) Binary vector 23 

 LDA 50 

 PCA 56.67 

USPS HCN 80 

(1000 data) Binary vector 55 

 LDA 81.33 

 PCA 74.67 

MNIST HCN 82 

(1000 data) Binary vector 53 

 LDA 89.33 

 PCA 53.67 

HCN algorithm in Table 6.26 refers to HCN-II with the ‘many to one’ method due to 

it gives a better performance rate and consumes less time than HCN-I (see Table 6.25). 

The comparison in Table 6.26 uses binary vectors, LDA and PCA. Binary feature 

(vector of binary) extraction is the simplest feature extraction method. Each feature is 

extracted to be a vector of binary numbers. The classification process uses Euclidean 

distance to measure the distance between the tested and reference patterns. With it 

simple comparison process, binary vector extraction gives the lowest classification 

rates when compared to others. 

LDA and PCA are two other methods that can be used to compare the classification 

rates of HCNs. Both LDA and PCA are feature extractions methods, also known as 

dimension reduction methods (Zheng, Lai, & Li, 2008). Table 6.26 indicates that LDA 

has a higher performance rate than the HCN for handwritten datasets with 1000 

samples. In contrast, if small amount of datasets (100 samples) are applied to LDA, it 

gives lower performance rate compared with HCN. 
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By using simple Digits dataset, HCN has shown its performance rate by 100%, while 

LDA and PCA has given the same rate at 96.67%. By using USPS dataset (100 

samples), HCN’s classification rate is 20% higher than LDA, and 26.67% higher than 

PCA. For MNIST dataset (100 samples), the HCN’s performance is still higher than 

LDA and PCA, 17% and 10.33% respectively. Once the dataset becomes bigger (1000 

samples), LDA is better than HCN for both MNIST and USPS dataset (1.33% and 

7.33% respectively), but HCN still outperforms PCA by 5.33% for USPS data set and 

by 28.33% for MNIST dataset. The performance rate of the HCN is raised when the 

number of datasets increases. By increasing the number of samples from 100 to 1000, 

the performance rate is increased by more than 10 times. This indicates that HCN could 

produce a good result with small samples of dataset in terms of classification. Even 

though the classification rates could be increased by making the dataset bigger, HCN 

consumes much time to finish the process compared with others. It is due to the feature 

extraction process and similarity measure conducted in all layers. 

To conclude this chapter, HCN performance can be increased by increasing the 

number of datasets. HCN-II is representative of the hierarchical concatenation network 

for feature extraction, and the ‘distance to mean’ similarity measure is best suited for 

the classification process. The study of HCN algorithm has achieved its ability to 

classify two types of dataset (artificial handwritten digits datasets) to represent feature 

extraction and concatenation from the computers term with the consideration of human 

behaviour in seeing and combining features of objects. 
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Chapter 7  

Conclusions and Future Work 

 

 

 

7.1. General Conclusion 

The focus in this thesis was to design, implement, and evaluate the proposed algorithm 

called HCN (Hierarchical Concatenation Network) that tried to follow the humans’ 

behaviour in recognizing simple patterns. This was achieved by describing humans’ 

perspective when they see the differences between two images. The process is to 

compare each feature that constructs the whole image. It was then followed by 

proposing the same process that suits with the computers term, considering position 

exchange between the tested and reference images for feature extraction process, and 

finding the similarity measure that suitable for classification. The algorithm for 

activating the upper layers’ features was proposed by assigning value ‘1’ for active 

features. This feature activation method is then called as HCN-I. This algorithm was 

then modified by involving the weight of features in upper layers’ features activation, 

called HCN-II. Shifting the image and involving the middle area of image during 

scanning process were considered to influence the result of similarity measure. A 

series of experiments were performed based on the position of the tested and reference 

patterns (“many to one” and “one to many”), the feature activation process (HCN-I 

and HCN-II), the implementation of sequential and non-sequential image shifting, and 

overlapping and non-overlapping the middle area of image to measure the similarity 

between the tested and reference patterns. Finally, several classification methods were 

evaluated to perform suitable classification process within HCN. A summary of 

contribution made in this thesis are outlined, followed by suggestion of future work in 

the field. 
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7.2. Research Contributions 

The literature review in Chapter 2 reveals the significant gaps in feature concatenation 

and activation studies. In this thesis, the contribution were made in the following area 

areas: 

1. Outside of this thesis, there is no investigation into feature extraction using other 

features as the reference and no support on how to represent upper layers’ features. 

However, Chapter 4 (Sections 4.1 and 4.2) of this study explores this. It can be 

seen that before conducting feature extraction, the input image can be processed. 

When inputs are binarised, the reference patterns can extract their own features, 

in all layers, while the tested patterns use the reference patterns’ features to extract 

features in Layers 2 to 4. Feature extraction from both the reference and tested 

pattern is carried out with the following steps: 

a. The binary image is extracted using a coincidence array in each layer. 

b. The activation groups of the reference pattern are constructed within the 

coincidence array of the upper layer. 

c. In HCN-I, the upper layer features of the reference pattern are represented by 

decimal numbers, converted from the number of vector bits in the activation 

group. The features of the tested pattern, in the upper layers, are the product 

of feature activation, and the tested pattern’s features are activated based on 

the number of similar bits within the vector of the activation group. If a tested 

pattern has a feature that is similar to a feature within the activation group, 

the corresponding bit in the activation group is activated. 

d. In HCN-II, the activation group involves the occurrence of features within the 

upper layers’ coincidence array. The activation group therefore contains 

unique features that are multiplied by their occurrences. 

 

2. As the proposed feature extraction uses other pattern’s features to extract features 

of a pattern, there is no supporting information that the exchanging position 

between the tested and reference pattern could lead different result.  
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The position exchange increases the similarity rate between the tested and reference 

patterns, and in this research, two methods of pattern exchange are investigated: the 

‘one to many’ method and the ‘many to one’ method.  

a. The ‘one to many’ method extracts the features of the reference pattern from 

the tested pattern’s side. In other words, the tested pattern is used to extract 

the features of the reference pattern. 

b. The ‘many to one’ method uses the reference pattern as the reference for 

extraction of the tested pattern’s features. 

c. The preferred HCN feature extraction method is selected as HCN-II using the 

‘many to one’ extraction method. Results show that this method gives better 

results than HCN-I when using either the ‘many to one’ or ‘one to many’ 

method. 

 

3. There is depth investigation on the number of layer of the network. 

Majority of previous works use fixed number of layer in the network. In this thesis, 

the network was designed to have four layers, as the output will be the concatenation 

of four nodes on layer 4. It is important to know whether HCN should have four layers 

or not. Before the classification method was constructed, the experiment on similarity 

measured was investigated on each layer (see section 4.3). A tested pattern will have 

100% similar to itself on all layers, but its similarity rate will decrease from layers 2 

to 4 when the reference patterns are other patterns. Even though other patterns looks 

similar from human point of view. During the construction of classification method, 

the classification rate on each layer was measured. Table 6.25 on section 6.5 shows 

that HCN can achieve its best performance with only two layers. 

 

4. This study investigates classification rates using a ‘union’ operation that follows 

the way humans group the features of patterns into classes. 

a. In this thesis, ‘classification by union’ is conducted by grouping the features 

of the reference patterns in the same class so that each reference class ends 

up having a unique representative feature. To measure the similarity of a 

tested pattern against each of the classes, the similarity rate between the 

features of the tested pattern and each available class is calculated. 
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Classification into a class is then decided by assigning the highest rate of 

similarity.  

b. ‘Classification by average’, on the other hand, calculates the mean of 

similarity between a tested pattern and all members of a class. This method 

gives better results in terms of similarity using HCN-I.  

c. A standard Euclidean distance is used in the experiments. The ‘distance to 

mean’ measure, which measures the distance between a tested pattern and the 

mean value of the reference pattern’s features within a class, gives better 

results than both the ‘mean of distance’ measure and the ‘minimum distance’ 

measure. The best results are implemented in HCN-II using the ‘many to one’ 

method. ‘Mean of distance’ is the average distance between a tested pattern 

and all patterns in a class. ‘Minimum distance’ is the minimum distance 

between a tested pattern and a member of one class. 

 

7.2.1. Summary of Major Contributions 

The major research contributions in this thesis are listed below: 

a. Design of a hierarchical concatenation network 

b. Implementation of scanning algorithms on a network’s layers 

c. Two new approaches to extraction of a pattern with another pattern’s features, 

namely the ‘one to many’ method and the ‘many to one’ method 

d. Implementation of two new feature activation systems called HCN-I and HCN-

II 

e. Investigation into different similarity measures for classification purposes, 

using union, average, and distance measures 

 

7.3. Suggestion for Future Work 

The results in this thesis give some direction for future researchers to replicate the way 

humans recognise patterns or objects. The most important idea to come out of this 

research is the need for significant development into replicating the way humans 

concatenate the smaller parts of the object being recognised. Also, because the 
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hierarchical concatenation network in this thesis represents features as numbers, future 

development of the algorithm may instead look at representing these features as 

standard geometry shapes such as lines, curvatures, circles, squares, etc. 

A work conducted by (Y. Zhang, Cao, & Wang, 2015) shows that a face recognition 

algorithm based on local binaries and implemented on a Virtex-7 FPGA has a 

recognition speed 74 times faster than a software version implemented on a PC 

platform. Tapiador, Rios-Navarro et al. (2016) investigate the time consumption 

difference between a Virtex-7 FPGA and a Titan X GPU to run a binary convolutional 

neural network algorithm. The results show that the FPGA is 8.3 times faster than the 

GPU. For the algorithm proposed in this thesis, future extraction is computationally 

expensive; future works could therefore investigate hardware implementation of the 

HCN algorithm. 

As we have seen, replicating human intelligence is not an easy task. Researchers from 

many different areas, such as psychology, mathematics, computer science, electronics, 

etc., should be involved in development of the field. The interaction of researchers 

from different disciplines could reveal new opportunities for progress in this 

challenging but fascinating area. 
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Appendix A 
 

Statement for the availability of research docs and codes, contact A/Prof. Cesar 

Ortega-Sanchez at C.Ortega@exchange.curtin.edu.au to access them. The documents 

are located in a folder named ‘16306215.’ To use the files in this folder, read the 

ReadMe.txt file which describe the contains of the folder and the instruction of how to 

use the code. 
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