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Abstract

Object recognition by zero-shot learning (ZSL) aims to
recognise objects without seeing any visual examples by
learning knowledge transfer between seen and unseen ob-
ject classes. This is typically achieved by exploring a se-
mantic embedding space such as attribute space or seman-
tic word vector space. In such a space, both seen and un-
seen class labels, as well as image features can be embed-
ded (projected), and the similarity between them can thus
be measured directly. Existing works differ in what embed-
ding space is used and how to project the visual data into
the semantic embedding space. Yet, they all measure the
similarity in the space using a conventional distance metric
(e.g. cosine) that does not consider the rich intrinsic struc-
ture, i.e. semantic manifold, of the semantic categories in
the embedding space. In this paper we propose to model the
semantic manifold in an embedding space using a semantic
class label graph. The semantic manifold structure is used
to redefine the distance metric in the semantic embedding
space for more effective ZSL. The proposed semantic man-
ifold distance is computed using a novel absorbing Markov
chain process (AMP), which has a very efficient closed-
form solution. The proposed new model improves upon and
seamlessly unifies various existing ZSL algorithms. Exten-
sive experiments on both the large scale ImageNet dataset
and the widely used Animal with Attribute (AwA) dataset
show that our model outperforms significantly the state-of-
the-arts.

1. Introduction
Zero-shot learning (ZSL) for large scale visual object

recognition has received increasing attention recently [9,
16, 23, 26, 25, 21, 17, 11]. This is because although virtu-
ally unlimited images are available via social media sharing
websites such as Flickr, there are still not enough annotated
images for building a model for recognising a large num-
ber of visual object classes. ZSL aims to imitate humans’
ability to recognise a new class without seeing any visual

examples. A human has that ability because one is able to
relate an unseen object class with the seen classes based on
its semantic description. For example, assuming a child can
recognise a horse; having been told that a zebra is more-or-
less like a horse but with black-and-white stripes, the child
has a good chance of recognising a zebra the first time it is
seen. Similarly a zero-shot learning method for visual clas-
sification relies on the existence of a labelled training set
of seen classes and the knowledge about how each unseen
class is semantically related to the seen classes.

The seen and unseen object classes can be related in a
semantic embedding space where each class label/name is
represented as a high dimensional vector. The spaces used
by most early works are based on semantic attributes [16].
Given a defined attribute ontology, each class name can be
converted to a binary attribute vector. More recently, em-
bedding based on semantic word space has started to gain
popularity [10, 21, 29]. Better scalability is typically the
motivation for this approach as no manually defined ontol-
ogy is required and the space is learned using a vast unan-
notated text corpus by natural language processing. Such
an approach can embed any class name for free (vs. costly
labelling of attributes and ontology thereof). Regardless the
space used, the embedded class name (a vector) is called a
prototype of that class [11].

Given a semantic embedding space and a set of seen and
unseen class prototypes, the semantic relatedness between
an unseen class and each seen class can be measured as a
distance between the two class prototypes. However, an
image of a visual object is represented by a visual feature
vector; its distance to the unseen class prototypes in the se-
mantic embedding space cannot be measured directly. Ex-
isting methods for solving this problem fall into two cat-
egories. The first category (Fig. 1(a)) relies on learning a
n-way discrete classifier for the seen classes in the visual
feature space, which is then used to compute the visual sim-
ilarity between an image of unseen class to those of the seen
classes. These seen classes serve as the mediators for the
unseen classes and the test images [2]. Specifically, the se-
mantic relatedness between the seen and unseen classes is
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Figure 1. Our Absorbing Markov chain process (AMP) based zero-
shot learning framework unifies Semantic Relatedness (SR) and
Semantic Embedding (SE) based methods for ZSL. Given an un-
seen class image, x and Px are the visual feature vector and its
projection in the embedding space respectively. The seen and un-
seen class prototypes are denoted as y and z respectively.

modelled by the distance between their prototypes, or the
knowledge from linguistic processing [26]. Such seman-
tic relatedness (similarity) is then compared with the visual
similarity and the image is classified to an unseen class if
the two types of similarities against the mediators, i.e. seen
classes, match. In contrast, methods in the second category
(Fig. 1(c)) are based on embedding directly the visual fea-
ture vectors into a semantic embedding space [1, 10, 29].
This is typically achieved by learning a projection function
between the visual feature space and the semantic embed-
ding space. Such a function is learned from the labelled
training visual data consisting of seen classes only. After
this visual feature embedding (mapping) process, zero-shot
classification is performed directly by measuring similarity
using nearest neighbour (NN) or its probabilistic variants
such as direct attribute prediction (DAP) [16]. These two
categories are denoted in this paper as Semantic Related-
ness (SR) and Semantic Embedding (SE) respectively.

A common characteristic of existing ZSL models from
both approaches is that they all rely critically on computing
the similarity distance in the semantic embedding space. All
existing methods adopt a conventional distance metric com-
puted directly in the embedding space. However, as shown
in Fig. 2, the distribution of the semantic class prototypes in
the semantic embedding space has a rich intrinsic manifold
structure. Existing direct distance metrics ignore such struc-
ture therefore are suboptimal. In this work, we explore this
semantic manifold structure in order to define a new simi-

 

 
Food

Invertebrate

Canine

Bird

Instrument

Vehicle

Structure

Covering

Figure 2. An example of semantic manifold. We group the classes
from ImageNet 2012 1K dataset into eight superclasses (food, in-
vertebrate, canine, bird, instrument, vehicle, structure and cover-
ing) according to [5] and visualise the 1,000D word2vec embed-
ding [20] into 2D low-dimensional space using t-SNE [30] in 2D.
It is evident that a semantic manifold structure exists and the ob-
ject classes from the same superclass lie in the same manifold. In
this work, we formulate a semantic manifold constrained similar-
ity distance to solve the zero-shot learning problem.

larity distance metric between a test image and the unseen
class prototypes for ZSL. We formulate a representation of
this structure using a semantic graph where each class is a
node and the connectivity on the graph is determined by the
semantic relatedness between classes.

By exploiting the semantic manifold, we can measure a
semantic distance based on two assumptions: (1) If the pro-
jection of a test image and an unseen class prototype are
connected by strongly related seen class prototypes, they
should be “close” (small distance or high similarity) on the
manifold, and thus likely to have the same class label. We
call this the connectivity assumption. For example, the se-
mantic concepts grass, tree and snake are strongly related
because they usually appear in the same context, i.e. for-
est, although the superclass of snake is different with that of
grass and tree. If a test image and an unseen class prototype
are all close to the structure (context) formed by grass, tree
and snake, they are likely to have the same label, e.g. an ani-
mal living in forest. (2) If the projection of a test image and
an unseen class prototype are on the same local structure
(typically referred to as a cluster or a local manifold), they
are likely to have the same label. This assumption is often
called the cluster assumption [27, 3, 32]. For example, if a
test image and an unseen class prototype fall into the same
local manifold (e.g. bird in Fig. 2), they are likely to have
the same label, e.g. a specific type of bird.

Based on the proposed semantic manifold representa-
tion and two assumptions above, a novel zero-shot learn-
ing (ZSL) algorithm is formulated. Specifically, given an



embedding space and a semantic graph representing the
structure of the underlying semantic manifold (Figs. 1(b)
and 1(d)), we first ‘connect’ the visual feature vector of
a test image to a set of seen class nodes on the graph.
This is achieved by either a n-way seen class classifier
(Fig. 1(b)) or the semantic embedding of the visual feature
vectors (Fig. 1(d)). For measuring the similarity distance
between the image and any unseen class on the semantic
manifold, we design a special Absorbing Markov chain Pro-
cess (AMP), by which the seen class nodes are the transient
states and the unseen class nodes are the absorbing states.
Our Markov chain process starts from the test image node
and ends (absorbed) in one of the absorbing states (unseen
class nodes), which indicates to which unseen class this test
image belongs. The proposed AMP model has a closed-
form solution that is very efficient to compute. Further-
more, as shown in Figs. 1(b) and 1(d), our semantic man-
ifold based AMP ZSL algorithm can be used in conjunc-
tion with any existing semantic relatedness or semantic em-
bedding based ZSL method given any semantic embedding
space, because different methods and spaces can be used to
compute the graph connectivity and transition probabilities
between nodes on the same semantic graph.

Our contributions are three-folds: (1) We propose a man-
ifold representation of a semantic embedding space using
a semantic graph of object class prototypes for exploring
a richer semantic distance in ZSL. (2) A novel Absorbing
Markov chain Process (AMP) is formulated on the seman-
tic graph which leads to a closed-form efficient ZSL algo-
rithm. (3) The proposed semantic manifold and AMP algo-
rithm improve upon and seamlessly unify various existing
ZSL learning algorithms and different semantic embedding
spaces. Extensive experiments on both the large scale Ima-
geNet dataset [5] and the widely used Animal with Attribute
(AwA) dataset [15] show that our model significantly out-
performs the state-of-the-arts.

2. Related Work
Existing ZSL methods differ in the semantic spaces used

and how the knowledge is transferred from the seen to un-
seen object classes. Despite its earlier dominance, attribute
based embedding spaces [16, 23, 8, 7, 1, 12] are giving
away to semantic word vector based spaces [22, 29, 10, 11]
due to the latter’s advantage for scalability. This is because
whilst the primary objective of ZSL is to solve the large
scale learning problem without exhaustive labelling of data,
manually defining an attribute ontology for each and every
object class does not scale well.

Given a semantic space, either a visual feature semantic
embedding approach or a n-way seen class classifier based
semantic relatedness mapping strategy can be adopted, with
the former being more popular than the latter. Examples of
the semantic embedding (SE) strategy are direct attribute

prediction (DAP) [16] and its variant [10]. Recently Fu et
al. [11] pointed out that this strategy however suffers from
a projection domain shift problem – the visual feature map-
ping (embedding) learned from the seen class data may not
generalise well to the unseen class data, which is an implicit
assumption for semantic embedding based ZSL. They pro-
posed a transductive multi-view embedding framework to
solve this problem. Our semantic manifold can inherently
solve the projection domain shift problem. This is because
we measure a manifold constrained semantic graph distance
rather than a direct cosine distance between the embedded
visual feature vectors and the unseen class prototypes. Crit-
ically, our method is not transductive, that is, we do not as-
sume that the full test dataset containing unlabelled visual
examples of all unseen classes is available for learning.

In contrast, the semantic relatedness (SR) based ZSL
strategy has been less popular [15, 21], partly due to the
task of learning a good n-way probabilistic classifier being
formidable. However, recent works have reported impres-
sive classification accuracy over 1,000 classes [14] using
deep convolutional neural network learned classifiers. This
advance on deep learning is removing the barrier to adopt-
ing the semantic relatedness approach to ZSL, given that
such a strategy is potentially more advantageous over the
semantic embedding approach [15, 21]. In this work, we
provide a unified framework to enable both strategies to be
combined in our AMP algorithm, resulting in an overall bet-
ter model as demonstrated in our extensive experiments.

We should point out that the idea of exploiting the class
label relationship as a graph is not entirely new, e.g. the
WordNet has been exploited widely for transfer learning in
visual recognition [26]. More recently, a specific type of
label relation graph, the Hierarchy and Exclusion (HEX)
graph [4] is employed for large scale visual recognition
learning tasks including ZSL. The HEX is a hierarchical
graph of class labels, while our semantic graph is an undi-
rected graph of class prototypes in a semantic embedding
space, designed for representing the manifold structure in
that space. To our best knowledge, this work is the first
attempt to explore the manifold structure of and derive a se-
mantic graph distance for a semantic embedding space. Our
experiments show that our model significantly outperforms
the HEX graph model of [4] on the ZSL task.

3. Methodology
3.1. Problem Definition

Let Y = {y1, . . . , yp} denotes a set of p seen class labels
and Z = {z1, . . . , zq} a set of q unseen class labels. These
two sets of labels are disjoint, i.e. Y ∩ Z = ∅. We are
given a labelled training dataset XY = {(xj , yj)} where
xj is a d-dimensional feature vector extracted from the j-
th labelled image and yj ∈ Y . In addition, a test dataset
XZ = {(xi, yi)} is provided where xi is a d-dimensional
feature vector extracted from the i-th unlabelled test image



and the unknown yi ∈ Z . The goal of ZSL is to learn a
classifier f : X → Z to predict yi.

3.2. Semantic Embedding Space
For any ZSL method, the similarity or semantic relat-

edness between seen and unseen classes needs to be com-
puted. This is typically achieved by a semantic embedding
space. In this work, two of the most widely used spaces are
considered: attribute space and semantic word vector space.
For an attribute space, a manually defined attribute ontology
is required, with which each class label is represented in the
attribute space (its dimension is the number of attributes).
An attribute vector is denoted as yA

j . For a word vector
space, similar to [29, 10, 11], we adopt the skip-gram text
model introduced in [19, 20]. This language sentence model
learns from a large text corpus to represent each English
word (and bi-gram) as a fixed-length continuous embedding
vector yV

j , so that semantically related words (e.g. horse
and zebra) are adjacent in this embedding space.

The semantic space is used for two purposes in a ZSL
learning framework: (1) To measure the semantic related-
ness between different classes by computing a distance be-
tween their corresponding prototypes, and (2) to measure
the semantic similarity between a test image and a class pro-
totype. For this purpose, the visual feature vector xi needs
to be projected into the semantic space and represented as
xA
i or xV

i depending on which embedding space is used.
This projection can be realised by classification [15] or re-
gression [29, 10, 11].

3.3. Semantic Graph
Next we describe how to represent the manifold structure

of a semantic embedding space by constructing a graph.
A semantic graph is constructed as a k-nearest-neighbour
graph using the seen and unseen class prototypes. On the
semantic graph, each class prototype (regardless seen or un-
seen) will have a corresponding graph node which is con-
nected with its k most similar (semantically related) other
classes. This definition of similarity is based on a distance
between two class prototypes in the semantic embedding
space. Note, the unseen class nodes are only connected with
the seen class nodes. The reason is explained below (Sec.
3.4). The edge weight wij of the semantic graph is the simi-
larity between two end nodes of an edge. More details about
the semantic graph construction are given in Sec. 4.

3.4. Absorbing Markov Chain Process
We define an absorbing Markov chain process on the se-

mantic graph as follows. Each unseen class node is viewed
as an absorbing state and each seen class node is viewed as
a transient state, whilst the transition probability from class
node i to class node j is pij = wij/

∑
j wij , i.e. the nor-

malised similarity. An absorbing state means that for each
unseen class node i, we have pii = 1 and pij = 0 for i 6= j.
Note that since all of the unseen class nodes are absorbing
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Figure 3. After incorporating a test image into a semantic graph,
zero-shot learning can be viewed as an extended absorbing
Markov chain process (AMP) on the graph.

states, any path generated by the absorbing Markov chain
process will not include more than one unseen class node.
This is also why each unseen class node is only connected
to seen class nodes.

We re-number the class nodes (as states in a Markov pro-
cess) so that the seen class nodes (transient states) come
first. Then, the transition matrix P of the above absorbing
Markov chain process has the following canonical form:

P =

(
Qp×p Rp×q
0q×p Iq×q

)
. (1)

In Eq. (1), Qp×p describes the probability of transition-
ing from a transient state (seen class) to another, Rp×q de-
scribes the probability of transitioning from a transient state
(seen class) to an absorbing state (unseen class). In addi-
tion, 0q×p and the identity matrix Iq×q denote that the ab-
sorbing Markov chain process cannot leave the absorbing
states once it arrives.

3.5. Zero-shot Classification
For zero-shot learning, i.e. predicting the label yi of an

unseen test image xi, we first need to incorporate xi into the
semantic graph. This is followed by applying an extended
absorbing Markov chain process (see Fig. 3). In order to
incorporate a test image xi into the semantic graph, it is
connected with a selected set of K seen class nodes. There
are two ways by which the seen class nodes are selected for
connection, depending on whether a n-way seen class clas-
sifier plus semantic relatedness (SR) strategy or a visual fea-
ture semantic embedding (SE) strategy is adopted (Sec. 2).
More specifically, if the former is taken, we utilise the train-
ing dataset XY to learn a n-way probabilistic classifier in
the visual feature space for seen classes. For a test image
xi /∈ XY , the classifier can provide a probability pr(yj |xi)
of image xi belonging to the seen class yj . If the second
strategy is adopted, the test image xi is projected into the
embedding space and becomes xA

i or xV
i (Sec. 3.2) and the



seen class nodes with the K smallest distance are selected.
More precisely, the similarity between xA

i or xV
i and the

prototype of the seen class j, yA
j or yV

j can be computed
as sij . Then we normalise the similarity as the probabil-
ity pe(yj |xi) = sij/

∑
j sij . The node representing image

xi is then connected to the seen classes with the K highest
probabilities. In addition, our framework combines these
two strategies by averaging the probability pr from seman-
tic relatedness and the probability pe from semantic embed-
ding, which gives pc = (pr+pe)/2. Given the probabilities,
we have Ti = [tij ]1×p as a row vector of p elements. Each
element is tij = p(yj |xi) which can be computed using ei-
ther pr, pe or pc depending on whether a SR, SE, or SR+SE
strategy is adopted.

Each test image xi is incorporated into the semantic
graph as a transient state. Specifically, for xi, there is no
stepping in probabilities and the Markov process can only
step out from xi to other seen class nodes. The stepping out
probabilities from xi to seen class nodes are Ti, which are
the probabilities computed using the seen class classifiers
or embedding as described above. The transition matrix P̃
of the extended absorbing Markov chain process have the
following canonical form:

P̃ =

 Qp×p 0p×1 Rp×q
(Ti)1×p 01×1 01×q

0q×(p+1) Iq×q

 . (2)

In the meanwhile, the extended transition matrix on all tran-
sient states, including all seen class nodes and one extra test
image node xi, are written as

Q̃(p+1)×(p+1) =

(
Qp×p 0p×1
(Ti)1×p 01×1

)
, (3)

and the extended transition matrix between transient states
and absorbing states should be

R̃(p+1)×q =

(
Rp×q
01×q

)
. (4)

In the extended semantic graph, it is obvious that if the test
image xi is close to one unseen class node, e.g. zj , on the
semantic graph, the absorbing Markov chain process that
starts from xi will have a high probability to be absorbed at
zj . Thus, the probability of xi being labelled as the unseen
class label represented by zj should be high. Note that this
absorbing probability is determined solely by the structure
of the semantic manifold.

Formally, the absorbing probability bij is the probability
that the absorbing Markov chain will be absorbed in the ab-
sorbing state sj if it starts from the transient state si. The
absorbing probability matrix B̃ = [bij ](p+1)×q can be com-
puted as follows:

B̃ = Ñ × R̃, (5)

in which Ñ is the fundamental matrix of the extended ab-
sorbing Markov chain process and is defined as follows:

Ñ(p+1)×(p+1) = (I−Q̃)−1 =

(
Ip×p −Qp×p 0p×1
−(Ti)1×p 1

)−1
.

(6)
We use the following block matrix inversion formula to
compute Ñ . (

A B
C D

)−1
=

(
E F
G H

)
, (7)

in which we have{
G = −(D − CA−1B)−1CA−1

H = (D − CA−1B)−1.
(8)

Since we only care about the absorbing probabilities for
the absorbing chain process starting from the test image
node xi, we only need to compute the last row of B̃, de-
noted as B̃p+1,· for xi (xi corresponds to the last transient
state in the extended canonical form in Eq. (2)). In particu-
lar, we can apply the above block matrix inversion formula
to compute the last row of Ñ as

Ñ(p+1),· =
(
(Ti)(I −Q)−1, 1

)
1×(p+1)

(9)

and then we further compute B̃p+1,· as

B̃p+1,· = (Ñ(p+1),·)× R̃ = Ti × (I −Q)−1R. (10)

For the whole test dataset with n images, we use a ma-
trix Sn×q to store the computed absorbing probabilities, in
which the i-th row Si,· of S equals to the absorbing prob-
abilities of xi. If we stack the results of all test images
together, we have the final matrix S as follows:

S = T (I −Q)−1R. (11)

In Eq. (11), T is a n× p matrix and (I −Q)−1R is a p× q
matrix that is only related to the semantic graph structure
and can be pre-computed. The only dimension variable in
Eq. (11) is the number of test images n. Therefore, our
method is linear with respect to the number of test images.
Moreover, since the seen class number p and unseen class
number q are usually much smaller than the instance num-
ber, the matrix (I−Q)−1R can be computed very efficiently
and computed only once.

Finally, for the test image xi, we assign it to the unseen
label that has the maximum absorbing probability when the
absorbing chain starts from xi. Finally, our ZSL classifer is

f(xi) = argmax
zj

Si,j (12)

Note, although we use the graph based formulation, un-
like [11] our AMP method is not a transductive method.



The semantic graph in our approach is only related to the
seen/unseen class prototypes. Once the semantic graph is
constructed, it is fixed and used in the subsequent zero-shot
learning process. In addition, it is noted in [11] that multi-
ple semantic embedding spaces contain complementary in-
formation thus should be combined for ZSL. This can be
easily achieved using AMP by averaging the similarity ma-
trices obtained on different spaces.

4. Experiments
4.1. Datasets and Settings
Datasets. Two datasets are chosen for our evaluations, Ima-
geNet and AwA. ImageNet [5] is a large scale image dataset
suitable for ZSL evaluation. In particular, we use the Ima-
geNet 2010 1K dataset, which consists of 1,000 categories
and more than 1.2 million images. We use the same train-
ing/test (seen/unseen) split as [18, 10] for fair comparison,
which gives 800 classes for training and 200 classes for test-
ing. Only a handful of previous works report results on Im-
ageNet, thus limiting our comparison. Therefore the AwA
(animals with attributes) dataset [15] is selected as the sec-
ond dataset, on which the majority of ZSL models proposed
so far have been tested. AwA provides 50 classes of animals
(30,475 images), and 85 associated class-level attributes.
Different from ImageNet, both attribute space and semantic
word space can be evaluated using the AwA dataset. AwA
also provides a defined seen/unseen split for ZSL with 10
classes and 6180 images held out as in [16].
Visual Features. On the ImageNet dataset, we pre-train a
deep convolutional neural network (CNN) using the training
dataset with 800 classes, following the model architecture in
[14]. After training, for each test image, the 4,096 dimen-
sional top-layer hidden unit activations (fc7) of the CNN are
taken as the features. On AwA, we also use the CNN feature
originally provided [28] as it has been shown recently to be
much more powerful than the low-level features originally
provided in [15].
Semantic Embedding Space. For the semantic embedding
space, semantic word vector space is used for both datasets.
We train the skip-gram text model [20, 19] on a corpus of
4.6M Wikipedia documents to form a 1000-D and a 100-
D word spaces for the ImageNet 2010 and AwA datasets
respectively. In addition, for AwA, each class label is rep-
resented as an 85D attribute vector in the attribute space.
The mapping/embedding of visual feature vector (4,096D)
into the 1000/100D word vector space is achieved using the
deep CNN model DeViSE [10]. On ImageNet 2010, we
set the margin = 0.1 as in [10], and on AwA, we set the
margin = 1. For learning the deep DeViSE model, we use
Stochastic Gradient Descent (SGD) with the step parameter
set to 0.05 as in [10] on both ImageNet and AwA. When
the sementic relatedness strategy is adopted, a n-way seen
class classifier needs to be learned from the training data.

We use the Liblinear toolbox [6] to train a L2-regularised
multi-class logistic regression classifier as in [16].
Semantic Graph. We use the k-nearest-neighbour to set
up the semantic graph (Sec. 3.4). At first, the seen class
prototypes are used to set up a semantic subgraph, in which
we use k = 10 on ImageNet and k = 2 and k = 3 respec-
tively for attribute and word2vec semantic space on AwA.
Then, the unseen classes are connected into the seen se-
mantic subgraph and each unseen class is connected to its
k-nearest seen class prototypes, in which we set k=20 on
ImageNet and k=8 and k=4 respectively for attribute and
word vector semantic space on AwA. For the attribute and
word vector prototypes, we compute the cosine similarity
as the edge weights. Finally, each test image is connected
to K nearest seen classes (Sec. 3.5). We set K=10 for Im-
ageNet and K=4 and K=10 respectively for attribute and
word vector semantic space on AwA. The effects of vary-
ing the values of these free parameters will be evaluated in
Sec. 4.4.

4.2. Evaluations on ImageNet

Method Result
ConSE [21] 28.5%
DeViSE [10] 31.8%

Mensink et al. [18] 35.7%
Rohrbach et al. [25] 34.8%

PST [24] 34.0%
Our AMP (SR+SE) 41.0%

Table 1. The hit@5 classification accuracy of compared methods
on ImageNet 2010 1K.

Competitors. Our method is compared against five state-
of-the-arts alternatives. They are either semantic related-
ness (SR) based or semantic embedding (SE) based, while
our method is based on a combination of semantic related-
ness and embedding (SR+SE). More specifically, Norouzi
et al.’s convex semantic embedding ZSL (ConSE) [21] is
SR based. As in our method, it learns a n-way probabilis-
tic classifier for the seen classes. The results for ConSE is
based on our own implementation so the same n-way clas-
sifier is used. In contrast, DeViSE [10] and Mensink et al.’s
metric learning based method [18] project the 4,096 CNN
features into the 1,000D word vector space. Like [11], PST
is a transductive ZSL method, which learns using the full
test dataset. In contrast, other four methods, including our
AMP, only use only the training dataset for model learning.
Comparative Results. The performance of different meth-
ods, evaluated using the flat hit@5 classification accuracy1

as in [18, 10, 25], is compared in Table 1. The result shows
that our method clearly outperforms the state-of-the-art al-

1Each image is deemed to be classified correctly if the correct label is
among the top 5 predicted labels.
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Figure 4. Qualitative results on ImageNet. For each image, the top 5 zero-shot predictions of our AMP and nearest neighbour (NN)
classifier, both trained on ImageNet 2010 800. Predictions are ordered by decreasing score, with correct predictions in bold.
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Figure 5. Evaluation of the contributions of individual novel com-
ponent of our model on ImageNet.

ternatives. Some qualitative results can be seen in Fig. 4.
This superior performance can be explained by our seman-
tic manifold based distance metric algorithm and the ability
to combine both the SE and SR strategies in a unified frame-
work. Next we investigate further how each of the these two
novel components contributes to the overall performance.
Contributions of Individual Novel Components. First,
we compare in Fig. 5 the performance of our method with
and without the AMP algorithm under semantic related-
ness (SR), semantic embedding (SE) and the combination
of both. Note, our SR model without AMP is equivalent

to the ConSE model, and our SE model without AMP is
equivalent to the DeViSE model. It can be observed that
(1) Both a semantic relatedness (i.e. ConSE) or semantic
embedding (i.e. DeViSE) based method can benefit from
our AMP framework. Interestingly, after incorporating our
AMP, the result of SR+AMP (SR with AMP) can achieve
36.5%, which is already higher than the state-of-the-art re-
sults on ImageNet 2010, i.e. DeViSE’s 31.8%, Mensink et
al.’s 35.7% and Rohrbach et al.’s 34.8%. When we use our
AMP to replace the nearest neighbour in DeViSE (based on
cosine distance), the performance has an almost 10% im-
provement. Some qualitative results are shown in Fig. 4. It
shows that compared to the cosine distance in nearest neigh-
bour ZSL, our semantic graph distance is much more mean-
ingful (e.g. not only the correct labels are predicted, closely
related labels are also ranked high). (2) After we combine
the SR and SE settings together, we can achieve our fi-
nal result 41.0%. However, without AMP (SE+SR without
AMP), the result of 30.2%, obtained by score level fusion
is even worse then SE (31.8%) without AMP alone. This
result suggests that the graph level fusion of both strategies
is superior to the simple score level fusion which may have
a negative effect. In conclusion both the semantic manifold
based distance metric and the combination of SE and SR
strategies contribute to our superior performance.



Method S. Space Feature Result
IAP [15] A L/C 42.2/44.5
DAP [15] A L/C 41.4/53.2
DS [26] W/A L/C 35.7/52.7

AHLE [1] A L 43.5
Yu et al. [31] A L 48.3

Jayaraman et al. [13] A L 43.0
TMV-BLP [11] A+W L 47.1
Deng et al. [4] A L/C 38.5/44.2

Our AMP (SR+SE) A+W C 66.0
Table 2. Results on AwA in classification accuracy (%). We com-
pare with the state-of-the-arts under different semantic embedding
spaces including word vector (W) and visual attribute (A). Two
types of features are used: low-level (L) and CNN (C) features.

4.3. Evaluations on AwA
Competitors. Compared to ImageNet, far more published
results on AwA are available, as compared in Table 2. Apart
from taking either a SR or SE based strategy, they also dif-
fer in the semantic embedding space used, as both the at-
tribute and word vector spaces are available for AwA. Both
[11] and our AMP model can exploit both spaces. How-
ever only our method is able to combine both the SR and
SE strategies. These models also differ in the feature space
used. The dataset provided low-level features (L) were used
in most studies. However, more recently the CNN features
(C) have been used [4]. Moreover, TMV-BLP [11] is trans-
ductive thus requires all test data for learning, and Yu et al
[31] uses additional human annotations.
Comparative Results. Table 2 shows that the best re-
sult is obtained using the proposed AMP (SR+SE) method,
with two observations: (1) In general using the CNN fea-
tures leads to better performance. Given CNN features, our
model outperforms significantly the other existing methods.
This is partly because we use the deep CNN model directly
to learn the projection rather than just extract the features.
(2) Our performance is much better than that of Deng et
al. [4] which exploits a semantic label graph. This shows
that exploiting a graph based manifold modelling of the se-
mantic embedding space is clearly more beneficial than in
the label space. Note that our results are obtained using a
manifold modelled by 50 class prototypes in AwA, which is
clearly insufficient to capture the rich intrinsic structure of
a semantic embedding space. We thus expect the result to
be further improved when more seen classes are added.
Contributions of Individual Novel Components. Similar
to the evaluation in the previous section on ImageNet, In
Fig. 6, we evaluate the contribution of the AMP algorithm,
and the combination of both SR and SE strategies. Similar
conclusions can be drawn, that is, both components help
and naive score level fusion of both strategies is inferior to
our coherent graph based fusion.
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Figure 6. Evaluation of the contributions of individual novel com-
ponent of our model on AwA.

4.4. Further Evaluations
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Figure 7. The performance (top-5 results in %) of our AMP meth-
ods with respect to different settings of the parameter K.

Parameter sensitivity. We evaluate the effect of setting
different values of K, i.e. the number of top similar seen
classes that a test image will connect, on ImageNet. From
Fig. 7, it is evident that different versions of our method
are all stable for different K value. Similar observation is
made for the other free parameter k, i.e. how many class
prototypes are connected with each node in the graph.
Running time. On a Tesla K20m GPU server, it takes on
average 5.13 milliseconds to classify a single test image on
ImageNet. This includes 5.08 milliseconds for mapping the
image into the word space using DeViSE. Our model is thus
extremely efficient.

5. Conclusion
We have introduced a novel zero-shot learning approach

based on formulating a semantic manifold distance. We
proposed an absorbing Markov chain process for ZSL clas-
sification with efficient closed-form solution. Importantly
the proposed a framework enables seamless fusion of ex-
isting semantic relatedness based and semantic embedding
based methods for ZSL. We have shown experimentally that
our method outperforms the state-of-the-arts methods for
ZSL on widely used benchmarks.
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