1,157 research outputs found

    Linear algebraic structure of zero-determinant strategies in repeated games

    Full text link
    Zero-determinant (ZD) strategies, a recently found novel class of strategies in repeated games, has attracted much attention in evolutionary game theory. A ZD strategy unilaterally enforces a linear relation between average payoffs of players. Although existence and evolutional stability of ZD strategies have been studied in simple games, their mathematical properties have not been well-known yet. For example, what happens when more than one players employ ZD strategies have not been clarified. In this paper, we provide a general framework for investigating situations where more than one players employ ZD strategies in terms of linear algebra. First, we theoretically prove that a set of linear relations of average payoffs enforced by ZD strategies always has solutions, which implies that incompatible linear relations are impossible. Second, we prove that linear payoff relations are independent of each other under some conditions. These results hold for general games with public monitoring including perfect-monitoring games. Furthermore, we provide a simple example of a two-player game in which one player can simultaneously enforce two linear relations, that is, simultaneously control her and her opponent's average payoffs. All of these results elucidate general mathematical properties of ZD strategies.Comment: 19 pages, 2 figure

    Evolutionary consequences of behavioral diversity

    Get PDF
    Iterated games provide a framework to describe social interactions among groups of individuals. Recent work stimulated by the discovery of "zero-determinant" strategies has rapidly expanded our ability to analyze such interactions. This body of work has primarily focused on games in which players face a simple binary choice, to "cooperate" or "defect". Real individuals, however, often exhibit behavioral diversity, varying their input to a social interaction both qualitatively and quantitatively. Here we explore how access to a greater diversity of behavioral choices impacts the evolution of social dynamics in finite populations. We show that, in public goods games, some two-choice strategies can nonetheless resist invasion by all possible multi-choice invaders, even while engaging in relatively little punishment. We also show that access to greater behavioral choice results in more "rugged " fitness landscapes, with populations able to stabilize cooperation at multiple levels of investment, such that choice facilitates cooperation when returns on investments are low, but hinders cooperation when returns on investments are high. Finally, we analyze iterated rock-paper-scissors games, whose non-transitive payoff structure means unilateral control is difficult and zero-determinant strategies do not exist in general. Despite this, we find that a large portion of multi-choice strategies can invade and resist invasion by strategies that lack behavioral diversity -- so that even well-mixed populations will tend to evolve behavioral diversity.Comment: 26 pages, 4 figure

    Small games and long memories promote cooperation

    Get PDF
    Complex social behaviors lie at the heart of many of the challenges facing evolutionary biology, sociology, economics, and beyond. For evolutionary biologists in particular the question is often how such behaviors can arise \textit{de novo} in a simple evolving system. How can group behaviors such as collective action, or decision making that accounts for memories of past experience, emerge and persist? Evolutionary game theory provides a framework for formalizing these questions and admitting them to rigorous study. Here we develop such a framework to study the evolution of sustained collective action in multi-player public-goods games, in which players have arbitrarily long memories of prior rounds of play and can react to their experience in an arbitrary way. To study this problem we construct a coordinate system for memory-mm strategies in iterated nn-player games that permits us to characterize all the cooperative strategies that resist invasion by any mutant strategy, and thus stabilize cooperative behavior. We show that while larger games inevitably make cooperation harder to evolve, there nevertheless always exists a positive volume of strategies that stabilize cooperation provided the population size is large enough. We also show that, when games are small, longer-memory strategies make cooperation easier to evolve, by increasing the number of ways to stabilize cooperation. Finally we explore the co-evolution of behavior and memory capacity, and we find that longer-memory strategies tend to evolve in small games, which in turn drives the evolution of cooperation even when the benefits for cooperation are low

    Evolutionary stable strategies in networked games: the influence of topology

    Full text link
    Evolutionary game theory is used to model the evolution of competing strategies in a population of players. Evolutionary stability of a strategy is a dynamic equilibrium, in which any competing mutated strategy would be wiped out from a population. If a strategy is weak evolutionarily stable, the competing strategy may manage to survive within the network. Understanding the network-related factors that affect the evolutionary stability of a strategy would be critical in making accurate predictions about the behaviour of a strategy in a real-world strategic decision making environment. In this work, we evaluate the effect of network topology on the evolutionary stability of a strategy. We focus on two well-known strategies known as the Zero-determinant strategy and the Pavlov strategy. Zero-determinant strategies have been shown to be evolutionarily unstable in a well-mixed population of players. We identify that the Zero-determinant strategy may survive, and may even dominate in a population of players connected through a non-homogeneous network. We introduce the concept of `topological stability' to denote this phenomenon. We argue that not only the network topology, but also the evolutionary process applied and the initial distribution of strategies are critical in determining the evolutionary stability of strategies. Further, we observe that topological stability could affect other well-known strategies as well, such as the general cooperator strategy and the cooperator strategy. Our observations suggest that the variation of evolutionary stability due to topological stability of strategies may be more prevalent in the social context of strategic evolution, in comparison to the biological context

    Unexploitable games and unbeatable strategies

    Full text link
    Imitation is a simple behavior which uses successful actions of others in order to handle one's tasks. Because success of imitation generally depends on whether profit of an imitating agent coincides with those of other agents or not, game theory is suitable for specifying situations where imitation can be successful. One of the concepts describing successfulness of imitation in repeated two-player symmetric games is unbeatability. For infinitely repeated two-player symmetric games, a necessary and sufficient condition for some imitation strategy to be unbeatable was specified. However, situations where imitation can be unbeatable in multi-player games are still not clear. In order to analyze successfulness of imitation in multi-player situations, here we introduce a class of totally symmetric games called unexploitable games, which is a natural extension of two-player symmetric games without exploitation cycles. We then prove that, for infinitely repeated unexploitable games, there exist unbeatable imitation strategies. Furthermore, we also prove that, for infinitely repeated non-trivial unexploitable games, there exist unbeatable zero-determinant strategies, which unilaterally enforce some relationships on payoffs of players. These claims are demonstrated in the public goods game, which is the simplest unexploitable game. These results show that there are situations where imitation can be unbeatable even in multi-player games.Comment: 6 page
    corecore