664,932 research outputs found

    Zero-one laws in simultaneous and multiplicative Diophantine approximation

    Full text link
    Answering two questions of Beresnevich and Velani, we develop zero-one laws in both simultaneous and multiplicative Diophantine approximation. Our proofs rely on a Cassels-Gallagher type theorem as well as a higher-dimensional analogue of the cross fibering principle of Beresnevich, Haynes and Velani

    Some natural zero one laws for ordinals below ε0

    Get PDF
    We are going to prove that every ordinal α with ε_0 > α ≥ ω^ω satisfies a natural zero one law in the following sense. For α < ε_0 let Nα be the number of occurences of ω in the Cantor normal form of α. (Nα is then the number of edges in the unordered tree which can canonically be associated with α.) We prove that for any α with ω ω  ≤ α < ε_0 and any sentence ϕ in the language of linear orders the asymptotic density of ϕ along α is an element of  {0,1}. We further show that for any such sentence ϕ the asymptotic density along ε_0 exists although this limit is in general in between 0 and 1. We also investigate corresponding asymptotic densities for ordinals below ω^ω

    A note on zero-one laws in metrical Diophantine approximation

    Full text link
    In this paper we discuss a general problem on metrical Diophantine approximation associated with a system of linear forms. The main result is a zero-one law that extends one-dimensional results of Cassels and Gallagher. The paper contains a discussion on possible generalisations including a selection of various open problems.Comment: 12 pages, Dedicated to Wolfgang Schmidt on the occasion of his 75th birthda

    Symmetry-breaking and zero-one laws

    Get PDF
    We offer further evidence that discreteness of the sort inherent in a causal set cannot, in and of itself, serve to break Poincaré invariance. In particular we prove that a Poisson sprinkling of Minkowski spacetime cannot endow spacetime with a distinguished spatial or temporal orientation, or with a distinguished lattice of spacetime points, or with a distinguished lattice of timelike directions (corresponding respectively to breakings of reflection-invariance, translation-invariance, and Lorentz invariance). Along the way we provide a proof from first principles of the zero-one law on which our new arguments are based
    • …
    corecore