34 research outputs found

    A Generative Model For Zero Shot Learning Using Conditional Variational Autoencoders

    Full text link
    Zero shot learning in Image Classification refers to the setting where images from some novel classes are absent in the training data but other information such as natural language descriptions or attribute vectors of the classes are available. This setting is important in the real world since one may not be able to obtain images of all the possible classes at training. While previous approaches have tried to model the relationship between the class attribute space and the image space via some kind of a transfer function in order to model the image space correspondingly to an unseen class, we take a different approach and try to generate the samples from the given attributes, using a conditional variational autoencoder, and use the generated samples for classification of the unseen classes. By extensive testing on four benchmark datasets, we show that our model outperforms the state of the art, particularly in the more realistic generalized setting, where the training classes can also appear at the test time along with the novel classes

    Generalized Zero-Shot Learning via Synthesized Examples

    Full text link
    We present a generative framework for generalized zero-shot learning where the training and test classes are not necessarily disjoint. Built upon a variational autoencoder based architecture, consisting of a probabilistic encoder and a probabilistic conditional decoder, our model can generate novel exemplars from seen/unseen classes, given their respective class attributes. These exemplars can subsequently be used to train any off-the-shelf classification model. One of the key aspects of our encoder-decoder architecture is a feedback-driven mechanism in which a discriminator (a multivariate regressor) learns to map the generated exemplars to the corresponding class attribute vectors, leading to an improved generator. Our model's ability to generate and leverage examples from unseen classes to train the classification model naturally helps to mitigate the bias towards predicting seen classes in generalized zero-shot learning settings. Through a comprehensive set of experiments, we show that our model outperforms several state-of-the-art methods, on several benchmark datasets, for both standard as well as generalized zero-shot learning.Comment: Accepted in CVPR'1

    Zero-Annotation Object Detection with Web Knowledge Transfer

    Full text link
    Object detection is one of the major problems in computer vision, and has been extensively studied. Most of the existing detection works rely on labor-intensive supervision, such as ground truth bounding boxes of objects or at least image-level annotations. On the contrary, we propose an object detection method that does not require any form of human annotation on target tasks, by exploiting freely available web images. In order to facilitate effective knowledge transfer from web images, we introduce a multi-instance multi-label domain adaption learning framework with two key innovations. First of all, we propose an instance-level adversarial domain adaptation network with attention on foreground objects to transfer the object appearances from web domain to target domain. Second, to preserve the class-specific semantic structure of transferred object features, we propose a simultaneous transfer mechanism to transfer the supervision across domains through pseudo strong label generation. With our end-to-end framework that simultaneously learns a weakly supervised detector and transfers knowledge across domains, we achieved significant improvements over baseline methods on the benchmark datasets.Comment: Accepted in ECCV 201

    Automatic Discovery, Association Estimation and Learning of Semantic Attributes for a Thousand Categories

    Full text link
    Attribute-based recognition models, due to their impressive performance and their ability to generalize well on novel categories, have been widely adopted for many computer vision applications. However, usually both the attribute vocabulary and the class-attribute associations have to be provided manually by domain experts or large number of annotators. This is very costly and not necessarily optimal regarding recognition performance, and most importantly, it limits the applicability of attribute-based models to large scale data sets. To tackle this problem, we propose an end-to-end unsupervised attribute learning approach. We utilize online text corpora to automatically discover a salient and discriminative vocabulary that correlates well with the human concept of semantic attributes. Moreover, we propose a deep convolutional model to optimize class-attribute associations with a linguistic prior that accounts for noise and missing data in text. In a thorough evaluation on ImageNet, we demonstrate that our model is able to efficiently discover and learn semantic attributes at a large scale. Furthermore, we demonstrate that our model outperforms the state-of-the-art in zero-shot learning on three data sets: ImageNet, Animals with Attributes and aPascal/aYahoo. Finally, we enable attribute-based learning on ImageNet and will share the attributes and associations for future research.Comment: Accepted as a conference paper at CVPR 201
    corecore