72 research outputs found

    Joint Wyner-Ziv/Dirty Paper coding by modulo-lattice modulation

    Full text link
    The combination of source coding with decoder side-information (Wyner-Ziv problem) and channel coding with encoder side-information (Gel'fand-Pinsker problem) can be optimally solved using the separation principle. In this work we show an alternative scheme for the quadratic-Gaussian case, which merges source and channel coding. This scheme achieves the optimal performance by a applying modulo-lattice modulation to the analog source. Thus it saves the complexity of quantization and channel decoding, and remains with the task of "shaping" only. Furthermore, for high signal-to-noise ratio (SNR), the scheme approaches the optimal performance using an SNR-independent encoder, thus it is robust to unknown SNR at the encoder.Comment: Submitted to IEEE Transactions on Information Theory. Presented in part in ISIT-2006, Seattle. New version after revie

    Joint Source-Channel Coding with Time-Varying Channel and Side-Information

    Full text link
    Transmission of a Gaussian source over a time-varying Gaussian channel is studied in the presence of time-varying correlated side information at the receiver. A block fading model is considered for both the channel and the side information, whose states are assumed to be known only at the receiver. The optimality of separate source and channel coding in terms of average end-to-end distortion is shown when the channel is static while the side information state follows a discrete or a continuous and quasiconcave distribution. When both the channel and side information states are time-varying, separate source and channel coding is suboptimal in general. A partially informed encoder lower bound is studied by providing the channel state information to the encoder. Several achievable transmission schemes are proposed based on uncoded transmission, separate source and channel coding, joint decoding as well as hybrid digital-analog transmission. Uncoded transmission is shown to be optimal for a class of continuous and quasiconcave side information state distributions, while the channel gain may have an arbitrary distribution. To the best of our knowledge, this is the first example in which the uncoded transmission achieves the optimal performance thanks to the time-varying nature of the states, while it is suboptimal in the static version of the same problem. Then, the optimal \emph{distortion exponent}, that quantifies the exponential decay rate of the expected distortion in the high SNR regime, is characterized for Nakagami distributed channel and side information states, and it is shown to be achieved by hybrid digital-analog and joint decoding schemes in certain cases, illustrating the suboptimality of pure digital or analog transmission in general.Comment: Submitted to IEEE Transactions on Information Theor

    Multi-rate control over AWGN channels via analog joint source-channel coding

    Get PDF
    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition

    Multi-rate control over AWGN channels via analog joint source-channel coding

    Get PDF
    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition

    Side information aware source and channel coding in wireless networks

    Get PDF
    Signals in communication networks exhibit significant correlation, which can stem from the physical nature of the underlying sources, or can be created within the system. Current layered network architectures, in which, based on Shannon’s separation theorem, data is compressed and transmitted over independent bit-pipes, are in general not able to exploit such correlation efficiently. Moreover, this strictly layered architecture was developed for wired networks and ignore the broadcast and highly dynamic nature of the wireless medium, creating a bottleneck in the wireless network design. Technologies that exploit correlated information and go beyond the layered network architecture can become a key feature of future wireless networks, as information theory promises significant gains. In this thesis, we study from an information theoretic perspective, three distinct, yet fundamental, problems involving the availability of correlated information in wireless networks and develop novel communication techniques to exploit it efficiently. We first look at two joint source-channel coding problems involving the lossy transmission of Gaussian sources in a multi-terminal and a time-varying setting in which correlated side information is present in the network. In these two problems, the optimality of Shannon’s separation breaks down and separate source and channel coding is shown to perform poorly compared to the proposed joint source-channel coding designs, which are shown to achieve the optimal performance in some setups. Then, we characterize the capacity of a class of orthogonal relay channels in the presence of channel side information at the destination, and show that joint decoding and compression of the received signal at the relay is required to optimally exploit the available side information. Our results in these three different scenarios emphasize the benefits of exploiting correlated side information at the destination when designing a communication system, even though the nature of the side information and the performance measure in the three scenarios are quite different.Open Acces
    • …
    corecore