777 research outputs found

    Renormalized energy concentration in random matrices

    Get PDF
    We define a "renormalized energy" as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of [SS1,SS3]. Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix β\beta-sine processes on the real line (beta=1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the beta=2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.Comment: last version, to appear in Communications in Mathematical Physic

    Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process

    Full text link
    Consider the zero set of the random power series f(z)=sum a_n z^n with i.i.d. complex Gaussian coefficients a_n. We show that these zeros form a determinantal process: more precisely, their joint intensity can be written as a minor of the Bergman kernel. We show that the number of zeros of f in a disk of radius r about the origin has the same distribution as the sum of independent {0,1}-valued random variables X_k, where P(X_k=1)=r^{2k}. Moreover, the set of absolute values of the zeros of f has the same distribution as the set {U_k^{1/2k}} where the U_k are i.i.d. random variables uniform in [0,1]. The repulsion between zeros can be studied via a dynamic version where the coefficients perform Brownian motion; we show that this dynamics is conformally invariant.Comment: 37 pages, 2 figures, updated proof

    A Universality Property of Gaussian Analytic Functions

    Full text link
    We consider random analytic functions defined on the unit disk of the complex plane as power series such that the coefficients are i.i.d., complex valued random variables, with mean zero and unit variance. For the case of complex Gaussian coefficients, Peres and Vir\'ag showed that the zero set forms a determinantal point process with the Bergman kernel. We show that for general choices of random coefficients, the zero set is asymptotically given by the same distribution near the boundary of the disk, which expresses a universality property. The proof is elementary and general.Comment: 7 pages. In the new version we shortened the proof. The original arXiv submission is longer and more self-containe

    Time-frequency transforms of white noises and Gaussian analytic functions

    Get PDF
    A family of Gaussian analytic functions (GAFs) has recently been linked to the Gabor transform of white Gaussian noise [Bardenet et al., 2017]. This answered pioneering work by Flandrin [2015], who observed that the zeros of the Gabor transform of white noise had a very regular distribution and proposed filtering algorithms based on the zeros of a spectrogram. The mathematical link with GAFs provides a wealth of probabilistic results to inform the design of such signal processing procedures. In this paper, we study in a systematic way the link between GAFs and a class of time-frequency transforms of Gaussian white noises on Hilbert spaces of signals. Our main observation is a conceptual correspondence between pairs (transform, GAF) and generating functions for classical orthogonal polynomials. This correspondence covers some classical time-frequency transforms, such as the Gabor transform and the Daubechies-Paul analytic wavelet transform. It also unveils new windowed discrete Fourier transforms, which map white noises to fundamental GAFs. All these transforms may thus be of interest to the research program `filtering with zeros'. We also identify the GAF whose zeros are the extrema of the Gabor transform of the white noise and derive their first intensity. Moreover, we discuss important subtleties in defining a white noise and its transform on infinite dimensional Hilbert spaces. Finally, we provide quantitative estimates concerning the finite-dimensional approximations of these white noises, which is of practical interest when it comes to implementing signal processing algorithms based on GAFs.Comment: to appear in Applied and Computational Harmonic Analysi

    Local Central Limit Theorem for Determinantal Point Processes

    Get PDF
    We prove a local central limit theorem (LCLT) for the number of points N(J)N(J) in a region JJ in Rd\mathbb R^d specified by a determinantal point process with an Hermitian kernel. The only assumption is that the variance of N(J)N(J) tends to infinity as J|J| \to \infty. This extends a previous result giving a weaker central limit theorem (CLT) for these systems. Our result relies on the fact that the Lee-Yang zeros of the generating function for {E(k;J)}\{E(k;J)\} --- the probabilities of there being exactly kk points in JJ --- all lie on the negative real zz-axis. In particular, the result applies to the scaled bulk eigenvalue distribution for the Gaussian Unitary Ensemble (GUE) and that of the Ginibre ensemble. For the GUE we can also treat the properly scaled edge eigenvalue distribution. Using identities between gap probabilities, the LCLT can be extended to bulk eigenvalues of the Gaussian Symplectic Ensemble (GSE). A LCLT is also established for the probability density function of the kk-th largest eigenvalue at the soft edge, and of the spacing between kk-th neigbors in the bulk.Comment: 12 pages; claims relating to LCLT for Pfaffian point processes of version 1 withdrawn in version 2 and replaced by determinantal point processes; improved presentation version
    corecore