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Abstract

Signals in communication networks exhibit significant correlation, which can stem from

the physical nature of the underlying sources, or can be created within the system. Cur-

rent layered network architectures, in which, based on Shannon’s separation theorem,

data is compressed and transmitted over independent bit-pipes, are in general not able

to exploit such correlation efficiently. Moreover, this strictly layered architecture was

developed for wired networks and ignore the broadcast and highly dynamic nature of

the wireless medium, creating a bottleneck in the wireless network design. Technologies

that exploit correlated information and go beyond the layered network architecture can

become a key feature of future wireless networks, as information theory promises sig-

nificant gains. In this thesis, we study from an information theoretic perspective, three

distinct, yet fundamental, problems involving the availability of correlated information

in wireless networks and develop novel communication techniques to exploit it efficiently.

We first look at two joint source-channel coding problems involving the lossy trans-

mission of Gaussian sources in a multi-terminal and a time-varying setting in which

correlated side information is present in the network. In these two problems, the opti-

mality of Shannon’s separation breaks down and separate source and channel coding is

shown to perform poorly compared to the proposed joint source-channel coding designs,

which are shown to achieve the optimal performance in some setups. Then, we charac-

terize the capacity of a class of orthogonal relay channels in the presence of channel side

information at the destination, and show that joint decoding and compression of the re-

ceived signal at the relay is required to optimally exploit the available side information.

Our results in these three different scenarios emphasize the benefits of exploiting

correlated side information at the destination when designing a communication system,

even though the nature of the side information and the performance measure in the

three scenarios are quite different.
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Notation

Throughout this dissertation, we will use the following notation. We denote random

variables with upper-case letters, e.g., X, their realizations with lower-case letters, e.g.,

x, and the sets with calligraphic letters A, with cardinality |A|. We denote by pX(x) the

distribution of the random variable X taking realizations x over the set X . We might

use p(x) to refer to pX(x) when there is no ambiguity.

For sequences, we denote sequences of n random variables as Xn , (X1, ..., Xn), and

denote the i-th term asXi. We denote partial sequences ofXn asXj
i , (Xi, Xi+1, ..., Xj)

for i < j, Xn
n+1 , ∅, and Xn\i , (X1, ..., Xi−1, Xi+1, ..., Xn).

We denote random matrix column vectors by X with realizations x. Similarly, for

random matrix we use X and denote its realizations by X. Yet using the same notation,

the difference between random vector variable and random matrix realization will be

clear from the context. Sequences of random variables and random matrix are defined

as for the scalar case. We denote the transpose of a matrix A as AT , the conjugate

transpose as AH , the trace as Tr{A} and the determinant as |A| or det(A).

We denote EX [·] as the expectation with respect to X, and EA[·] as the expectation

over the set A. We denote by R+
n the set of positive real numbers, and by R++

n the set

of strictly positive real numbers in Rn, respectively. We define (x)+ = max{0, x} and

log+(x) = max{log(x), 0}.
Given two functions f(x) and g(x), we use f(x)

.
= g(x) to denote the exponential

equality limx→∞
log f(x)
log g(x) = 1, while

.
≥ and

.
≤ are defined similarly.

We use N (µ,C) to denote a real multivariate Gaussian random variable with mean

µ and covariance matrix C and use CN (µ,C) to denote circular symmetric complex

multivariate Gaussian random variables with mean µ and covariance C.

In general, in optimization problems, we will denote the optimal variable with a star,

e.g., x∗ if the optimization is over x.
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Chapter 1

Introduction

Wireless communication has become the ubiquitous means of information transfer, rang-

ing across machine-to-machine (M2M), Wi-Fi and cellular networks. An unprecedented

mobile network traffic growth is foreseen within the next decade; whereby billions of

connected devices will exchange massive amounts of data from applications, cloud ser-

vices and multimedia content providers. In just a decade, the amout of data handled

by wireless networks is expected to increase by more than a factor of 100: surging from

under 3 exabites in 2010 to over 190 exabites in 2018, on pace to exceed 500 exabites

by 2020 [1]. In addition to the traffic volume, in the next decade the number of de-

vices and the data rates will continue to grow exponentially, reaching the tens of even

hundreds or billions of devices and aggregate rates of 1000x with respect to the current

4G mobile networks. This traffic demand cannot be supported within the capacity of

current wireless networks, and novel techniques and system architectures are required

to accommodate the increasing traffic load.

Both industry and academia are intensively engaged in developing disruptive solu-

tions to provide the network with sufficient capabilities to satisfy the expected demands.

Although many challenges and requirements are still to be addressed, the key technolo-

gies envisioned to overcome the foreseen capacity crunch are the following: i) extreme

network densification, that is, to significantly increase the number of access points per

unit area; ii) increased bandwidth using new spectrum bands, such as millimeter wave

bands or WiFi’s unlicensed bands at 5GHz; and iii) increased spectral efficiency, by em-

ploying advanced communication schemes and nodes with multiple antennas [2]. Fully

exploiting the potential of these technologies will require a complete understanding of

the fundamental challenges and opportunities, and a revision of the current system

design paradigm.

Information theory has been instructive in the design of communications networks

since its origin in 1948, when Shannon settled the fundamental principles of reliable

11



Chapter 1. Introduction 12

digital communication and data recording in his groundbreaking paper [3], and showed

the optimality of decoupling the communication problem in point-to-point links into

two separate simpler problems: data compression and channel communication.

Following the insights of information theory, network system design has traditionally

followed the division of data transmission between nodes into independent layers: in

the Application Layer, data is compressed into bits, which are transmitted over non-

interfering bit-pipes by the Physical Layer, within a certain error probability. This

separate operation framework presents significant advantages, such as simplifying the

network design and providing a common transmission structure for all types of data and

communication channels independently of their nature, which lead to the development

of highly complex wired networks such as the Internet.

However, this approach has created a bottleneck in the design of wireless technolo-

gies. Communication over wireless networks differs significantly from wired communi-

cation: unlike wired channels, where the channel is time-invariant, wireless channels are

highly dynamic and unreliable due to the particular propagation physics of the wire-

less medium and the potential user mobility. More importantly, the bit-pipe approach

ignores the broadcast nature of the wireless medium, which generates interference in

environments with many users competing for the limited network resources.

Additionally, both sources and channels in communication networks exhibit signifi-

cant statistical correlations. Signal correlation can stem from the physical nature of the

underlying sources. For example, in M2M and sensor networks signals from nearby de-

vices, such as temperature measurements, or traffic logs at different routers in a network,

show common statistical properties. Besides, signal correlation might also be created

within the network. For instance, as densification increases in cellular networks, signals

received at nearby nodes become highly correlated. In general, current layered system

architectures ignore signal correlations and do not effectively exploit them. Neverthe-

less, communication technologies that exploit correlated information can become a key

feature of future high performance networks, as information theory promises significant

gains. In the same way information theory has been fundamental in the development

of high performance wired networks, as well as many of the fundamental ideas of exist-

ing wireless networks, information theory will undoubtedly lay the foundations of the

wireless networks of tomorrow, and this thesis is one step forward in identifying poten-

tial novel techniques for next generation wireless networks using information theoretic

principles.

1.1 Motivation

From the perspective of information theory, the transmission of digital or analog data

between terminals in the network is a joint source-channel coding problem, in which the
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encoding and decoding strategies have to be jointly designed based on the source and

channel properties. While, in general, the design of the optimal transmission schemes is a

challenging problem, Shannon’s well-known separation theorem [3] reduces the commu-

nication problem, in point-to-point time-invariant settings, to the following two separate,

simpler and independent problems without losing the end-to-end optimality:

• Source coding problem, which focuses on the design of compression and de-

compression schemes for the source, independent of the channel statistics, that

allows to reconstruct the source at the destination within a certain quality.

• Channel coding problem, which studies the design of coding and decoding

schemes that allow the transmission of data bits with vanishing error probability

over noisy channels, independently of the source statistics.

This decoupled approach, in which source and channels statistical properties are

dealt with independently as source and channel coding problems, was extended to multi-

terminal scenarios soon after information theory was born. The source coding problem

was extended to a wide range of setups such as source coding with side information

[4, 5], distributed compression in multi-user scenarios [6, 7], or multiple descriptions

coding [8, 9]. From the channel point of view, the effects of multi-user interference, as

well as the benefits of coordination and availability of feedback, were considered in the

basic network units, such as the broadcast channel (BC), the multiple access channel

(MAC), the relay channel, as well as the interference channel (IC) [10].

Inspired by Shannnon’s result, separation theorem became the cornerstone of today’s

communication system design and lead to the popular layered approach. However, the

optimality of separation does not necessarily generalize to all networks. Information

theory indicates that this approach can be strictly suboptimal in the wireless context.

Indeed, the optimality of separation breaks down in:

1. multi-terminal networks. The separation theorem is valid for point-to-point

communication channels and does not extend directly to networks, as first shown

by Shannon in [11]. See [12], [13] and [14] for examples proving the suboptimality

of separate source and channel coding in multi-user systems.

2. the presence of channel fading and applications with delay limitations. Sep-

aration theorem is limited to ergodic sources and channels. If slow fading or

delay restrictions are present, ergodicity is lost; and separation fails. See [15],

[16] and [17] for examples in which source-channel separation is not optimal in

the wireless setting.

3. in complexity-limited systems. The separation theorem is proven assuming

asymptotically long source and channel codes and it is based on the assumption of

infinite complexity and delay. Therefore, it does not apply to practical systems.

Recently the finite block-length regime has been studied in [18] and [19], while
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zero-delay transmission schemes have been considered in [20–23].

While assumptions 1, 2 and 3 are reasonable for wired networks, they are, in general,

unrealistic for wireless networks. Therefore, novel communication schemes that go be-

yond separate source and channel coding and jointly exploit the correlated information

present in the network are required in multi-terminal networks, fading channels and

delay constrained systems.

1.1.1 Beyond separate source and channel coding

Separation theorem plays an important role in this thesis. In this section, we present the

formalization of Shannon’s point-to-point communication setup and the optimal solution

given by the separation theorem. While in general separate source and channel coding is

seen as the unique optimal communication strategy, from a joint source-channel coding

(JSCC) perspective, there are many alternative transmission schemes achieving the

optimal performance, each with its benefits and drawbacks. Although all these schemes

are just alternatives in the point-to-point setup, when the optimality of separation breaks

down, these schemes may become more attractive, and sometimes significantly superior.

The point-to-point communication problem

The original point-to-point communication problem studied by Shannon in his seminal

paper [3] consists of five fundamental parts: a stochastic informative source to be trans-

mitted, a transmitter, a memoryless channel, a receiver and a destination. Informally,

the communication problem can be stated as follows: given a certain channel and trans-

mitter resources (e.g., power), which is the highest quality at which the source can be

transmitted over the channel and reconstructed at the destination? The task is to char-

acterize the optimal reconstruction distortion (under some given distortion measure),

given the source and the channel properties, and design the transmitter and receiver

strategies that achieve it.

Figure 1.1: The point-to-point communication problem.

More formally, the communication problem is formulated as follows1 (see Figure 1.1).

A source sequence of m i.i.d. symbols {Si}mi=1 from an alphabet S with distribution p(s)

has to be transmitted over a discrete memoryless channel (DMC), characterized by the

1While more general models can be considered, we restrict our attention to independent identically
distributed (i.i.d.) sources, discrete memoryless channels and single letter distortion measures for ease
of exposition.
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conditional distribution p(y|x), using n channel accesses. The channel input, given by

Xn, and the channel output, given by Y n, are from alphabets |X | and |Y|, respectively.

The transmitter maps the source block Sm to a channel input Xn using the encoding

mapping f (m,n) : |S|m → |X |n. It is assumed that the channel input satisfies an input

cost constraint given by E[ 1
n

∑n
i=1 c(Xi)] ≤ P , where c(·) : |X | → R+ and P is the

transmitter budget (for example, available power).

At the receiver, the channel output is used to reconstruct the source sequence as

Ŝm with entries in Ŝ using the receiver mapping g(m,n) : |Y|n → |Ŝ|m. The distortion

between the source sequence and the reconstruction is calculated using a distortion

measure dm(Sm, Ŝm) , 1
m

∑m
i=1 d(Si, Ŝi). The bandwidth ratio of the system is defined

as the average channel accesses per source sample as follows:

b ,
n

m
channel dimensions per source sample.

In the communication problem, we want to characterize the lowest achievable average

distortion. We say that, given p(s), p(y|x), c(·), P and d(·, ·), average distortion D is

achievable if there exists a sequence of encoding and decoding functions {f (m,n), g(m,n)}
satisfying the channel constraint such that

E

[
m∑
i=1

d(Si, Ŝi)

]
≤ D, (1.1)

for sufficiently large m,n satisfying the bandwidth ratio relation.

The characterization of this problem is in general very complicated. However, Shan-

non’s separation theorem simplifies the problem by dividing it into two simpler parts:

the source coding part and the channel coding part, which we describe next.

Source coding problem

In the source coding problem, the channel is substituted by an errorless bit-pipe of rate

R. The minimum rate required to reconstruct the source sequence at average distortion

D is characterized by the rate-distortion function, given by

R(D) , min
p(ŝ|s):E[d(S;Ŝ)]≤D

I(S; Ŝ),

where I(X;Y ) , −E
[
log p(x)p(y)

p(x,y)

]
is defined as the mutual information between random

variables X and Y .

Conversely, for rates below R(D), distortion D is not achievable; that is, no matter

which encoding and decoding method is used, the target distortion cannot be achieved.

The optimal distortion is achievable by the following random coding scheme. Gen-
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erate a quantization codebook consisting of 2mRs length-m codewords Ŝm(i), i =

1, ..., 2mRs with i.i.d. components following the optimal rate-distortion minimizing dis-

tribution p(ŝ|s). Given a source sequence Sm, the source encoder looks for an index i

such that (Sm, Ŝm(i)) are jointly typical2 and provides it to the destination through the

errorless bit-pipe, where the source sequence is reconstructed as Ŝm(i).

In particular, for i.i.d. Gaussian3 sources, S ∼ N (0, σ2) and a quadratic distortion

measure d(S, Ŝ) = (S − Ŝ)2, the rate-distortion function is found as

R(D) =
1

2
log+

(
σ2

D

)
, (1.2)

and the quantization codewords with i.i.d. components following p(ŝ|s) can be generated

by a test channel as Ŝ = S + Q, where Q ∼ N (0, σ2
Q) is independent of S and σ2

Q ,

σ2D/(σ2 −D).

Channel coding problem

In the channel coding part, the source sequence is substituted by a message set w ∈
[1, ..., 2nRc ] with uniform distribution. The objective is to characterize the largest rate

Rc , 1
n logM such that the probability of error of recovering m at the destination can

be made arbitrarily small for sufficiently large n. The probability of error is defined as

Pe ,
1

M

M∑
w=1

Pr{g(Y n) 6= w|W = w}.

The maximum rate Rc for which Pe can be made arbitrarily small is characterized

by the channel capacity for given cost function c(·), and budget P , defined as

C(P ) , max
p(x):E[c(X)]≤P

I(X;Y ).

Conversely, for any transmission rate above the channel capacity, the probability of error

cannot be made arbitrarily small.

The capacity of a DMC can be achieved by using random coding as follows. We fix

the input distribution p(x) which maximizes C(P ) and satisfies the input cost constraint.

We generate a channel codebook of 2nRc length-n codewords Xn(i), i = 1, .., 2nRc ,

with distribution p(x). Given a message w, the encoder transmits Xn(w). At the

destination, the receiver looks for the index ŵ such that (Xn(ŵ), Y n) are jointly typical.

For sufficiently large n, the correct w is successfully decoded as long as the code rate is

2We refer the reader to [24] for definitions and properties of typicality and joint typicality and details
of the achievable scheme.

3Although the typicality arguments do not directly apply to Gaussian distributions due to its con-
tinuous alphabet, they can be extended using conventional discretization arguments [25].
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below the channel capacity, i.e., Rc ≤ C(P ).

For channels with additive white Gaussian noise (AWGN), the channel output is

given by

Y = X +N,

where N ∼ N (0, σ2
N ). The input is constrained by an average power constraint, i.e.,

c(X) = X2. The capacity is found as

C(P ) =
1

2
log

(
1 +

P

σ2
N

)
, (1.3)

and is achievable by i.i.d. channel codewords with Gaussian entries, X ∼ N (0, P ).

The ratio between the average transmit power and the channel noise power, P/σ2
N , is

commonly referred to as the signal-to-noise (SNR) ratio.

Separation theorem

Shannon’s separation theorem states that the optimal performance in the point-to-point

communication system in Figure 1.1 is achievable by concatenating an optimal source

code at rate that achieves the distortion-rate function, with an optimal channel code

at a rate arbitrarily close to the channel capacity. Hence, reliable communication is

feasible if bR(D) < C(P ), and conversely, if for b, P given, D is achievable, then

bR(D) ≤ C(P ). (1.4)

In the Gaussian setup, with an i.i.d. source sequence {Si}mi=1 ∼ N (0, σ2), and an

AWGN channel Y n = Xn +Nn, where Nj ∼ N (0, σ2
N ), condition (1.4) implies that the

achievable distortion, with quadratic distortion measure, satisfies

D ≥ σ2

(1 + P/σ2
N )b

, (1.5)

where the equality is met by the concatenation of the optimal source code achieving

(1.2) and the optimal channel code achieving (1.3).

Alternatives to separation

Separate source and channel coding transmission is the most common, and almost the

only practically used, approach to achieve the optimal performance in a point-to-point

setup. Nevertheless, there are alternative transmission schemes that achieve the optimal

performance as well. While in separation the source encoding and the channel encoding
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are done independently, most of these alternative schemes are JSCC schemes, in the

sense that, the channel encoding is not independent of the source statistics.

In the following, we consider some of these schemes. Each of them has benefits and

limitations with respect to separation in performance features such as complexity, delay

or robustness. Although these schemes are not universally optimal for all sources and

channels, they are optimal in the Gaussian setup:

• Uncoded transmission: In this simple zero-delay scheme, the encoder trans-

mits sample by sample a scaled version of the source sample, to satisfy the cost

constraint. At the receiver, the source is reconstructed by applying an optimal es-

timator using the channel output. For example, in the Gaussian setup for matched

bandwidth ratio, i.e., b = 1, the channel input is generated as Xi =
√
P/σ2Si,

i = 1, ..., n. At the destination, the channel output is given by Yi =
√
P/σ2Si+Ni

and the source sequence is reconstructed using a minimum mean square error

(MMSE)4 estimator, i.e., Ŝi = E[Si|Yi], i = 1, ..., n. Surprisingly, this very simple

scheme achieves the optimal distortion Du , σ2/(1+P/σ2
N ) in (1.5) for b = 1 [26].

However, the optimality of uncoded transmission is very sensitive to the matching

between the source/ channel distributions, input cost constraint, the distortion

measure and the source and channel bandwidths [27]. In addition, due to the

absence of coding, uncoded transmission is not capable of fully exploiting the

degrees-of-freedom available in the system in general, and its optimality breaks

down when multiple degrees-of-freedom are available, e.g., in the case of multiple-

input multiple-output (MIMO) channels, bandwidth mismatch (i.e., b 6= 1) [15,16],

or when correlated side information is available at the destination [28]. Despite

these limitations, given the prevalence of Gaussian source and channel assump-

tions in the literature and its simplicity, it has received significant attention from

the research community in recent years. In addition, while uncoded transmission

in the point-to-point setting is just an alternative to optimal separate source and

channel coding, and its main advantages are simplicity and zero delay; surpris-

ingly, it is shown to achieve the optimal performance in various other scenarios,

such as Gaussian MAC with correlated Gaussian sources [13,29], or broadcasting

a common source to multiple receivers over Gaussian channels, for which uncoded

transmission is the only known optimal transmission scheme. Uncoded transmis-

sion has also been shown to outperform the best random JSCC in some setups

in the finite blocklength regime [30]. More general versions of zero-delay trans-

mission can be considered. On the one hand, zero-delay schemes that consider

non-linear mappings have been shown to outperform linear transmission in certain

4Observing vector A ∼ N (0,Ca), the MMSE in estimating the Gaussian vector X ∼ N (0,Cx)

is achieved with a conditional mean estimator, X̂ = E[X|A], and is given by DMMSE , (Cx +
CH

xaC
−1
a Cxa)−1, where Cxa , E[AXH ] [25].
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scenarios [20–23]. On the other hand, linear schemes that are not zero-delay have

been show to outperform zero-delay linear transmission in MAC setups [31].

• Hybrid digital-analog (HDA) transmission: Many limitations of uncoded

transmission can be overcome by combining it with digital coding schemes in the

form of hybrid digital-analog transmission (HDA). In HDA, the encoder generates

a symbol-by-symbol mapping of the observed source (analog) and its digital com-

pression codeword (digital). For example, for the point-to-point Gaussian setup,

a continuum of optimal schemes, including uncoded transmission and separation

as special cases, can be created by superposing an uncoded layer and a dirty pa-

per coded digital layer, and optimally allocating the available power among the

two. At the receiver, the digital layer is decoded and the source sequence is re-

constructed using both the decoded layer and the channel output, which contains

the uncoded layer [32]. This scheme combines the robustness of uncoded trans-

mission with the flexibility of coded communication. In many scenarios, such as

transmission with bandwidth mismatch [17], or broadcasting with correlated side

information [33], HDA transmission is shown to improve the performance of both

pure separation and uncoded transmission, and has been shown to outperform

separation in cases of mismatched SNR [34] or delay constraint [15, 16]. HDA

coding has been also considered for more general setups and multi-user scenarios

[35–37].

• Multi-layer transmission: Schemes utilizing more layers than HDA schemes

can be considered. In general, multi-layer schemes rely on the transmission of

multiple layers that carry successive refinement layers of the source [38]. At the

receiver, as many layers as possible are decoded depending on the channel quality.

The better the channel quality, the more layers can be decoded and the smaller the

distortion at the receiver. Multi-layer transmission schemes have been proposed

to combat channel fading in the presence of time-varying channels, and have been

shown to achieve the optimal performance in some high SNR scenarios [15,39].

In this thesis, we exploit ideas from these JSCC schemes in order to efficiently ex-

ploit the correlated information available in the network, and develop high performance

transmission schemes, particularly when the optimality of separation breaks down.

1.2 Objectives

Future networks are expected to be highly heterogeneous, combining several radio tech-

nologies and supporting a wide range of applications. This variety will place differ-

ent performance requirements, which will have to be satisfied by tailoring the network

configuration to the needs. This also places new challenges to exploit the correlation
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information available throughout the network.

In this thesis we study, from an information theoretic perspective, three distinct,

yet fundamental, problems involving the availability of correlated information at the

network terminals, and develop novel joint source-channel coding communication tech-

niques to exploit it efficiently:

1. The Helper Problem: Consider a sensor network that gathers temperature

measurements at different points in the network. At the moment of forwarding

the collected data from one sensor to the fusion center, another nearby sensor

sharing correlated measurements helps in the transmission of the sending sen-

sor to improve the quality at which the data is recovered at the fusion center.

We model this scenario as the one-helper joint source-channel coding problem,

whereby two correlated sources are available at two separate terminals which

transmit their observations to the destination over a Gaussian MAC. Of the

two sources, the source of interest needs to be reconstructed at the destination

with the minimum distortion possible. The second source is correlated with the

source of interest, and acts as a helper source. From the source coding perspec-

tive, i.e., assuming finite bit-rate pipes from the transmitters to the destination,

this problem reduces to the well-known one-helper source coding problem studied

in [40]. However, in the presence of a noisy MAC, this is a multi-terminal JSCC

problem for which the separation theorem fails. As opposed to separate source

and channel coding transmission, schemes based on uncoded transmission and

HDA are capable of generating correlated channel inputs at the transmitters in

a distributed fashion, by exploiting the correlated source information. In this

scenario we will study the potential gains through the generation of constructive

interferences.

2. Source-channel coding with time-varying channel and side informa-

tion: Consider streaming a high-definition video to a smartphone. Streaming

transmission has stringent latency constraints compared to other high-rate ap-

plications such as file transfers, or non-critical data collection such as weather

measurements. The video is compressed to minimize the amount of data to be

downloaded, while the compressed bits are coded against channel uncertainty, all

carried out under delay limitations. The more the data is compressed, the less

the resolution, nonetheless, the stronger the data can be protected and the higher

the probability of reception. Additionally, the decoder might have correlated side

information about the video, either coming from previous transmissions or avail-

able through relay services. Due to the high variability of the wireless channel

and network topology, the side-information available at the destination can vary

significantly at different points of the network. We model this uncertainty as a
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time-varying correlated side information available at the destination. This is a

JSCC problem for which traditional source-channel coding schemes have been

observed to suffer from severe outages in the absence of time-varying side in-

formation [15, 41]. In the absence of correlated side information, many schemes

have been proposed in the literature for this problem, although the characteriza-

tion of the optimal performance still remains an open problem. See for example

[15,16,42,43]. Contrary to single-layer coding schemes, multi-layer schemes that

code the signal into different quality layers have been proposed to combat fading.

Multi-layer transmission allows adaptation to the current quality of the channel

without knowing its realizations. The available correlated side information at the

destination provides additional diversity to the system as noisy uncoded versions

of the source signal, which can be used to further combat fading. We will study

new coding strategies that jointly adapt to the variations of the channel and the

side information.

3. A class of orthogonal relay channel with state: Consider a cognitive net-

work with a relay, in which the transmit signal of the secondary user interferes

simultaneously with the received primary user signals at both the relay and the

destination. After decoding the secondary user message, the destination obtains

information about the interference affecting the source-relay channel, which can

be exploited to decode the primary transmitter’s message. This setup falls within

a class of orthogonal relay channels in the presence of channel side information

at the destination. We model the side information in this setting as follows: the

source and the relay, and the source and the destination are connected through

orthogonal channels that depend on a common state sequence, which is fully

known at the destination, and unknown at the source and the relay. Note that

this is essentially a channel coding problem in which source compression tech-

niques are required to optimally exploit the side information: fully decoding the

source message at the relay renders the side information at the destination use-

less, whereas compressing the signal received at the relay and forwarding it to the

destination will allow the destination to exploit its side information and improve

the rate of communications. From a joint source-channel coding perspective, the

relay received signal acts a a source sequence which has to be partially trans-

mitted to the destination. We will study the potential of combining source and

channel codes in multi-user scenarios to exploit the channel state information

available at different points of the network.

The nature of the side information in the three scenarios above is quite different.

Individual chapters are dedicated to each of them, in which we characterize fundamental

performance bounds and propose JSCC schemes that exploit the available correlated
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side information. Particular emphasis will be put into identifying optimal transmission

strategies for the three problems.

1.3 Outline and Contributions

The technical content of this thesis is organized in four chapters. The second chapter

is devoted to the Gaussian helper problem, the third and fourth to the transmission

with delay constraints under time-varying channel and side-information, while the fifth

chapter is dedicated to the orthogonal relay channel model with side information at the

destination. In each of the chapters, a literature review and a formal problem state-

ment are provided. Then, performance bounds and achievable schemes are considered,

together with some optimality results and discussions. Each chapter finishes with a

conclusion. In the following, we outline the content and results of each chapter and the

publications related to each topic.

Chapter 2

In Chapter 2, we study the one-helper JSCC problem, in which a main source is to

be reconstructed with minimum distortion with the help of a correlated helper source.

Focusing on the case of Gaussian sources and a time-invariant Gaussian MAC, we de-

rive a lower bound on the achievable distortion. Then, we consider separate source and

channel coding as well as analog transmission, in which each transmitter sends a scaled

version of the available source sequence. It is shown that in some regimes analog trans-

mission outperforms separate source and channel coding, and that, in certain cases, it

is sufficient to achieve the lowest distortion values among the considered schemes. We

also present a hybrid digital-analog scheme, in which each user generates an analog

signal in addition to the digital codewords using dirty paper coding, and transmits a

superposition of the two. A second hybrid scheme is considered in which each trans-

mitter quantizes the source sequence, and transmits a superposition of the quantized

source codeword and an analog component. While different in nature, both schemes

are numerically shown to achieve the same performance, and shown to achieve lower

distortions than pure digital and analog transmission, in general.

The results in this chapter have been partially published in:

• I. Estella, D. Gündüz, “Hybrid Digital-Analog Transmission for the Gaussian One-

helper Problem” , in Proceedings of IEEE Global Communications Conference,

(Globecom), 6-10 December 2010, Miami, Florida, USA.
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Chapter 3

In Chapter 3, the JSCC problem of transmitting a Gaussian source over a time-varying

single input single output (SISO) Gaussian channel with minimum average end-to-end

distortion is considered in the presence of time-varying correlated side information at

the receiver. A block fading model is considered for both the channel and the side infor-

mation, whose states are assumed to be known only at the receiver. As opposed to the

previous chapter, the side information is provided through an orthogonal link to the des-

tination. While separation is optimal with time-invariant channel and side information

[28], the delay constraint breaks its optimality in the time-varying setup. However, we

show the optimality of separate source and channel coding when the channel is static

while the side information state follows a discrete or a continuous and quasiconcave

distribution. When both the channel and the side information states are time-varying,

separate source and channel coding is suboptimal in general.

A partially informed encoder lower bound is studied by providing the channel state

information to the encoder. Several achievable transmission schemes are proposed based

on uncoded transmission, separate source and channel coding, joint decoding as well as

hybrid digital-analog transmission. Uncoded transmission is shown to be optimal for

a class of continuous and quasiconcave side information state distributions, while the

channel gain can have an arbitrary distribution. To the best of our knowledge, this is

the first example in which the uncoded transmission achieves the optimal performance

thanks to the time-varying nature of the states, while it is suboptimal in the static

version of the same problem.

Then, we study this problem in the asymptotic SNR regime, in which the channel

SNR and the side information quality increase asymptotically. This asymptotic notion

is double: when the channel SNR increases in the network, in general the quality of

the available side information, e.g., from previous transmissions and relay services, is

assumed to increase accordingly. The study of the high SNR regime allows for deeper

insights on this problem. In particular, we are interested in characterizing the opti-

mal distortion exponent, which quantifies the exponential decay rate of the expected

distortion in the high SNR regime. In this chapter, the optimal distortion exponent

is characterized for Nakagami distributed channel and side information distributions

and it is shown to be achieved by hybrid digital-analog transmission or joint decoding

in certain cases, illustrating the suboptimality of pure digital or analog transmission

in general. Although the analysis is asymptotic, our results are relevant for practical

systems as well, since we observe through numerical simulations that they capture the

behavior of the expected distortion at reasonable SNR levels as well.

The results in this chapter have been partially presented at:

• I. Estella, D.Gündüz, “Joint Source-Channel Coding with Time-Varying Channel
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and Side-Information”, submitted to Transactions on Information Theory.

• I. Estella, D.Gündüz, “Distortion Exponent with Side-Information Diversity”, in

Proceedings 2013 IEEE Global Conference on Signal and Information Processing

(GlobalSIP), 3-5 December 2013, Austin, Texas.

• I. Estella, D.Gündüz, “Systematic Lossy Source Transmission over Gaussian Time-

Varying Channels”, in Proceedings IEEE International Symposium on Informa-

tion Theory (ISIT), 7-12 July 2013, Istanbul, Turkey.

• I. Estella, D. Gündüz, “Expected Distortion with Fading Channel and Side Infor-

mation quality”, in Proceeding of IEEE International Conference on Communi-

cations (ICC), 5 June 2011, Kyoto, Japan.

Chapter 4

In Chapter 4, the block-fading time-varying channel and side information setup of the

previous chapter is generalized to include a MIMO fading channel and non-matched

source and channel bandwidth, that is, the many source samples are transmitted per

channel access (or conversely, more than one channel use is employed per source sample).

The side information fading gain is assumed to have a Rayleigh distribution. In particu-

lar, the high SNR performance is studied by deriving the distortion exponent of various

transmission schemes. Following similar techniques from the previous chapter, we derive

upper bounds on the distortion exponent. Then we consider transmission schemes based

on separate source and channel coding, uncoded transmission, joint decoding as well as

hybrid digital-analog transmission. Multi-layer schemes, which transmit successive re-

finement layers of the source, are also proposed, based on progressive transmission or

superposed transmission with joint decoding. While the optimal transmission strategy

remains open for finite SNR values, we characterize the optimal distortion exponent for

the single-input multiple-output (SIMO) and multiple-input single-output (MISO) by

showing that the distortion exponent achieved by the multi-layer superpositon encoding

with joint decoding meets the upper bound. In the MIMO scenario, the optimal distor-

tion exponent is characterized in the low bandwidth expansion regime, and it is shown

that the multi-layer superposition encoding performs very close to the upper bound in

the high bandwidth expansion regime as well.

The results in this chapter have been partially published in:

• I. Estella, D.Gündüz, “Distortion Exponent in Fading MIMO Channels with Time-

Varying Side Information”, submitted to Transactions on Information Theory.

• I. Estella, D. Gündüz, “Distortion Exponent in Fading MIMO Channels with

Time-varying Side Information”, in Proceedings IEEE International Symposium

on Information Theory (ISIT), 31-5 August 2011, Saint Petersburg, Russia.

• I. Estella, D. Gündüz, “Wireless Source Transmission with Time-varying Side
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Information”, in Proceedings of 9th International Symposium on Modeling and

Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 9-13 May 2011,

Princeton, New Jersey, USA.

Chapter 5

In Chapter 5, we consider a channel coding problem. We study the class of orthogonal

relay channels in which the orthogonal channels connecting the source terminal to the

relay and the destination depend on a state sequence. It is assumed that the state

sequence is fully known at the destination while it is not known at the source or the

relay. We study the performance of partial decode-and-forward (pDF), in which the

relay decodes part of the source message from the received signal, reencodes it and

forwards it to the destination; compress-and-forward (CF), in which the relay forwards

a compressed version of the channel output to the destination, and partial decode-

compress-and-forward (pDCF), that combines the two previous schemes. The capacity

of this class of relay channels is characterized, and shown to be achieved by the pDCF

scheme. Then the capacity of certain binary and Gaussian state-dependent orthogonal

relay channels are studied in detail, and it is shown that the CF and pDF schemes are

suboptimal in general. To the best of our knowledge, this is the first single relay channel

model for which the capacity is achieved by pDCF, while pDF and CF schemes are both

suboptimal. Furthermore, it is shown that the capacity of the considered orthogonal

state-dependent relay channels is in general below the cut-set bound. The conditions

under which pDF or CF suffices to meet the cut-set bound, and hence, achieve the

capacity, are also derived.

The results in this chapter have been partially published in:

• I. Estella, D.Gündüz, “Capacity of a Class of Relay Channels with State”, sub-

mitted to Transactions on Information Theory.

• I. Estella, D.Gündüz, “Capacity of a Class of Relay Channels with State”, in Pro-

ceedings 2012 IEEE Information Theory Workshop (ITW), 3-7 September 2012,

Laussane, Switzerland.

Finally, in Chapter 6 we provide some discussions and conclusions arising from the

research results in this thesis. We also indicate some future research directions in which

the use of JSCC transmission can be beneficial.

Other Publications

In addition to the topics covered in this dissertation, other research areas have been

addressed during the period of the Ph.D. studies. The resulting publications are listed

below.
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• I. Estella, A. Pascual-Iserte, M. Payaró, “OFDM and FBMC performance com-

parison for multistream MIMO systems”, in Proceedings 2010 Future Network

and Mobile Summit, 16 - 18 June 2010, Florence, Italy.

• I. Estella, D.Gündüz, “Linear Transmission of Correlated Gaussian Sources over

MIMO Channels”, in Proceedings The Tenth International Symposium on Wire-

less Communication Systems (ISWCS), 27-30 August 2013, Ilmenau, Germany.

• I. Estella, D.Gündüz, “Distortion exponent with side-information diversity”, in

Proceedings 2013 IEEE Global Conference on Signal and Information Processing

(GlobalSIP), 3-5 December 2013, Austin, Texas, USA.

• I. Estella, M. Varasteh, D.Gündüz, “Zero-delay joint source-channel coding”, in

Proceedings 2014 IEEE Iran Workshop on Communication and Information The-

ory (IWCIT), 7-8 May 2014, Tehran, Iran.



Chapter 2

One-Helper Joint

Source-Channel Coding

In this chapter, we consider the Gaussian one-helper problem introduced in Section

1.2, in which two correlated Gaussian sources, S1 and S2 are available at two separate

terminals, which transmit their observations to the destination over a Gaussian MAC

(see Fig. 2.1). Of the two sources, S1 is the source of interest which needs to be decoded

at the destination with minimum distortion. The second source S2 is correlated with

S1 and acts as a helper source. From the source coding perspective, i.e., assuming

finite rate bit pipes from the transmitters to the destination, this problem is a special

case of the Berger-Tung problem [44], in which two sources are encoded separately, and

decoded jointly, to satisfy two distortion criteria, and reduces to the well-known one-

helper source coding problem studied in [40]. However, in the presence of a noisy MAC,

this is a multi-terminal JSCC problem for which the separation theorem fails.

Figure 2.1: Gaussian one-helper problem.

A natural candidate for the JSCC of Gaussian sources over Gaussian channels is

analog (uncoded) symbol-by-symbol lineal transmission, or simply SLU, as described in

Section 1.1.1. Besides being optimal in the point-to-point Gaussian setup, even in the

MAC setting when the destination is interested in both sources, it is shown in [13] that

SLU achieves the optimal distortion pair when the SNR is below a certain threshold,

27
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which depends on the correlation among the sources. SLU for the one-helper problem

is considered in [45] and [46], and it is shown to improve upon separation based digital

transmission in some cases, depending on the available power at the users and the source

correlation. This proves the suboptimality of SSCC in the Gaussian one-helper scenario.

In several multi-user scenarios, HDA transmission schemes as described in Section

1.1.1 improve the performance in terms of the achievable distortion or robustness to

SNR variations (see [17] and [47] for examples). Here, we study an HDA scheme,

which we call superposition vector-quantizer (S-VQ), also considered in [13] and [35]

for a Gaussian MAC scenario. We consider this transmission scheme in the one-helper

scenario. At each encoder, the available source is quantized, and each transmitter sends

a superposition of the quantization codeword and an analog layer. The quantization

codewords are then jointly decoded at the destination and the main source sequence is

reconstructed.

Then, we consider an alternative HDA transmission scheme based on the HDA

scheme proposed in [48] for the point-to-point Gaussian setup. In this scheme, the

transmitter generates an analog signal and a digital signal using a dirty paper coding

scheme [49] considering the interference caused by the analog layer, and, after allocat-

ing the available power, transmits a superposition of both signals. Here, we propose a

similar HDA transmission scheme, which we call the interference-aware HDA (I-HDA),

in the one-helper setting: both users divide their power among the analog and digi-

tal signals, and transmit a superposition of the two layers. The pure digital and the

pure SLU schemes become two special cases of this HDA transmission strategy, ob-

tained when both users allocate all their power to digital or to analog transmission,

respectively, ignoring the interfering signal. We show in [50] that an HDA scheme that

ignores the interference caused by the analog layer reduces to either pure SLU and dig-

ital transmission depending on the available power or the source correlation. The extra

degrees-of-freedom obtained by the dirty paper encoding leads to a better performance.

We numerically show that I-HDA achieves the same performance as the S-VQ scheme.

The main contributions of the chapter are the following:

• We derive a lower bound on the achievable distortion using cut-set arguments

and by bounding the maximum correlation between the channel inputs of both

encoders.

• We derive the minimum distortion achieved by separate source and channel coding.

• We show that when using the optimal symbol-by-symbol linear uncoded trans-

mission, the helper does not use full power in general.

• We propose two different HDA schemes, S-VQ and I-HDA, and numerically show

that they outperform the pure separate and analog transmission schemes, in gen-

eral.
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The rest of the chapter is organized as follows. In Section 2.1 we introduce the

system model. In Section 2.2 a lower bound is presented. In Section 2.3 we introduce

two hybrid digital-analog transmission strategies after reviewing pure digital and analog

transmission schemes. Then, in Section 2.4 we provide numerical results, and finally we

provide some conclusions in Section 2.5.

2.1 System Model

We consider the transmission of a length-n sequence of i.i.d. zero mean bivariate Gaus-

sian source pair {S1j , S2j}nj=1 with a covariance matrix

KS1,S2 =

 σ2
S1

ρ
√
σ2
S1
σ2
S2

ρ
√
σ2
S1
σ2
S2

σ2
S2

 , (2.1)

where ρ ∈ [−1, 1] is the correlation coefficient, and 0 < σ2
Si

< ∞ is the variance of

the i-th source for i = 1, 2. Without loss of generality, we assume σ2
S1

= σ2
S2

= 1 and

ρ ∈ [0, 1] as one of the the transmitters can always multiply its source by −1 if ρ < 0.

Transmitter i observes the i-th source sequence and encodes it with function fni :

Rn → Rn, such that Xn
i = fni (Sni ) for i = 1, 2. The corresponding channel input vectors

Xn
i = [Xi1, ..., Xin] are subjected to individual average power constraints

E[|Xn
i |2] =

1

n

n∑
k=1

E[|Xik(Sni )|2] ≤ Pi, i = 1, 2. (2.2)

The additive memoryless MAC is given by

Yk = X1k +X2k + Zk, k = 1, ..., n, (2.3)

where Zk is the i.i.d. zero-mean Gaussian noise term with variance N , i.e., Zk ∼
N (0, N). The decoder consists of a decoding function gn : Rn → Rn, which reconstructs

an estimate of the sequence of interest Sn1 , i.e., Ŝn1 = gn(Y n).

For a given system Ω , (ρ, P1, P2, N) we say that an average distortion D is achiev-

able if there exists a sequence of encoding and decoding functions {fn1 , fn2 , gn} satisfying

the power constraints in (2.2) and a mean square-error distortion of

lim
n→∞

1

n

n∑
k=1

E[(S1k − Ŝ1k)2] ≤ D. (2.4)
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2.2 Lower Bound

Before deriving the lower bound on the distortion, we provide some definitions that will

be used in the derivation. The rate-distortion function of reconstructing Sn1 ∼ N (0, σ2)

at distortion D is given, as in (1.2), by

RS1
(D) = min

PW |S1
:E[(S1−W )2]≤D

I(S1;W ) =
1

2
log+

(
σ2

D

)
. (2.5)

For a bivariate Gaussian pair (Sn1 , S
n
2 ) with variances σ2

1 = σ2
2 = σ2 and correlation

coefficient ρ, the conditional rate-distortion function RS1|S2
(D1) when Sn2 is available at

both the encoder and the decoder, and Sn1 is reconstructed with distortion D1 is given by

RS1|S2
(D) = min

PW |S1S2
:E[(S1−W )2]≤D

I(S1;W |S2) =
1

2
log+

(
σ2(1− ρ2)

D

)
. (2.6)

In the Gaussian helper problem, the encoders can generate physically correlated

channel inputs by using the source sequences available at each transmitter. Naturally,

the maximum correlation between the channel inputs is bounded by the correlation of

the source sequence, as shown in [13] for the MAC setup where both sources have to be

reconstructed at the destination. Using this fact together with cut-set arguments, we

obtain the following necessary conditions on the achievable distortion.

Lemma 1. A necessary condition for the achievability of distoriton D in the Gaussian

helper problem is the existence of some 0 ≤ ρx ≤ ρ such that

RS1
(D) ≤ 1

2
log

(
1 +

P1 + P2 + 2ρx
√
P1P2

N

)
,

RS1|S2
(D) ≤ 1

2
log

(
1 +

P1(1− ρ2
x)

N

)
.

Proof. The proof is given in Appendix B.

Substituting the rate-distortion function expression for the bivariate Gaussian sources,

the necessary condition in Lemma 1 can be expressed as the following lower bound.

Dl(Ω) = min
0≤ρx≤ρ

max

{
N

P1 + P2 + 2ρx
√
P1P2 +N

,
(1− ρ2)N

(1− ρ2
x)P1 +N

}
.

2.3 Achievable Schemes

In this section, we first propose “pure” schemes based on separate source and channel

coding and uncoded transmission. Then, we consider two HDA schemes.
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2.3.1 Pure Coding Schemes

Pure Digital Scheme

Pure digital transmission is based on separate source and channel coding. The sources

are first compressed using one-helper source compression as in [40], then the compressed

bits are transmitted over the MAC using independent channel inputs. The compression

rates, and hence, the achieved distortion depends on the rates that are supported by the

MAC. The distortion-rate function for the one-helper source coding problem is given as

follows [40]

D(R1, R2) = (1− ρ2 + ρ22−2R2)2−2R1 , (2.7)

where Ri is the transmission rate of transmitter i.

It is easy to see that the distortion is minimized when the users operate on the corner

point of the MAC capacity region that maximizes R1, the rate from the main source to

the decoder. Hence, the minimum achievable distortion with pure digital transmission

is found to be

D∗d(Ω) =
N(P1 + P2(1− ρ2) +N)

(P1 + P2 +N)(P1 +N)
. (2.8)

Pure Analog Scheme

In pure symbol-by-symbol linear uncoded transmission (SLU), the encoders transmit

scaled versions of the sources directly over the channel, i.e.,

Xn
i =

√
βiPiS

n
i , i = 1, 2, (2.9)

where βi ∈ [0, 1] is the scaling factor that allows to reduce the power assigned to each

transmitter. Using an MMSE estimator at the receiver, the achievable distortion for

this scheme is given by

Du(Ω, β1, β2) =
β2P2(1− ρ2) +N

β1P1 + β2P2 + 2ρ
√
β1β2P1P2 +N

. (2.10)

The next lemma characterizes the optimal distortion achievable by SLU by finding

the optimal scaling factors at both transmitters.

Lemma 2. For a given Ω, the optimal distortion achieved by SLU transmission is given

by

D∗u(Ω) =


P2(1−ρ2)+N

P1+P2+2ρ
√
P1P2+N

, for (P1, P2) ∈ P
N(1−ρ2)

P1(1−ρ2)+N , for (P1, P2) /∈ P,
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where

P ,

{
(P1, P2) : P1 ≥ 0, P2 ≥ 0,

√
P1P2 ≤

Nρ

1− ρ2

}
, (2.11)

and the optimal scaling factors are

β∗1 = 1 and β∗2 =

1, if (P1, P2) ∈ P
ρ2N2

P1P2(1−ρ2)2 , if (P1, P2) /∈ P.
(2.12)

Proof. Since Du(Ω, β1, β2) in (2.10) is monotonically decreasing in β1, it is minimized

by β∗1 = 1. We also have that Du(Ω, 1, β2) is convex in 0 ≤ β2 ≤ 1, and therefore,

the minimizing β∗2 is found as in (2.12) by using the standard Karush-Kuhn-Tucker

conditions [51].

Lemma 2 indicates that the main source will always transmit at full power. On the

other hand, all the helper power will be used if (P1, P2) ∈ P, while if (P1, P2) /∈ P,

the transmit power of the helper is reduced inversely proportional to the main source

power. Increasing the helper power beyond the specified level in this regime increases

the distortion.

2.3.2 Hybrid Digital-Analog (HDA) Schemes

In this section, we consider hybrid digital analog (HDA) schemes that transmit the

superposition of a digital layer with an uncoded layer. First, we consider the most

general HDA scheme known in the literature, proposed in [35] for the transmission of

two source sequences (Sn1 , S
n
2 ) over a discrete memoryless MAC channel p(y|x1x2), in

which the destination is interested in reconstructing both Sn1 and Sn2 at an average

distortion (D1, D2).

In this scheme, each source sequence Snj is mapped to one of the 2nRj digital code-

words Wn
j (mj). Then, each pair (Snj ,W

n
j (mj)) is mapped symbol-by-symbol to the

channel input sequence Xn
j , that is transmitted over the interference channel. Upon re-

ceiving Y n, the decoder jointly recovers the digital components (Wn
1 (m1),Wn

2 (m2)) by

joint typicality, and reconstructs Ŝnj by mapping symbol-by-symbol the analog channel

output Y n and the codewords corresponding to the two decoded digital messages. The

general conditions for successful decoding of the messages and the achievable distortion

pairs (D1, D2) for the transmission of (Sn1 , S
n
2 ) over a discrete memoryless MAC channel

p(y|x1x2) are given in the next theorem.

Theorem 1. [35] A distortion pair (D1, D2) is achievable for communication of (S1, S2)

over a MAC channel p(y|x1, x2) if
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Figure 2.2: S-VQ encoder and decoder.

I(W1;S1|Q) < I(W1;YW2|Q)

I(W2;S2|Q) < I(W2;YW1|Q)

I(W1;S1|Q) + I(W2;S2|Q) < I(W1W2;Y |Q) + I(W1;W2|Q)

for some joint distribution p(s1s2)p(q)p(w1x1|s1q)p(w2x2|s2q) and reconstruction func-

tions ŝi(w1, w2, y, q), such that E[di(Si; Ŝ1i)] ≤ Di for i = 1, 2.

In the one helper problem, the receiver is only interested in recovering Sn1 . Hence,

Theorem 1 can be adapted to the one helper setup by dropping the distortion condition

on D2. Next, we study the achievable distortion for the Gaussian one-helper problem

under different structures of the digital codewords W1 and W2.

Superposed Vector Quantizer (S-VQ)

Here, we consider a structure for the digital components of the HDA scheme following

the scheme proposed in [13] for the MAC scenario. In this scheme, each transmitter

quantizes the source with an optimal vector quantizer. Then, the quantized codeword

is scaled and used directly as channel input superposed with an uncoded layer. The

decoder jointly recovers the quantized codewords, and reconstructs the source using

these codewords together with the channel output. See Fig. 2.2 for an illustration of

the S-VQ encoder and decoder.

The distortion achievable by this scheme follows from Theorem 1. We let Q = ∅ for

i = 1, 2. We consider rates Ri > 0, and, while potentially suboptimal, Gaussian random

variables given by Wi = Si + Qi, where Qi ∼ N (0, 2−2Ri) independent of Si and we

generate the channel input with the symbol-by-symbol mapping Xi = αiSi + βiWi.

Parameters αi, βi are chosen such that the power constraint is satisfied, i.e.,

(αi + βi)
2(1− 2−2Ri) + α2

i 2
−2Ri ≤ Pi, i = 1, 2. (2.13)

The region given by (2.13) of feasible (αi, βi) pairs describes an ellipsoid. We consider

the pairs which satisfy (2.13) with equality. It can be shown that it suffices to consider
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αi ≥ 0. We define the region of feasible pairs at each transmitter as

Γi ,

{
(αi, βi) ∈ R2 : αi ∈

[
0,−βi +

√
Pi − β2

i 2−2Ri

]
, βi ∈

[
−
√
Pi22Ri ,

√
Pi22Ri

]}
.

Let the covariance matrix of Y , W1 and W2 be given by

CW1W2Y =

 k11 k12 k13

k12 k22 k23

k13 k23 k33

 and CWiY =

(
k1i ki3

ki3 k33

)
, (2.14)

where

kii = (1 + 2−2Ri), j = 1, 2, k12 = ρ,

k13 = α1 + β1k11 + ρ(α2 + β2), k23 = α2 + β2k22 + ρ(α1 + β1),

k33 = P1 + P2 + 2ρ(α1 + β1)(α2 + β2) +N.

Using joint typicality decoding, Wn
1 and Wn

2 are decoded with high probability if

(R1, R2) ∈ R, where R is given by

R ,

{
(R1, R2) : R1 +R2 ≤

1

2
log

k11k22k33

|CW1W2Y |
, Rj ≤

1

2
log

kjj |CWjcY |
|CW1W2Y |

, j = {1, 2},
}
.

Once Wn
1 and Wn

2 are recovered at the receiver, an MMSE estimator is used to

reconstruct Sn1 with the available data S̃vqi = E[Si|W1i,W2i, Yi]. We have S̃vqi = hvqSi+

Nvq
i , where hvq = [1, ρ, (α1 + β1) + ρ(α2 + β2)] and Nvq

i ∼ N (0,Cvq), where

Cvq = 2−R1 0 β12−2R1

0 1− ρ2+2−2R2 (1− ρ2)(α2+β2)+β22−2R2

β12−2R1 (1− ρ2)(α2+β2)+β22−2R2 (1− ρ2)(α2+β2)2+β2
12−2R1 +β2

22−2R2 +N

 .

Given (α1, α2, R1, R2), the achievable distortion is found as

Dvq(Ω, α1, α2, R1, R2) = (1 + hHvqC
−1
vq hvq)

−1. (2.15)

Minimized over the feasible parameters, the distortion achievable by S-VQ is given by

D∗vq(Ω) = min
(R1,R2)∈R
(αi,βi)∈Γi

Dvq(Ω, α1, α2, R1, R2) (2.16)
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Figure 2.3: I-HDA encoder for transmitter i.

Interference Aware HDA Scheme (I-HDA)

Next, we propose an HDA scheme, based on the continuum of optimal HDA schemes

for the point-to-point channel from [48]. This HDA scheme generalizes the pure digital

transmission strategy, based on separate source and channel coding, as well as analog

schemes, and takes into account the interference caused by the analog transmission in

channel by using dirty paper coding (DPC) [49]. We denote this scheme by interference

aware HDA scheme (I-HDA). As noted below, the achievable distortion of this scheme

can be derived from Theorem 1. However, in order to reduce the complexity of the

transmission scheme, here we propose the successive decoding of the digital components.

In the next section, we numerically show that successive decoding is sufficient to achieve

the same performance as S-VQ in the one-helper setup, which jointly decodes the digital

components.

In I-HDA, each encoder transmits a superposition of digital and analog signals, i.e.,

Xn
i = Xd,n

i +Xa,n
i , i = 1, 2

where Xd,n
i and Xa,n

i are the length-n channel input vectors corresponding to digital and

analog signals, respectively. The analog part of the transmitted signal, Xa,n
i is a scaled

uncoded version of the source sequence, Sni . We have Xa,n
i =

√
PaiS

n
i , i = 1, 2, where

factor αi ∈ [0, 1], and Pai , αiPi is the portion of the power at transmitter i dedicated

to analog transmission. The digital portion Xd,n
i transmits a quantized version of the

source sequence, and is generated using a digital scheme based on dirty paper encoding,

which considers the analog layers in the channel as interference known at the encoder.

See Fig. 2.3 and Fig. 2.4 for an illustration of the encoder and decoder.

At the source encoder of user i, Sni is quantized with an optimal vector quantizer.

The quantization codebook can be modeled with a “test channel”, W̃i = Si +Qi where

Qi ∼ N(0, σ2
qi) is independent of source Si. The 2nI(Si;W̃i) quantized codewords are

randomly and uniformly assigned into 2nR
s
i bins. For each source outcome, the source
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Figure 2.4: I-HDA decoder.

encoder determines the bin that the quantized source vector belongs to, and forwards

the bin index wi ∈ [1, ..., 2nR
s
i ] to the digital channel encoder.

The channel codebook at each transmitter is generated using codeword as in the

DPC for the Gaussian point-to-point setup as follows. We define the auxiliary random

variable U1 and U2 as

Ui = γi
√
PaiSi +Xd

i , i = 1, 2, (2.17)

where γi ∈ R, and Xd
i are zero mean Gaussian distributed variables with variance

Pdi , (1 − αi)Pi, i.e., Xd
i ∼ N (0, Pdi). Note that relating (2.17) to the DPC scenario,

Si acts as an interference and γi
√
Pai has the role of the Costa parameter [49]. Then,

at Transmitter 1 we generate 2nI(U1;Y U2), length-n i.i.d. codewords Un1 , with U1,k

k = 1, ..., n following the distribution of (2.17), and at transmitter 2, we similarly

generate 2nI(U2;Y ) length-n i.i.d. codewords Un2 .

Next, sequences Uni are uniformly distributed into 2nR
c
i bins, i = 1, 2. For each

sequence uni , we let ji(u
n
i ) be the index of the bin containing uni . Then, at encoder i,

given a source realization Sni , and a message from the source encoder wi, in the bin

wi we search for a sequence Uni such that (Uni , S
n
i ) are jointly typical, and declare an

error if no or more than one such Uni can be found. Such a sequence is found with

high probability, for large enough n, if the number of sequences in bin wi is larger than

2nI(Ui;Si). Next, we transmit Xd,n
i = Uni − γi

√
PaiS

n
i as the channel input, and each

encoder transmits a superposition of the analog signal and the digital codeword.

This scheme is a particular case of the general HDA scheme and the achievable distor-

tion can be obtained by evaluating Theorem 1 with the digital codewords Wi = (W̃i, Ui)

for i = 1, 2, where Wi and Ui are defined as above, and the symbol-by-symbol mappings

Xi = Ui + (−γi
√
Pai +

√
Pai)Si. However, in the following we will consider succes-

sive decoding of the digital messages instead of the joint decoding of (W̃1, W̃2, U1, U2),

to reduce the complexity of the receiver1. We also note that unlike S-VQ, here the

1As noted in [13] and [35], messages ω1 and ω2 are correlated to the source sequences Sn
1 and Sn

2 ,
respectively, and common typical random coding techniques have to be modified accordingly. The same
tools developed in [35] to prove Theorem 1 can be used to derive the sufficient conditions for successful
encoding and successive decoding provided in this section.
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quantization codewords, i.e., W̃i, is not mapped to the channel input.

At the receiver, we first apply successive decoding of the auxiliary random variables

Un1 and Un2 . Unlike in the usual superposition schemes, the channel codewords Xd,n
1

and Xd,n
2 are not recovered at the decoder; and hence, cannot be removed from the

channel output. However, since Un1 and Un2 are correlated, the decoder first decodes Un2

and uses it as side information to decode Un1 . First, the decoder looks for the unique

sequence Ûn2 such that (Ûn2 , Y
n) is jointly typical. We declare an error if more than one

or no such sequence exist. The estimate ŵ2 is equal to the index of the bin containing

the sequence Ûn2 . It will be decoded correctly with high probability if,

Rc2 ≤ I(U2;Y )− I(U2;S2) =
1

2
log

Pd2(P1 + P2 + 2ρ
√
Pa1Pa2 +N)

|CU2Y |
,

where

CU2Y ,

(
P1 + P2 + 2ρ

√
Pa1Pa2 +N Pd2 + Pa2γ2 + γ2ρ

√
Pa1Pa2

Pd2 + Pa2γ2 + γ2ρ
√
Pa1Pa2 Pd2 + Pa2γ

2
2

)
.

Once Un2 is recovered, the decoder tries to decode Un1 using Un2 and Y n. The

decoder looks for Ûn1 such that (Ûn1 , U
n
2 , Y

n) are jointly typical. For sufficiently large

n, the decoding is successful if

Rc1 ≤ I(U1;U2Y )− I(U1;S1)

= I(U1;Y |U2)− I(U1;S1|U2)

=
1

2
log

Pd1 |CU2Y |
|CU1U2Y |

,

where the first equality follows from the Markov Chain U1 − S1 − U2, and the second

one from

CU1U2Y , Pd1+Pa1γ
2
1 γ1γ2ρ

√
Pa1Pa2 Pd1+Pa1γ1+γ1ρ

√
Pa1Pa2

γ1γ2ρ
√
Pa1Pa2 Pd2+Pa2γ

2
2 Pd2+Pa2γ2+γ2ρ

√
Pa1Pa2

Pd1+Pa1γ1+γ1ρ
√
Pa1Pa2 Pd2+Pa2γ2+γ2ρ

√
Pa1Pa2 P1 + P2+2ρ

√
Pa1Pa2+N

 .

Factors γ1 and γ2 have to be chosen such that Rc1 ≥ 0 and Rc2 ≥ 0. This condition is

satisfied by imposing γ2L ≤ γ2 ≤ γ2H , where γ2L and γ2H are the two unique solutions

to equation Rc2 = 0 given by

γ2H,2L = Pd2

Pa2 + ρ
√
Pa1Pa2 ±

√
Pa2

(
1 + P1 + P2 + 2ρ

√
Pa1Pa2

)
Pa2 (1 + Pd1 + Pd2 + Pa1 (1− ρ2))

.
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For each feasible γ2, any feasible γ1 satisfies γ1L ≤ γ1 ≤ γ1H , where γ1L and γ1H are

the two unique solutions to equation Rc1 = 0 given by

γ1H,1L = Pd1

Pd2ρ
√
Pa1Pa2(1− γ2) + Pa1

(
Pd2 + Pa2γ

2
2(1− ρ2)

)
±
√

Φ

Pa1 (Pa2(1 + Pd1)γ2
2 (1− ρ2) + Pd2 (1 + Pd1 + Pa2(1− γ2)2 (1− ρ2)))

,

where

Φ , Pa1

(
Pd2 + Pa2γ

2
2

(
1− ρ2

)) (
Pd2

(
1 + P1 + Pa2(1− γ2)2 + 2

√
Pa1Pa2ρ(1− γ2)

)
+ Pa2γ

2
2

(
1 + Pd1 + Pa1

(
1− ρ2

)))
.

In addition to the recovered bin indices w1 and w2, the decoded codewords Un1 and

Un2 are correlated with the source sequence Sn1 and can be used as side information as

in Wyner-Ziv source coding with correlated side information available at the decoder

[4]. The source decoder at the receiver first decodes the quantized version of the helper

source Wn
2 jointly typical with (Y n, Un1 , U

n
2 ). Assuming it has access to the correct

indices from the channel decoder, it can be decoded correctly with high probability, for

large enough n, if,

Rs2 ≥ I(W2;S2|Y U1U2) =
1

2
log
|CU1U2YW2

|
|CU1U2Y |σ2

q2

,

where

CU1U2YW2 =


γ1ρ
√
Pa1

CU1U2Y γ2

√
Pa2√

Pa2 + ρ
√
Pa1

γ1ρ
√
Pa1 γ2

√
Pa2

√
Pa2 + ρ

√
Pa1 1 + σ2

q2

 .

Once the side information from the helper is decoded, the source decoder tries to

decode the quantized version of the main sourceWn
1 by looking for the sequenceWn

1 such

that (Wn
1 ,W

n
2 , Y

n, Un1 , U
n
2 ) are jointly typical. A unique Wn

1 is correctly decoded if,

Rs1 ≥ I(W1;S1|Y U1U2W2) =
1

2
log
|CU1U2YW2W1

|
|CU1U2YW2 |σ2

q1

,

where

CU1U2YW2W1
=


γ1

√
Pa1

CU1U2YW2
γ2ρ
√
Pa2√

Pa1 + ρ
√
Pa2

ρ

γ1

√
Pa1 γ2ρ

√
Pa2

√
Pa1 + ρ

√
Pa2 ρ 1 + σ2

q1

 .
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The channel coding rates Rc1 and Rc2 are determined for each Ω and (α1, α2, γ1, γ2).

To minimize the quantization error generated by the digital vector quantizers, their

rates are chosen to be Rsi = Rci for i = 1, 2.

Finally, an MMSE estimator is used to reconstruct the source sequence Sn1 using

all the available information at the decoder, S̃hi = [U1i, U2i, Yi,W1i,W2i]
H , i = 1, ..., n,

that is Ŝi = E[Si|S̃i]. The available information can be modeled as S̃hi = hhS1i + Nh
i

where hh = [γ1

√
Pa1, γ2

√
Pa2ρ,

√
Pa1 + ρ

√
Pa2, ρ, 1]H , and Nh

i is the signal components

uncorrelated with Si, distributed as Nh
i ∼ N (0,Ch) where the Ch is given by

Ch =
Pd1 0 Pd1 0 0

0 Pd2+Pa2γ
2
2

(
1− ρ2

)
Pd2+Pa2γ2

(
1− ρ2

) √
Pa2γ2

(
1− ρ2

)
0

Pd1 Pd2+Pa2γ2

(
1− ρ2

)
1+Pd1+Pd2+Pa2

(
1− ρ2

) √
Pa2

(
1− ρ2

)
0

0
√
Pa2γ2

(
1− ρ2

) √
Pa2

(
1− ρ2

)
1− ρ2 + σ2

q2 0

0 0 0 0 σ2
q1

 .

For a given Ω, fixed power allocation parameters (α1, α2), and fixed feasible (γ1, γ2)

the distortion achievable by the I-HDA scheme is given by

Dh(Ω, α1, α2, γ1, γ2) = (1 + hHh C−1
h hh)−1. (2.18)

In general, the I-HDA scheme provides additional degrees-of-freedom through the

two digital power allocation parameters α1 and α2 and the DPC parameters γ1 and γ2.

For any given Ω we can optimize these parameters to minimize the distortion. We have

D∗h(Ω) = min
0≤α1,α2≤1
γ1L≤γ1≤γ1H
γ2L≤γ2≤γ2H

Dh(Ω, α1, α2, γ1, γ2). (2.19)

We note here that in general the optimal DPC parameters γ1 and γ2 do not coincide

with the DPC Costa parameter from the point-to-point channel [49]. This was also

noted in [48] for the point-to-point setup.

2.4 Numerical Results

In this section, we numerically evaluate the performance of the schemes proposed in

Section 2.3, and we compare them with the lower bound from Section 2.2.

In Fig. 2.5(a) we let the power at the helper be fixed at P2 = 1, and N = 1,

and we plot the achievable distortion D with respect to the SNR, given by P1/N . It

can be seen that SLU achieves the lowest distortion among the considered schemes,

and the performance of I-HDA and S-VQ, denoted by D∗h(Ω) and D∗vq(Ω), respectively,
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(a) Achievable distortion performance in func-
tion of P1 for P2 = 1 and ρ = 0.3.

(b) Achievable distortion and cut-set bound as a
function of P1 for P2 = 5 and ρ = 0.8.

(c) Achievable distortions and cut-set bound for
P = P1 = P2 = 1 as a function of ρ.

(d) Achievable distortions and cut-set bound for
P = P1 = P2 = 5 as a function of ρ.

Figure 2.5: Upper and lower bounds on the distortion with respect to SNR and corre-
lation for the Gaussian one-helper problem.

reduce to D∗u(Ω) in this regime of operation. On the other hand, separate source and

channel coding achieves the worst performance among the considered schemes. In Fig.

2.5(b), we let P2 = 5. Contrary to the previous case, while uncoded transmission

still achieves the best distortion for low SNR values, its performance deteriorates as

SNR increases, and the pure digital scheme has a better performance in this regime.

I-HDA and S-VQ schemes reduce to the pure uncoded performance at low SNR values,

while they outperform both digital and pure uncoded transmission schemes at higher

SNR values. We note that both I-HDA and S-VQ achieve the same distortion in general,

although I-HDA uses successive decoding, and are operationally different in their digital

components. In S-VQ, the sources are quantized and are directly mapped to de channel

input, and hence, the correlation between the quantization codewords is exploited. On
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the other hand, in I-HDA, the sources are quantized and mapped to DPC channel inputs.

In this case, the correlation between the DPC codewords is exploited instead. While

in this multi-terminal setup both structures achieve the same performance, we believe

that in other communication scenarios their performance will be different.

Now, we consider a symmetric power scenario for which P1 = P2 = P , and plot the

upper and lower bounds on the achievable distortion D with fixed SNR with respect to

the source correlation ρ, which quantifies the quality of the helper’s observation. We

consider P = 1 in Fig. 2.5(c). Observe that all schemes achieve the lower bound, and

are thus optimal, when ρ = 0, which corresponds to the case with independent, hence

useless, helper observation. Since the helper is useless, the setup reduces to a Gaus-

sian point-to-point channel, for which both separation and ULC are optimal. Uncoded

transmission, I-HDA and S-VQ achieve the optimal performance at ρ = 1, i.e., when

both users have access to the main source signal, while digital transmission is subopti-

mal. In this case, the helper and the main transmitter can fully cooperate by generating

correlated channel inputs by exploiting the source correlation, although they still have

individual power constraints. However, separation based schemes cannot generate cor-

related inputs distributedly, since source and channel coding are done independently.

The suboptimality of digital transmission with respect to uncoded transmission for

MMSE reconstruction in this setup was proven in [52]. Note that digital transmission

is outperformed by the other schemes for any ρ > 0, while I-HDA, S-VQ and uncoded

transmission achieve the same distortion. In Fig 2.5(c) we consider the upper and lower

bounds for P = 5. In this case, pure digital transmission outperforms analog transmis-

sion for low ρ, while analog transmission achieves lower distortions for high correlation

values. In general, the gains from separation based schemes are obtained only by the

distributed compression of the source, while gains in SLU are obtained only by gener-

ating correlated channel inputs that result in beamforming gains. When the correlation

is low, higher gains can be obtained from distributed compression, whereas when the

correlation is high, distributed beamforming provides higher performance. Nevertheless,

I-HDA and S-VQ schemes outperform both pure schemes and achieve lower distortions,

since both schemes exploit both types of gains. We observe that for high correlation

values, HDA schemes reduce to the performance of uncoded transmission. Note that,

as expected, at ρ = 0 and ρ = 1 we have the same optimality results as before.

While we have not been able to prove it analytically, we believe that the uncoded

transmission is optimal in those regions where the performance of HDA and uncoded

transmission coincide. This is reminiscent of the optimality of uncoded transmission in

the MAC setup considered in [13]. However, we note that the optimality conditions in

[13] differ from the conditions under which uncoded transmission achieves the lowest

distortion for intermediate correlation values.

In general, we observe that by using the correlated source sequences available at the
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transmitters, the encoders can generate correlated channel inputs that outperforms the

pure digital transmission scheme based on separate source and channel coding, for which

the channel inputs are independent. However, while the proposed HDA schemes achieve

significant better performance than both the pure analog and pure digital schemes, in

general the proposed transmission schemes are far from the derived distortion lower

bound. We believe that this mainly stems from the looseness of the proposed lower

bound, and tighter lower bounds in this setting is a challenging future research problem.

2.5 Conclusions

We have studied the JSCC one-helper problem in the Gaussian setting. We have pro-

posed a lower bound on the achievable distortion using cut-set bound arguments and

bounding the maximum correlation between the channel inputs. We have considered

the achievable distortion, and have derived the optimal performance of pure digital and

symbol-by-symbol linear analog transmission schemes. Then, we have proposed a gen-

eralized HDA transmission scheme based on power allocation among digital and analog

signals, and studied two operational approaches. First, an HDA scheme has been con-

sidered, in which an analog component is superposed with a quantized version of the

source sequence at each encoder, and joint decoding is employed at the destination. A

second HDA scheme has been considered, which exploits the analog components through

dirty paper coding and applies successive decoding. It is shown that in certain regimes,

analog transmission outperforms pure digital transmission. It is numerically shown that

both HDA schemes achieve the same distortion, which is significantly lower than pure

digital and analog transmission in some regimes.



Chapter 3

Joint Source-Channel Coding

with Time-Varying Channel

and Side-Information: SISO

In this chapter, we consider the transmission of analog data, such as video or voice, under

delay constraints in the presence of time-varying correlated information available at the

receiver considered in Section 1.1.1. We model this important practical communication

scenario as a JSCC problem of transmitting a Gaussian source over a time-varying

Gaussian channel with the minimum average end-to-end distortion in the presence of

time-varying correlated side information at the receiver. We consider a block fading

model for the states of both the channel and the side information, and these states are

assumed to be known perfectly at the receiver.

When both the channel and the side information are static, Shannon’s separation

theorem applies [28], and the optimal performance is achieved by separate source and

channel coding; that is, the concatenation of an optimal Wyner-Ziv source code [4],

which exploits the side information available at the decoder, with an optimal capacity

achieving channel code. However, in delay-limited transmission, if the channel and the

side information are time-varying, and the channel state information (CSI) is available

only at the receiver, the transmitter cannot use the optimal source and channel codes

without being prone to outages, and the separation theorem fails. In order to have a

good performance on average, the transmitter has to adapt to the time-varying nature

of both the channel and the side information without knowing their realizations.

Strategies based on separate source and channel coding suffer from the threshold

effect and do not adapt well to the uncertainties of the channel [17]. On the other hand,

simple uncoded transmission is robust to SNR mismatch, and does not suffer from the

43
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threshold effect. However, despite being optimal in the point-to-point Gaussian setup,

it becomes suboptimal in the presence of correlated side information. In [34] an HDA

scheme, which we denote by HDA-WZ, is proposed and shown to be robust to SNR

mismatch and, unlike uncoded transmission, HDA-WZ is optimal even in the presence

of side information at the receiver, or known interference in the channel. HDA-WZ is

also shown to outperform separate source and channel coding and uncoded transmission

in certain static setups, such as the transmission of a Gaussian source in the presence of

correlated interference [53, 54], or to achieve the optimal distortion in the transmission

of a bivariate Gaussian source over a broadcast channel [55]. In addition to HDA-WZ or

various other HDA schemes, pure digital JSCC, based on joint decoding of the channel

and source codewords, is also shown to exhibit improved robustness to the threshold

effect, and to achieve the optimal performance in certain broadcasting scenarios [56–58].

The characterization of the optimal expected distortion for the proposed model in

the absence of time-varying side information has received a lot of interest in recent years.

Despite the ongoing efforts, the optimal performance remains an open problem. The

expected distortion in this model is studied using multi-layer source codes concatenated

with time-division [59] and superposition [42,60] coding schemes. In general, more con-

clusive results on the performance can be obtained by studying the distortion exponent,

which characterizes the exponential decay of the expected distortion in the asymptoti-

cally high SNR regime. The distortion exponent, which was introduced in [61], has been

considered as a figure of merit in many scenarios: for parallel fading channels in [62], for

the relay channel in [63], for channels with feedback in [64], for the two-way relay channel

in [65], for the interference channel in [66], and in the presence of side information that

might be absent in [67]. The distortion exponent, is characterized in the multi-antenna

setup in certain regimes in [15],[16] and [39], and it is shown that multi-layer source

and channel codes, or hybrid digital-analog coding schemes, are needed to achieve the

optimal distortion exponent.

The pure source coding version of our problem, in which the channel is considered

as an error-free constant-rate link, is studied in [43], and it is shown that, contrary

to the channel coding problem, when the side information follows a continuous quasi-

concave fading distribution, a single layer source code suffices to achieve the optimal

performance. Recently, the JSCC problem has also been considered in [68] and [69].

In [68], the distortion exponent for separate source and channel coding is derived when

the side information sequence has two states, the side information average gain does

not increase with the SNR, and the channel follows a Rayleigh fading. In [69], HDA

and joint decoding schemes are considered, and their performance is studied using the

distortion loss, which quantifies the loss with respect to a fully informed encoder that

perfectly knows the channels and the side information states.

In this chapter, we consider the JSCC problem both in the finite and asymtotically
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high SNR regimes for single antenna setups and defer the analysis of multi-antenna

scenarios to Chapter 4. We first consider two lower bounds on the expected distortion by

providing the encoder with different channel and side information state information. We

then study achievable schemes based on uncoded transmission, SSCC, joint decoding,

as well as HDA transmission and compare the performance of these schemes with the

lower bound. The main contributions of this chapter are the following:

• We prove the optimality of separate source and channel coding when the channel

is static and the side information state has a discrete or a continuous quasiconcave

gain distribution. Remarkably, most common distributions used to model wireless

communication channels, e.g., Rayleigh, Rician, Nakagami, have continuous and

quasiconcave gains.

• When both the channel and the side information are time-varying, and the side

information gain distribution is discrete or continuous quasiconcave, we derive a

lower bound on the expected distortion called the partially informed encoder lower

bound, by providing only the current channel state to the encoder while the side

information state remains unknown.

• We show that uncoded transmission meets this lower bound when the side infor-

mation fading state belongs to a certain class of continuous quasiconcave distribu-

tions, while separate source and channel coding is suboptimal. This class includes

monotonically decreasing functions which occur, for example, under Rayleigh fad-

ing. To the best of our knowledge, this is the first result showing the optimality of

uncoded transmission in a fading channel scenario while it would be suboptimal

in the static case.

• We propose achievable schemes based on separate source and channel coding

(SSCC), joint decoding (JDS) and hybrid digital analog transmission with a su-

perposed analog layer (SHDA). We show that JDS always outperforms SSCC and

numerically show that SHDA performs very close to the partially informed encoder

lower bound, although in general no particular scheme outperforms the others.

• We obtain the distortion exponent corresponding to the proposed upper and lower

bounds for Nakagami distributed channel and side information. We parameterize

the uncertainty by the shape parameter, given by Lc for the channel and by Ls for

the side information. For Lc ≥ 1, we characterize the optimal distortion exponent

and show that it is achieved by SHDA, in line with the numerical results. For Lc <

1, we show that JDS achieves the optimal distortion exponent in certain regimes,

while SHDA is suboptimal. However, as Ls increases, the performance of JDS

saturates and becomes worse than SHDA, whose distortion exponent converges to

the upper bound.

The rest of the chapter is organized as follows: in Section 3.1 we introduce the
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Figure 3.1: Block diagram of the joint source-channel coding problem with fading chan-
nel and side information.

system model. In Section 3.2 we provide some previous results and characterize the

optimal performance for a static channel; while in Section 3.3, we propose upper and

lower bounds on the performance. In Section 3.4 we prove the optimality of uncoded

transmission under certain side information fading distributions. In Section 3.5 we

provide numerical results for the finite SNR regime, while in Section 3.6 we consider a

high SNR analysis and characterize the optimal distortion exponent. Finally, in Section

4.8 we provide the conclusions.

3.1 System Model

We consider the transmission of a random source sequence Sn of independent and iden-

tically distributed (i.i.d.) entries form a zero mean, unit variance real Gaussian dis-

tribution, i.e., Si ∼ N (0, 1), over a time-varying channel (see Fig. 4.1). An encoder

fn : Rn → Rn maps the source sequence Sn to the input of this channel, Xn ∈ Rn,

i.e., xn = fn(sn), while satisfying an average power constraint: 1
n

∑n
i=1 E[X2

i ] ≤ 1. The

block-fading channel is given by

Y n = HcX
n +Nn, (3.1)

where Hc ∈ R is the channel fading state with probability density function (pdf)

pHc(hc), and Nn is the additive white Gaussian noise Ni ∼ N (0, 1).

In addition, there is an orthogonal block-fading side information channel connecting

the source to the destination, which provides an uncoded noisy version of the source

sequence to the destination. This second channel models the time-varying correlated

side-information at the destination. Similarly to the communication channel, we model

this side information channel as a memoryless block fading channel given by

Tn = ΓcS
n + Zn, (3.2)
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where Γc ∈ R is the side information fading state with pdf pΓc(γc), S
n is the uncoded

channel input, and Zn is the additive white Gaussian noise, i.e., Zi ∼ N (0, 1), i =

1, ..., n.

We define H , H2
c ∈ R+ and Γ , Γ2

c ∈ R+ as the instantaneous channel gain and

the instantaneous side information gain, with pdfs pH(h) and pΓ(γ), respectively.

We assume a stringent delay constraint that imposes each source block of n source

samples to be transmitted over one block of the channel, consisting of n channel uses, i.e.,

we consider matched source and channel bandwidths. We study the more general case

with an arbitrary bandwidth ratio in Chapter 4. Some additional results considering a

mismatched bandwidth ratio in SISO channels have been reported in [70].

Both the channel and side information states, Hc and Γc, are assumed to be con-

stant, with values hc and γc, respectively, for the duration of one channel block, and

independent among different blocks. The channel and side information state realizations

hc and γc are assumed to be known at the receiver, while the encoder is only aware of

their distributions.

The decoder reconstructs the source sequence from the channel output Y n, the side

information sequence Tn, and the channel and side information states hc and γc using

a mapping gn :Rn×Rn×R×R→Rn, where Ŝn = gn(Y n, Tn, hc, γc).

For given channel and side information distributions, we are interested in character-

izing the minimum expected distortion, E[D], where the quadratic distortion between

the source sequence and the reconstruction is given by

D ,
1

n

n∑
i=1

(Si − Ŝi)2. (3.3)

The expectation is taken with respect to the source, channel and side information states,

and the noise distributions. The minimum expected distortion can be expressed as

ED∗ , lim
n→∞

min
fn,gn

E[D]. (3.4)

3.2 Preliminary Results

We first review some of the existing results in the literature for the source coding version

of the problem under consideration, in which the fading channel is substituted by an

error-free channel of finite capacity. We then focus on the scenario in which the channel

is noisy but static, i.e., the channel gain is constant and known both at the encoder and

the decoder. We show that separate source and channel coding is optimal in the case of

a static channel.
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3.2.1 Background: Lossy Source Coding with Fading Side In-

formation

The source-coding version of this problem in which the fading channel is substituted

by an error-free channel of rate R and a time-varying side information sequence Tn is

available at the destination is considered in [43]. Here we briefly review the results of

[43] which will be used later in the chapter.

Let the distribution pΓ(γ) be discrete with M states γ1 ≤ · · · ≤ γM with probabilities

Pr[Γ = γi] = pi. We define the side information sequence available at the decoder when

the realization of the side information fading gain is γsi as Tni,1 ,
√
γiS

n + Zn 1. Note

that the side information has a degraded structure, characterized by the Markov chain

T1,j − · · · − TM−1,j − TM,j − Sj , j = 1, ..., n. (3.5)

This is equivalent to the Heegard-Berger source coding problem with degraded side

information [5], in which an encoder is connected by an error-free channel of rate R to

M receivers, and receiver i has access to side information Tni,1. The minimum expected

distortion is given by the solution to the following problem,

ED∗(R) = min
D:RHB(D)≤R

pTD, (3.6)

where p , [p1, ..., pM ], D = [D1, ..., DM ] with Di defined as the achievable distortion at

receiver i and RHB(D) is the Heegard-Berger rate-distortion function given by

RHB(D) = min
WM

1 ∈P(D)

M∑
i=1

I(S;Wi|W i−1
1 , Ti), (3.7)

where W i
1 denotes the auxiliary random variables W1, ...,Wi, and P(D) is the set of

random variables WM
1 satisfying the Markov chain condition

WM − · · · −W1 − S − TM − TM−1 − · · · − T1,

for which there exist source reconstructions Ŝi(Ti,W
i
1) satisfying E[di(S, Ŝi)] ≤ Di,

i = 1, ...,M .

When the source Xn is Gaussian, it can be shown that the optimal auxiliary random

variables WM
1 minimizing (3.6) are jointly Gaussian. Then, the minimum expected

distortion for a Gaussian source with finite number of side information states can be

1To avoid confusion in the indexing, we use Tn
i,1 , [Ti,1, ..., Ti,n] to denote all the elements Ti,j ,

j = 1, ..., n for the i-th side information state.
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found by solving the following convex optimization problem [43, Eq. (59)-(62)]:

ED∗F (R) = min
D1,...,DM∈R++

M∑
i=1

piDi

s.t. − 1

2

M−1∑
i=0

log(1 + (γi+1 − γi)Di)−
1

2
logDM ≤R,

Di ≤ (D−1
i−1 + γi − γi−1)−1, i = 1, ...,M, (3.8)

where D0 , σ2
x = 1 and γ0 , 0. The Heegard-Berger rate distortion function also

extends to the set of infinitely many degraded fading states, γ1 ≤ γ2 ≤ · · · with∑∞
i=1 pi = 1 [43]. For a countable number of states, the expected distortion is given in

[43, Eq. (75)-(78)] as the solution to

ED∗C(R) = min
D1,D2...∈R++

∞∑
i=1

piDi

s.t. − 1

2

∞∑
i=0

(log(D−1
i−1 + γi − γ,i−1) + logDi) ≤ R,

Di ≤ (D−1
i−1 + γi − γ,i−1)−1, i = 1, 2, ... (3.9)

When the side information distribution pΓ(γ) is continuous and quasiconcave2, the op-

timal expected distortion is achieved by single-layer rate allocation such that all the

available rate R is targeted to a single side information state γ̄ [43]. Then, the optimal

expected distortion is given by

ED∗Q(R)=

∫ γ̄

0

pΓ(γ)

1 + γ
dγ+

∫ ∞
γ̄

pΓ(γ)

(γ̄ + 1)22R + γ − γ̄
dγ, (3.10)

where γ̄ minimizing (3.10) is determined as follows: Let a super-level set be defined as

[γl(α), γr(α)] , {γ|pΓ(γ) ≥ α}. Then, γ̄ is defined as the left endpoint of the super-level

set induced by α∗, i.e., γ̄ = γl(α
∗), where α∗ ∈ [0,max pΓ(γ)] is found by solving the

equation ∫ ∞
γl(α∗)

pΓ(γ)− α∗

((1 + γl(α∗))22R + γ − γl(α∗))2
dγ = 0. (3.11)

When the side information state is Rayleigh distributed, the side information gain Γ

is exponentially distributed. Then it can be seen that γ̄ = 0 and the optimal expected

distortion becomes

ED∗Ray(R) =
1

E[Γ]
e

22R

E[Γ]E1

(
22R

E[Γ]

)
, (3.12)

2A function g(x) is quasiconcave if its supersets {x|g(x) ≥ α} are convex for all α.
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where E1(x) ,
∫∞
x
t−1e−tdt is the exponential integral [43].

In the following sections we use ED∗F (R), ED∗Q(R) and ED∗Ray(R) to generate lower

bounds on the expected distortion. To unify these results, we define the function

ED∗s(R) as the minimum expected distortion in the source coding problem for these

three setups. Therefore, while the achievability results are valid for any distribution,

the optimality results in this chapter are valid for discrete, i.e., finite or countable num-

ber of states, as well as continuous quasiconcave distributions of the side information.

3.2.2 Static Channel and Fading Side Information

In this section we consider a static channel and prove the optimality of separate source

and channel coding in this setting. We consider a channel from Xn to Y n, not neces-

sarily the fading Gaussian channel characterized in (3.1), of fixed capacity C. The side

information is still block-fading as in (3.2) with the side information gain following a

distribution pΓ(γ). Note that it is a JSCC generalization of the source coding problem

reviewed in Section 3.2.1. We denote the minimum expected distortion in the case of a

static channel by ED∗sta.

Optimality of separate source and channel coding can be proven when Γ, the side

information gain, has finite or countable number of states, or when it has a continuous

quasiconcave distribution. This reduces the problem to the source coding problem of

Section 3.2.1 with R = C.

Theorem 2. Assume that the channel is static with capacity C. When the side infor-

mation gain Γ has a discrete number of states, or a continuous quasiconcave pdf pΓ(γ),

the minimum expected distortion, ED∗sta, is achieved by separate source and channel

coding, and is given by

ED∗sta = ED∗s(C). (3.13)

Proof. The theorem is first proven when Γ has a discrete distribution. Then, to show

the optimality of separation when pΓ(γ) is continuous and quasiconcave we construct a

lower bound on the expected distortion ED∗sta by discretizing the continuum of analog

side information states, and show that this bound is achievable in the limit of finer

discretizations. See Appendix C for details.

3.3 Upper and Lower Bounds

In this section we return to the problem presented in Section 3.1 in which both the

channel and the side information are block-fading. We construct two lower bounds on

ED∗. The first one is obtained by informing the encoder with both of the channel and
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side information states H and Γ. Then, we construct a tighter lower bound by informing

the encoder only with the channel state H. Next, we propose achievable schemes based

on uncoded transmission, separate source and channel coding, joint decoding and hybrid

digital-analog transmission. Comparison of the proposed upper and lower bounds in

different regimes of operation is relegated to Sections 3.4, 3.5 and 3.6.

3.3.1 Informed Encoder Lower Bound

A trivial lower bound on ED∗ can be obtained by providing the encoder with the in-

stantaneous states of the channel and the side information. We call this bound the

informed encoder lower bound. At each realization, the problem reduces to the system-

atic model considered in [28] (see also [71]), for which the separation theorem holds.

The encoder compresses the source sequence using Wyner-Ziv source coding consid-

ering the side information, and then transmits the compressed bits at the instanta-

neous capacity of the channel. For states (h, γ), the optimal distortion is given by

Dinf(h, γ) , (1 + h)−1(1 + γ)−1. Averaging over the channel and side information

states, the informed encoder lower bound on the expected distortion is given by

ED∗inf = EH,Γ[Dinf(H,Γ)]. (3.14)

3.3.2 Partially Informed Encoder Lower Bound

We can obtain a tighter lower bound by providing the encoder only with the channel

realization h. We call this the partially informed encoder lower bound, and denote it by

ED∗pi. For a given channel state realization h, the setup reduces to the one considered in

Section 3.2.2, and for a discrete or continuous quasiconcave pΓ(γ), separation theorem

applies for each channel realization. Averaging over the channel states, we have the

following lower bound.

Lemma 3. If pΓ(γ) is discrete or continuous quasiconcave, the minimum expected dis-

tortion is lower bounded by

ED∗pi , EH [ED∗s(C(H))], (3.15)

where C(h) , 1
2 log(1 + h) is the capacity of the channel for a given realization h = h2

c.

Providing only the side information state to the encoder does not lead to a tight

computable lower bound, since the optimality of separate source and channel coding

does not hold in this case. Although the partially informed encoder lower bound is

tighter, we will include the informed encoder bound in our analysis, as it provides a

benchmark for the performance when both channel and side information states are
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available at the transmitter, which sheds light on the value of the CSI feedback for this

JSCC problem.

Next, we study some achievable schemes (upper bounds) for the JSCC problem under

consideration.

3.3.3 Uncoded Transmission

Uncoded transmission is a memoryless and zero-delay transmission scheme in which

each channel input Xi is generated by scaling the source signal Si while satisfying the

power constraint. In our model both the source variance and power constraint of the

encoder are 1, and hence, no scaling is needed, i.e., Xi = Si. The received signal from

the channel is then given by

Yi = hcSi +Ni, i = 1, ..., n. (3.16)

The receiver reconstructs each component with a MMSE estimator using both the
channel output and the side information sequence, i.e., Ŝi = E[Si|Yi, Ti], i = 1, ..., n.

The distortion for each source component Si for a given channel and side information

realization hc and γc is given by Du(h, γ) , (1 + h+ γ)−1. Averaging over the channel

and side information realizations, we have

EDu = EH,Γ[Du(H,Γ)]. (3.17)

3.3.4 Separate Source and Channel Coding (SSCC)

Next, we consider separate source and channel coding with a single layer based on

Wyner-Ziv source coding using the side information sequence followed by channel coding

for the channel. Note that due to the lack of CSI at the transmitter the rates of the

source and the channel codebooks are fixed at all channel and side information states.

Since the number of bins and channel codewords are fixed without knowledge of the

channel and the side information states, this scheme may suffer from outages both in

the channel decoding and in the source decoding stages.

The quantization codebook consists of 2n(Rc+Rs) length-n codewords, Wn(i), i =

1, ..., 2n(Rc+Rs), generated through a ‘test channel’ given by W = S + Q, with Q ∼
N (0, σ2

Q) and independent of S. The quantization noise variance is chosen such that

Rs+Rc = I(S;W )+ε, for an arbitrarily small ε > 0, i.e., σ2
Q = (22(Rs+Rc−ε)−1)−1. The

generated quantization codewords are then uniformly distributed into 2nRc bins. On

average, each bin contains 2nRs codewords. Additionally, a Gaussian channel codebook

with 2nRc length-n codewords Xn(s) is generated independently with X ∼ N (0, 1), and

the codeword Xn(s), s ∈ [1, ..., 2nRc ], is assigned to the bin index s.

Given a source realization Sn, the encoder searches for a quantization codeword
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Wn(i) that is jointly typical with Sn. Assuming one such codeword is found, the channel

codeword Xn(s) is transmitted over the channel, where s is the bin index of Wn(i). At

reception, the bin index s is recovered with high probability using the channel output

Y n if,

Rc < I(X;Y ). (3.18)

The decoder then looks for a quantization codeword within the estimated bin, that is

jointly typical with the side information sequence Tn. If the bin index is correct, the

correct codeword will be decoded with high probability if,

Rc > I(S;W |T ). (3.19)

If the quantization codeword Wn is successfully decoded, then Ŝn is reconstructed with

an optimal MMSE estimator as Ŝi = E[Si|Ti,Wi] for i = 1, ..., n.

An outage is declared whenever, due to the randomness of the channel or the side in-

formation, the quantization codebook cannot be correctly decoded, i.e., when condition

(3.18) or (3.19) are not satisfied. In case of an outage, only the side information sequence

is used to estimate the source, and we have Ŝi = E[Si|Ti]. When the quantization rate

is R and the side information state is γ, the distortion is

Dd(R, γ) , (γ + 22R)−1, (3.20)

if the quantization codeword is decoded correctly. If an outage occurs, the achievable

distortion is given by Dd(0, γ). Then, the expected distortion of SSCC is given by

EDsb(Rs, Rc) = EOcsb [Dd(Rs +Rc,Γ)] + EOsb [Dd(0,Γ)],

where Ocsb is the complement of the outage event defined as

Osb , {(h, γ) : Rc ≥ I(X;Y ) or Rc ≤ I(S;W |T )},

where I(S;W |T ) = 1
2 log

(
1 + (22(Rs+Rc+ε) − 1)/(γ + 1)

)
and I(X;Y ) = 1

2 log(1 + h).

Since the source and channel rates Rs and Rc are fixed for all channel and side

information states, we can chose those in order to minimize the expected distortion.

Thus, we have

ED∗sb , min
Rc,Rs

EDsb(Rs, Rc). (3.21)

When the side information has a continuous quasiconcave gain distribution, we can

have a closed-form expression for the optimal source coding rate Rs, as given in the
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next lemma.

Lemma 4. For a given Rc, if pΓ(γ) is continuous and quasiconcave, EDsb(Rs, Rc) is

minimized by setting Rs = 1
2 log(1 + (1 + γ̄)(22Rc − 1))−Rc + ε where γ̄ is the solution

to (3.11).

Proof. Once the channel rate has been fixed, i.e., once Rc is fixed, it follows from the

results in Section 3.2.1 that EDsb(Rs, Rc) is minimized by compressing the source to

a single layer targeted for side information state γ̄, i.e., Rc = I(S;W |T = γ̄S + Z) =
1
2 log

(
1 + 22(Rs+Rc−ε)−1

1+γ̄

)
, from where Rs is obtained.

We can reduce the complexity of SSCC by having only a single codeword in each

bin, that is, by letting Rs = 0. This way, we get rid of the outage event corresponding

to a poor side information gain realization. However, to achieve the same quantization

noise, we need to transmit at a higher rate over the channel, which increases the channel

outage probability. Without binning, the minimum expected distortion is found as

ED∗nb , minRc EDsb(0, Rc).

Note that when the side information fading distribution is such that γ̄ = 0, then,

from Lemma 4, the optimal source coding rate is Rs = 0, i.e., the minimum expected

distortion is achieved by ignoring the decoder side information in the encoding process.

Corollary 1. If γ̄ = 0, the optimal SSCC does not utilize binning, that is, R∗s = 0 and

ED∗sb = ED∗nb.

In this section, we have only considered a single layer source coding scheme since for

continuous quasiconcave pΓ(γ), the optimal source code uses a single source code layer.

However, in the case of discrete number of side information gain states, the optimal

source code employs multiple source layers, one layer targeting each of the side informa-

tion states [43]. For a channel code at rate Rc, the achievable expected distortion can be

obtained similarly to the scheme described in this section, using EDF (Rc) and EDC(Rc)

in (3.8), for finite and countable number of side information states, respectively.

3.3.5 Joint Decoding Scheme (JDS)

Here, we consider a source-channel coding scheme that does not involve any explicit

binning at the encoder and uses joint decoding to reduce the outage probability. This

coding scheme is introduced in [57] in the context of broadcasting a common source to

multiple receivers with different side information qualities, and it is shown to be optimal

in the case of lossless broadcasting over a static channel. The success of the decoding

process depends on the joint quality of the channel and the side information states.

At the encoder, a codebook of 2nRjd length-n quantization codewords Wn(i), i =

1, ..., 2nRjd , are generated through a ‘test channel’ W = S + Q, where Q ∼ N (0, σ2
Q)
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and is independent of S. The quantization noise variance is chosen such that Rjd =

I(S;W ) + ε, for an arbitrarily small ε > 0. Then, an independent Gaussian codebook

of size 2nRjd is generated with length-n codewords Xn(i) with X ∼ N (0, 1). Given

a source outcome Sn, the transmitter finds the quantization codeword Wn(i) jointly

typical with the source outcome and transmits the corresponding channel codeword

Xn(i) over the channel. At reception, the decoder looks for an index i for which both

(xn(i), Y n) and (Tn, wn(i)) are jointly typical. Then the outage event is given by

Ojd , {(h, γ) : I(S;W |T ) ≥ I(X;Y )}, (3.22)

where I(S;W |T ) = 1
2 log

(
1 + (22(Rjd−ε) − 1)/(γ + 1)

)
and I(X;Y ) = 1

2 log(1 + h).

If decoding is successful, the source Sn is estimated using both the quantization

codeword and the side information sequence, while if an outage occurs, the source Sn is

reconstructed using only the side information sequence. Then, the expected distortion

for the JDS scheme is found as

EDjd(Rjd) = EOcjd [Dd(Rjd,Γ)] + EOjd [Dd(0,Γ)]. (3.23)

Similarly to (3.21), the expected distortion can be optimized over Rjd to obtain the

minimum expected distortion achieved by JDS, that is, ED∗jd , minRjd EDjd(Rjd).

In SSCC, the quantization codeword is successfully decoded only if both the chan-

nel and the source codes are successfully decoded. On the other hand, JDS decodes

the quantized codeword exploiting the joint quality of both the channel and the side

information sequence. The joint decoding produces a binning-like decoding: only some

Y n are jointly typical with X(s), generating a virtual bin of Wm codewords from which

only one is jointly typical with Tm. The size of those bins depends on the particular re-

alizations of H and Γ unlike in a Wyner-Ziv scheme, in which the bin sizes are designed

in advance. Hence, a bad channel realization can be compensated with a sufficiently

good side information realization, or viceversa, reducing the outage probability.

Indeed, the minimum expected distortion of JDS is always lower than that of SSCC,

as stated in the next lemma.

Lemma 5. For any given pH(h) and pΓ(γ), JDS outperforms SSCC at any SNR, i.e.,

we have ED∗sb ≥ ED∗jd.

Proof. Consider the SSCC scheme as in Section 3.3.4 with rates Rc and Rs. We will show

that the JDS scheme with rate Rjd = Rs +Rc achieves a lower expected distortion, i.e.,

EDsb(Rc, Rs) ≥ EDjd(Rc + Rs). If both schemes are in outage, or if the quantization

codeword is decoded successfully in both, they achieve the same distortion. Thus, to

prove our claim, it will suffice to show that Osb ⊇ Ojd.
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Let (h, γ) be such that Rc ≥ I(X;Y ) = 1
2 log(1 + h), i.e., SSCC is in outage. Note

that for given (h, γ), Rs and Rc, I(X;Y ) and I(S;W |T ) have the same values for both

schemes. However, if I(S;W |T ) < I(X;Y ), JDS is able to decode the quantization

codeword successfully while SSCC would still be in outage. This condition is satisfied

whenever 1
2 log

(
1 + 22(Rjd−ε)−1

γ+1

)
< 1

2 log(1 + h), or equivalently γ > 22(Rjd−ε)−1
h − 1. If

this condition does not hold, both schemes are in outage and have the same performance.

Then, Osb ⊇ Ojd. Conversely, if JDS is in outage, i.e., I(S;W |T ) ≥ I(X;Y ), then

SSCC is also in outage since either Rc ≥ I(X;Y ) or Rc ≤ I(X;Y ) ≤ I(S;W |T ) holds.

Therefore, we have Osb ⊇ Ojd, which implies EDsb(Rc, Rb) ≥ EDjd(Rc + Rb) and

ED∗sb ≥ ED∗jd. This completes the proof.

3.3.6 Superposed Hybrid Digital-Analog Transmission (SHDA)

In this section, we consider a general HDA scheme, and provide sufficient conditions

for the achievable distortion for discrete memoryless channels with side information

available at the decoder, similar to the general HDA scheme considered in [36] in the

absence of side information. Then, using this result, we propose a particular HDA

scheme for the time-varying setup that superposes a coded layer with an uncoded layer

and allocates the power among the two layers.

Consider the transmission of a memoryless source sequence Sn over a discrete memo-

ryless channel p(y|x), in which the destination is interested in reconstructing the source

sequence at an average distortion D. In addition, a memoryless sequence correlated with

Sn, Tn, is available at the destination as side information. We consider a general HDA

scheme in which the source sequence Sn is mapped to one of the 2nR digital codewords

Un(m). Then, each pair (Sn, Un(m)) is mapped symbol-by-symbol to the channel input

sequence Xn, which is transmitted over the channel. Upon receiving Y n and together

with the side information Tn, the decoder jointly recovers the digital components Un(m)

by joint typicality, and reconstructs Ŝn by mapping symbol-by-symbol the analog chan-

nel output Y n, the side-information Tn and the decoded digital message. The general

conditions for successful decoding of the messages and the achievable distortion D are

given in the next lemma, which follows from [36].

Lemma 6. Let (S, T ) be a pair of discrete memoryless sources and d(s, ŝ) be a distortion

measure. A distortion D is achievable for communicating S over a memoryless channel

p(y|x) with side-information T available at the decoder if

I(U ;S) < I(U ;Y T ) (3.24)

for some conditional pdf p(u|s), channel encoding x(u, s) and a reconstruction function

ŝ(u, y, t), such that E[d(S; Ŝ)] ≤ D.
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Proof. First, we note that the JSSC setup with side information can be converted into a

point-to-point JSCC with two parallel channels: the original channel with channel input

x = (u, s) and channel output Y , characterized by p(y|x), and an orthogonal channel

corresponding to the side-information, with channel input x′ = s and channel output

T , characterized by p(t|x′) = p(t|s). See Figure 3.1. The proof follows from the point-

to-point version of Lemma 6 in the absence of side information, given in [36, Theorem

1]. Let the point-to-point channel p(ȳ|x) be given by Ỹ = (Y, T ), and X̃ = (X,S),

and consider the transmission of S over the point-to-point memoryless channel p(ỹ|x̃),

with channel input X̃ and channel output Ỹ . From [36, Theorem 1], it follows that an

average distortion D is achievable if I(Ũ ;S) ≤ I(U ; Ỹ ) for some conditional pdf p(ũ|s),
channel encoding x̃(ũ, s) and reconstruction function ŝ(ũ, ỹ) such that E[d(S; Ŝ)] ≤ D.

The proof is completed by substituting Ỹ = (Y, T ) and X̃ = (X,S) in the sufficient

conditions.

Relying on this result, we propose a particular HDA scheme for the time-varying

setup that superposes a coded layer with an uncoded layer and allocates the power

among the two layers. The decoder uses joint decoding to recover the quantized code-

word using the channel output and the side information sequence. The uncoded com-

ponent in the channel causes an interference correlated with the source sequence, and

thus, acts as side information in the decoding. On the contrary, if an outage occurs and

the quantization codeword is not successfully decoded, the analog component provides

additional robustness since the channel now contains a noisy uncoded version of the

source sequence useful for the reconstruction. This scheme was presented without the

uncoded layer in [34] for the static setting, i.e., static channel and static side information

available at the receiver, and was shown to be robust against channel SNR mismatch.

The encoder transmits a superposition of digital and analog input signals as

Xn = Xn
d +Xn

a , (3.25)

where Xn
d and Xn

a are the length-n channel input vectors corresponding to digital and

analog input signals, respectively. The analog channel input Xn
a is a scaled version of

the source sequence Sn with power Pa, given by Xn
a =
√
PaS

n.

The digital portion of the transmitted signal Xn
d is generated as follows. We first

define the auxiliary random variable U , Xd + ηS, where Xd is independent of S

and distributed as Xd ∼ N (0, Pd), where Pd, is the power allocated to the digital

channel input with Pd = 1 − Pa; and η and Pd satisfy, for an arbitrarily small ε > 0,

Rh = I(U ;S) + ε = 1
2 log

(
1 + η2

Pd

)
+ ε, i.e., η2 = Pd(2

2(Rh−ε) − 1). Then, we generate

a codebook of 2nRh length-n codewords Un with i.i.d. components according to the

auxiliary random variable U . For each source outcome, the encoder determines which of
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the 2n(I(U ;S)+ε) codewords Un in the codebook is jointly typical with Sn, and transmits

Xn
d = Un − ηSn. For sufficiently large n, a unique Un satisfies the joint typicality

condition with high probability since Rh > I(U ;S).

At the decoder, given the channel output Y n and the side information sequence Tn,

the receiver looks for an auxiliary codeword Un which is simultaneously jointly typical

with Y n and Tn. From Lemma 6, the correct Un codeword is decoded successfully if,

Rh < I(U ;Y, T ). (3.26)

We define the matrix Ch , E[[U, Y, T ][U, Y, T ]T ]. We have

Ch=

 Pd + η2
√
h(Pd + η

√
Pa) η

√
γ√

h(Pd + η
√
Pa) h(Pd + Pa) + 1

√
hγPa

η
√
γ

√
hγPa γ + 1

 .

Let C
{2,3}
h be defined as the submatrix of Ch with the first column and first row elimi-

nated. Then, we have

I(U ;Y, T ) = h(U) + h(Y, T )− h(U, Y, T )

=
1

2
log

(
(Pd + η2)|C{2,3}h |

|Ch|

)

=
1

2
log

 (1 + γ + h (1 + Pdγ))
(
Pd + η2

)
Pd

(
1 + γ + h

(√
Pa − η

)2)
+ η2

 .

An outage will be declared whenever condition (3.26) does not hold due to the

randomness of the channel and side information. Hence, the outage event is defined by

Oh , {(h, γ) : I(U ;S) ≥ I(U ;Y, T )}, (3.27)

and is given by

Oh,{(h, γ) :Pdh(1 + Pdγ) ≤ Pd(h(
√
Pa − η)2) + η2}. (3.28)

If Un is successfully decoded, each Si is reconstructed using an MMSE estimator

with all the information available at the decoder, Ŝi = E[Si|Ui, Yi, Ti]. The achievable

distortion when Un is successfully decoded is given by Dh(Pd, η) , (1 + cHC−1

Ñ
c)−1,
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where c , [β
√
Pa + κ,

√
Pa, γ]T and

CÑ =

 Pd Pd
√
h 0

Pd
√
h hPd + 1 0

0 0 1

 . (3.29)

We have

Dh(Pd, η) =
Pd

η2 + Pd

(
1 + γ + h

(√
Pa − η

)2) . (3.30)

If an outage occurs, the receiver estimates Sn from Y n and Tn with an MMSE estimator,

Ŝi = E[Si|Yi, Ti]. The achieved distortion is found to be

Dout
h (Pd, η) ,

(
1 +

hPa
1 + hPd

+ γ

)−1

. (3.31)

Finally, the expected distortion for SHDA is given by

EDshda(Pd, η) , EOch [Dh(Pd, η)] + EOh [Dout
h (Pd, η)]. (3.32)

Optimizing over Pd and η, we obtain ED∗shda , minPd,η EDshda(Pd, η). Note that un-

coded transmission can be recovered from EDshda(Pd, η) with Pd = 0. The hybrid digi-

tal analog (HDA-WZ) scheme of [34] can be recovered by letting Pa = 0. We define the

minimum expected distortion achievable with HDA-WZ as ED∗hda , minη EDshda(1, η).

Alternatively to the derivation in Section 3.3.5, the performance of JDS can also be

derived by using Lemma 6 with U = (W,X), where W = S + Q with Q ∼ N (0, σ2
Q)

and X ∼ N (0, P ), and independent of each other, and using X as channel input.

While in SHDA the quantization codeword is directly mapped to the channel input,

in JDS the channel input is a codeword X independent of the quantization codeword

W . Therefore, despite originating from the same general scheme, SHDA and JDS are

operationally different. In Section 3.5 and Section 3.6, we observe that in general SHDA

performs better than JDS, although the latter outperforms SHDA in certain regimes.

3.4 Optimality of Uncoded Transmission

In addition to separate source and channel coding, uncoded transmission is well known

to achieve the minimum distortion in point-to-point static Gaussian channels [26], [27].

However, even in a point-to-point Gaussian channel, in the presence of static side infor-

mation at the decoder, uncoded transmission becomes suboptimal. In this case, sepa-

rate source and channel coding, concatenating a Wyner-Ziv source code with a capacity

achieving channel code [28], or JSCC through the HDA-WZ scheme in [34] is required
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to achieve the optimal distortion. Surprisingly, in our setting, when Γ has a continu-

ous and quasiconcave distribution for which γ̄ = 0 is the solution to equation (3.11),

uncoded transmission achieves the lower bound ED∗pi in (3.15) for any arbitrarily dis-

tributed channel, while both separate source and channel coding and HDA-WZ schemes

are suboptimal. The optimality of uncoded transmission follows since, when γ̄ = 0, the

side information renders useless for the partially informed lower bound. Then, this lower

bound reduces to the fully informed transmitter lower bound of a point-to-point channel

without side information, for which uncoded transmission is optimal. Similarly to the

other results, the optimality of uncoded transmission in our setting is also sensitive to

the source and channel distributions.

Theorem 3. Let pH(h) be an arbitrary pdf while pΓ(γ) is a continuous and quasiconcave

function satisfying equation (3.11) for γ̄ = 0. Then, the minimum expected distortion

ED∗ is achieved by uncoded transmission.

Proof. For any pdf satisfying (3.11) with γ̄ = 0, the partially informed encoder lower

bound is given by

ED∗pi = EH

[
ED∗Q

(
1

2
log(1 +H)

)]∣∣∣∣
γ̄=0

(a)
=

∫
h

∫ ∞
0

pH(h)pΓ(γ)

2log(1+h) + γ
dγdh

=

∫∫
h,γ

pH(h)pΓ(γ)

1 + h+ γ
dγdh

= EDu,

where (a) is obtained by substituting γ̄ = 0 in (3.10). This completes the proof.

The class of continuous quasiconcave functions for which any non-empty super-level

set of fΓ(γ) begins at γ = 0, satisfies γ̄ = 0. It is not hard to see that the class of

continuous monotonically decreasing functions in γ ≥ 0 satisfy this condition.

Proposition 1. Let pΓ(γ) be a continuous monotonically decreasing function for γ > 0.

Then, (3.11) holds for γ̄ = 0; and hence, uncoded transmission achieves the optimal

performance.

Proof. By definition, γ̄ is given by the left endpoint of the super-level set induced by α∗.

For any monotonically decreasing function pΓ(γ), the left endpoint of the super-level

set {γ : pΓ(γ) ≥ α} corresponds to γ = 0, and as a consequence, we have γ̄ = 0 for any

value of α∗.
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3.5 Finite SNR Results

In the previous section we have seen the optimality of uncoded transmission when the

side information fading state follows a continuous quasiconcave pdf for which γ̄ = 0.

The exponential distribution, and the more general family of gamma distributions with

shape parameter L ≤ 1, are continuous monotonically decreasing distributions, and

hence, the uncoded transmission is optimal when the side information gain Γ follows

one of these distributions. Gamma distributed fading gains appear, for example, when

the channel state follows a Nakagami distribution. The gamma distribution with shape

parameter L and scale parameter θ, Γ ∼ Υ(L, θ), is given as

pΓ(γ) =
1

θL
1

Ψ(L)
γL−1e−

γ
θ , for γ≥ 0, and L, θ > 0, (3.33)

where Ψ(z) ,
∫∞

0
tz−1e−tdt is the gamma function. The variance of Γ is σ2

Γ = Lθ2

and its mean is E[Γ] = Lθ. When L ≤ 1, it is easy to check that pΓ(γ) is continuous

monotonically decreasing, while it is continuous quasiconcave for L > 1. Note that when

L = 1, the gamma distribution reduces to the exponential distribution.

Parameter L models the side information diversity since a time-varying side informa-

tion sequence Y m, with state distribution pΓ(γ), provides the equivalent information (in

the sense of sufficient statistics) provided by L independent side information sequences

each with i.i.d. Rayleigh block-fading gains. We note that despite the term “diversity”,

the side information diversity comes from uncoded noisy versions of the source sequence;

hence, the gains it provides are limited compared to the channel diversity which can be

better exploited through coding.

To illustrate the performance of the achievable schemes and compare them with the

lower bounds, we consider Nakagami fading channel and side information distributions.

We consider normalized channel and side information gains Hc =
√
ρHc0 and Γc =

√
ρΓc0, such that

Y n =
√
ρHc0X

n +Nn, Tn =
√
ρΓc0S

n + Zn,

where Hc0 and Γc0 satisfy E[H2
c0] = E[Γ2

c0] = 1. Basically, Hc0 and Γc0 capture the

randomness in the channels while ρ is the average SNR. We define the associated in-

stantaneous gains H0 , H2
c0 and Γ0 , Γ2

c0.

We assume that the channel gain H0 has a gamma distribution with scale parameter

Lc > 0 and θc = L−1
c , i.e., H0 ∼ Υ(Lc, L

−1
c ), and similarly, the side information gain

follows a gamma distribution with Ls > 0 and θs = L−1
s , i.e., Γ0 ∼ Υ(Ls, L

−1
s ). We

have fixed the value of θc and θs such that E[H2
c0] = E[H0] = 1 and E[Γ2

c0] = E[Γ0] = 1,

and both channels have the same average SNR ρ for any Lc and Ls. Note that the
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Figure 3.2: Upper and lower bounds on the expected distortion versus the channel SNR
(ρ) for Rayleigh fading channel and side information gain distributions, i.e., Ls = Lc = 1,
with ρ = E[H2

c ] = E[Γ2
c ].

variance of Γ is σ2
Γ = Lsθ

2 = 1/Ls. Thus, the side information gain Γ becomes more

deterministic as Ls increases, and similarly, for Lc and H.

First we consider the case with Ls = Lc = 1, i.e., both the channel and the side

information gains are Rayleigh distributed. In Fig. 3.2 we plot the expected distortion

with respect to the channel SNR. As shown in Theorem 3, uncoded transmission achieves

the partially informed encoder lower bound ED∗pi. The minimum expected distortion is

given by

ED∗=EDu=

∫
h0

1

ρ
e

1+ρh0
ρ E1

(
1 + ρh0

ρ

)
pH0

(h0)dh0. (3.34)

We see from the figure that the informed encoder lower bound is significantly loose,

especially at high SNR. This gap between the two lower bounds also illustrates the

potential performance improvement that will be achieved by increasing the feedback

resources. If both channel and side information states can be fed back to the encoder,

instead of only CSI feedback, a significant improvement can be achieved. In relation to

this observation, a problem that requires further research is the allocation of feedback

resources between channel and side information states when a limited feedback channel

is available from the decoder to the encoder.
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Figure 3.3: Lower and upper bounds on the expected distortion versus the channel SNR
for Ls = 2 and Lc = 1 with ρ = E[H2

c ] = E[Γ2
c ].

SHDA (ED∗shda) also achieves the optimal performance by allocating all available

power to the analog component, reducing it to uncoded transmission. Note that while

the HDA-WZ scheme of [34] cannot reach ED∗ in the low SNR regime, its performance

gets very close to ED∗ at high SNR values.

The expected distortion achievable by SSCC is minimized without any binning, since

we have γ̄ = 0 for Rayleigh fading side information. Hence, R∗s = 0 from Lemma 4,

and therefore ED∗sb = ED∗nb. It is interesting to observe that for Rayleigh fading

side information states, the uncertainty in the side information renders it useless in

transmitting the quantized source codeword, and the side information is ignored to

avoid outages in source decoding. The side information is used only in the estimation

step. As will be seen next, this is not the case when the side information fading has a

different distribution.

We also observe in Fig. 3.2 that JDS (ED∗j ) outperforms SSCC by exploiting the

joint quality of the channel and the side information, as claimed by Lemma 5. We also

see that JDS cannot achieve the optimal performance in this setting. Observe that the

expected distortion achieved by MMSE estimation of the source using only the side

information, which we denote by ED∗no, has a constant gap with ED∗ in this setup, as

well as with the other schemes in the high SNR regime.

Observations above, including the optimality of uncoded transmission, hold for any
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Figure 3.4: Lower and upper bounds on the expected distortion versus the channel SNR
for Ls = 10 and Lc = 1 with ρ = E[H2

c ] = E[Γ2
c ].

Lc value as long as Ls ≤ 1. This follows from Proposition 1 since pΓ(γ) is monotonically

decreasing if Ls ≤ 1. However, while uncoded transmission is optimal when Ls ≤ 1, this

optimality does not hold in general. Next, it will be shown that for a wide variety of

channel distributions, while uncoded transmission is suboptimal, SHDA performs very

close to the partially informed encoder lower bound.

We consider the case with Ls = 2 and Lc = 1 in Fig. 3.3. We can see that SHDA

achieves the lowest expected distortion among the proposed schemes and performs very

close to the lower bound at all SNR values, while uncoded transmission is suboptimal.

Although the performance of uncoded transmission is very close to ED∗pi in the low

SNR regime, as the SNR increases, the gap between uncoded transmission and the

partially informed encoder bound increases. In addition, both SSCC and JDS surpass

the performance of uncoded transmission as the SNR increases. In general, the robust-

ness of uncoded transmission is helpful in the low SNR regime. However, in the high

SNR regime uncoded transmission is not capable of exploiting the additional degrees-of-

freedom in the system, given by the diversity in the side-information, i.e., when Ls > 1,

and digital schemes exploit this additional degree-of-freedom better.

We see that SSCC with and without binning both have worse performance than JDS

in all SNR regimes and, while at low SNR binning does not provide significant gains,

as the SNR increases ED∗sb starts to outperform ED∗nb. On the other hand, ED∗nb lies
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Figure 3.5: Lower and upper bounds on the expected distortion versus the channel SNR
for Ls = 1.5 and Lc = 0.5 with ρ = E[H2

c ] = E[Γ2
c ].

between EDu and EDno. These three schemes have the same decay rate and maintain

a constant gap. The rate of decay in the high SNR regime is characterized in Section

3.6 for all the proposed schemes.

Similar behavior is observed in Fig. 3.4 for Ls = 10 and Lc = 1. The minimum dis-

tortion among the proposed transmission schemes is achieved by SHDA, which performs

very close to the lower bound beyond SNR ' 8dB. We can observe that as Ls increases,

the performance of uncoded transmission is further away from the lower bound, and

JDS outperforms it even at lower SNR values. However, the rate of decay of JDS is

worse than the optimal decay in this setting. We also observe that when no binning

is considered, the minimum expected distortion achieved by SSCC is still worse than

that achieved by uncoded transmission, while the two have the same decay rate in the

high SNR regime. However, the use of binning allows SSCC to outperform uncoded

transmission, yet ED∗sb is still far from the lower bound.

Finally, in Fig 3.5, we consider Lc = 0.5 and Ls = 1.5. Contrary to the previous

scenarios, in this setup JDS outperforms SHDA for SNR values greater than SNR w

37dB. As the SNR increases, JDS performs close to the partially informed lower bound,

while SHDA performance is further from the lower bound. Similarly to the previous

scenarios, we observe that uncoded transmission performs close to the lower bound for
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low SNR values and that SSCC achieves lower distortion values if binning is considered.

Observe from Fig. 3.3 and Fig. 3.4 that, as the side information diversity, Ls,

increases, the gap at any SNR between the informed encoder lower bound and the

partially informed encoder lower bound reduces. The two bounds converge since for the

studied setup σ2
Γc0

= L−1
s , and as Ls increases, the variance decreases, and therefore,

the level of uncertainty in the available side information gain state drops. In fact, the

two bounds can be shown to converge at any SNR value and for any arbitrary side

information gain whose variance decreases with some parameter, namely Ls, as given

in the next lemma.

Lemma 7. Let H be arbitrarily distributed and have a finite mean, i.e., EH [H] < ∞.

Let (ΓL)L≥0 be a sequence of side information gain random variables such that, for

every L, ΓL follows an arbitrary distribution with variance σ2
L. Assume that σ2

L → 0 for

L → ∞. Then, the partially informed encoder lower bound converges to the informed

encoder lower bound, i.e., the following limit holds:

lim
L→∞

(EDinf − ED∗pi) = 0. (3.35)

Proof. See Appendix C.

Although the side information available at the decoder becomes more deterministic

with increasing Ls, the channel is still block-fading. Only SHDA performs close to the

informed encoder lower bound, i.e., the optimal performance when the current channel

and side information states are known. On the contrary, the rest of the studied schemes

cannot fully exploit the determinism in the side information fading gain for Lc ≥ 1, while

it seems that for Lc < 1 JDS is the scheme achieving the lowest expected distortion.

The performance of each scheme will be analyzed in the next section in terms of the

exponential decay rate of the expected distortion in the high SNR regime.

3.6 High SNR Analysis

In the previous section we have seen the optimality of uncoded transmission in certain

settings in which the proposed digital schemes are suboptimal. On the other hand,

our numerical results have shown that the SHDA scheme has a good performance for

a wide variety of channel distributions while the optimality of uncoded transmission

is very sensitive to the distribution of the side information. We have also observed

that JDS outperforms SHDA in certain regimes. Although we have characterized the

optimal expected distortion in closed-form for the Rayleigh fading scenario in (3.34),

a closed-form expression of the optimal expected distortion for general channel and

side information distributions is elusive. Instead, we focus on the high SNR regime,
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and study the exponential decay rate of the expected distortion with increasing SNR,

defined as the distortion exponent, and denoted by ∆ [41]. We have,

∆ , − lim
ρ→∞

log E[D]

log ρ
. (3.36)

The study of the asymptotic behavior of the expected distortion in terms of the

distortion exponent does not give exact results for the finite SNR regime. However, it

provides relevant information on the average distortion at high SNR values, in terms of

the exponential decay. We will see in the numerical evaluation in Section 3.5 that, the

expected distortion converges to the asymptotic behavior for not so high SNR values,

and therefore, the distortion exponent is a valuable metric to evaluate the performance

of the transmission schemes.

In this section, we study the distortion exponent for the model considered in Section

3.5, i.e., a Nakagami fading channel and side information gains, i.e., H0 ∼ Υ(Lc, L
−1
c )

and Γ0 ∼ Υ(Ls, L
−1
s ). We are interested in characterizing the maximum distortion

exponent over all encoder and decoder pairs, denoted by ∆∗(Ls, Lc).

We first provide an upper bound on the distortion exponent by studying the partially

informed encoder lower bound on the expected distortion in (3.15). In determining the

high SNR behavior of the partially informed encoder lower bound, it is challenging

to characterize the optimal SNR exponent for the target side information state γ̄ in

(3.11) for different channel states. Hence, we further bound the expected distortion by

considering the ergodic channel capacity as the channel rate.

Lemma 8. The optimal distortion exponent is upper bounded by the exponent of the

partially informed encoder lower bound at the ergodic channel capacity, given by

∆pe(Ls, Lc) = 1 +

(
1− 1

Ls

)+

. (3.37)

Proof. See Appendix C.

We will see that ∆pe(Ls, Lc) is tight only for Lc ≥ 1, and the ergodic channel

relaxation is loose for Lc < 1. In order to tighten the bound in these regimes, we consider

the distortion exponent of the informed encoder upper lower proposed in Section 3.3.

Lemma 9. The distortion exponent is upper bounded by the exponent of the informed

encoder lower bound, given by

∆inf(Ls, Lc) = min{Lc, 1}+ min{Ls, 1}. (3.38)

Proof. See Appendix C.
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Figure 3.6: Distortion exponent upper and lower bounds for Nakagami fading channel
and side information with Lc = 1, as a function of Ls.

While for Lc ≥ 1, ∆pe(Ls, Lc) is always tighter than ∆inf(Ls, Lc), for Lc < 1 we

have ∆pe(Ls, Lc) ≥ ∆inf(Ls, Lc) if Ls ≥ 1
1−Lc . In the next proposition, we combine the

two upper bounds into a single upper bound on the distortion exponent.

Theorem 4. For a Nakagami fading channel with H0 ∼ Υ(Lc, L
−1
c ), and a Nakagami

fading side information with Γ0 ∼ Υ(Ls, L
−1
s ), the optimal distortion exponent is upper

bounded by

min{∆pe(Ls, Lc),∆inf(Ls, Lc)} =


min{1, Ls + Lc} if Ls ≤ 1,

2− 1
Ls

if 1 < Ls ≤ 1
(1−Lc)+ ,

1 + Lc if Ls >
1

(1−Lc)+ .

(3.39)

In Fig. 3.6 and Fig. 3.7 we plot the distortion exponent upper and lower bounds

with respect to the parameter Ls of the Nakagami distribution for Lc = 1 and Lc = 0.5,

respectively.

Note that for Lc ≥ 1, as Ls increases, the optimal distortion exponent ∆∗(Ls, Lc)

converges to the informed encoder upper bound, which is obtained by assuming perfect

knowledge of both channel and side information states at the encoder. This observation

is parallel to the result in Lemma 7. However, this is not the case if Lc < 1. While

Lemma 7 applies to any channel distribution, the partially informed bound with ergodic

channel relaxation is loose in this regime.
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Figure 3.7: Distortion exponent upper and lower bounds for Nakagami fading channel
and side information with Lc = 0.5, as a function of Ls.

Next, we consider the distortion exponent achievable by the transmission schemes

proposed in Section 3.3. The proofs of the corresponding distortion exponent results

can be found in Appendix C.

Lemma 10. The distortion exponent achieved by uncoded transmission is given by

∆u(Ls, Lc) = min{Ls + Lc, 1}. (3.40)

As expected from Theorem 3, uncoded transmission achieves the optimal distortion

exponent for Ls ≤ 1. However, it is suboptimal for Ls > 1. We note that the distortion

exponent of simple MMSE estimation using only the side information sequence, EDno,

is given by ∆no(Ls, Lc) = min{Ls, 1}.

Lemma 11. The distortion exponent achievable by SSCC with binning is given by

∆sb(Ls, Lc) =

1− (1−Ls)2

Lc+1−Ls if Ls ≤ 1,

Ls(2Lc+1)−Lc−1
Ls(Lc+1)−1 if Ls > 1.

(3.41)

If binning is not used, the achievable distortion exponent is given by

∆nb(Ls, Lc) =

1− (1−Ls)2

Lc+1−Ls if Ls ≤ 1,

1 if Ls > 1.
(3.42)
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From Lemma 4, we know that binning is suboptimal for Ls ≤ 1 irrespective of the

channel distribution, and both schemes achieve the same distortion exponent in this

regime. Note also that when Ls = 1, SSCC achieves the optimal distortion exponent

of 1. However, when Ls > 1, if binning is not used the scheme cannot exploit the

side information state properly, and achieves the same distortion exponent as uncoded

transmission. This proves that binning is required in this regime.

Lemma 12. The distortion exponent achievable by JDS is given by

∆jd(Ls, Lc) =


1− (1−Ls)2

Lc+1−Ls if Ls ≤ 1,

2− 1
Ls

if 1 < Ls ≤ 1 + Lc,

1 + Lc
Lc+1 if Ls > Lc + 1.

(3.43)

JDS achieves the same distortion exponent as SSCC for Ls ≤ 1. However, inter-

estingly, for 1 ≤ Ls ≤ 1 + Lc, JDS achieves the optimal distortion exponent and then

saturates for Ls > 1 + Lc. Observe that, as Ls increases, the achievable distortion

exponent with SSCC converges to the performance of JDS.

Lemma 13. The distortion exponent achievable by SHDA and HDA-WZ is given by

∆shda(Ls, Lc) = min{1, Ls + Lc}+
min{1, Lc}(Ls − 1)+

Ls − 1 + min{1, Lc}
. (3.44)

Lemma 13 reveals that the robustness provided by the uncoded layer in SHDA is

not required in the high SNR regime to achieve the optimal distortion exponent, and

allocating all the available power to the HDA-WZ layer of the SHDA scheme is sufficient.

However, we remark that, in terms of the expected distortion in the low SNR regime pure

HDA-WZ is not sufficient to achieve a performance close to the lower bound, and the

uncoded layer improves the performance in general, as observed in the previous section.

HDA-WZ achieves the optimal distortion exponent for Lc ≥ 1 while the rest of the

proposed schemes are suboptimal. However, when Lc < 1, JDS outperforms HDA-WZ

for 1 ≤ Ls ≤ 2. Nevertheless, as Ls increases, HDA-WZ converges to the distortion

exponent of the informed encoder lower bound, despite the uncertainty in the channel

state.

We can see that in the limit Ls →∞, with 0 < Lc ≤ 1, we have

∆∗(∞, Lc) = ∆inf(∞, Lc) = ∆hda(∞, Lc) = 1 + Lc,

whereas

∆sb(∞, Lc) = ∆j(∞, Lc) = 1 +
Lc

Lc + 1
< 1 + Lc.
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This result suggests that, as the side information fading state becomes more determinis-

tic, the performance of HDA-WZ converges to the informed encoder lower bound, while

the rest of the schemes perform significantly worse than HDA-WZ.

Combining the achievable distortion exponents of the JDS and HDA-WZ schemes,

we can characterize the optimal distortion exponent ∆∗(Ls, Lc) in certain regimes, as

given next.

Theorem 5. Consider a Nakagami fading channel with H0 ∼ Υ(Lc, L
−1
c ) and a Nak-

agami fading side information with Γ0 ∼ Υ(Ls, L
−1
s ). If Lc ≥ 1, the optimal distortion

exponent is achieved by the HDA-WZ scheme, and is given by

∆∗(Ls, Lc) = 1 +

(
1− 1

Ls

)+

. (3.45)

If Lc < 1, and Ls ≤ 1 + Lc, the optimal distortion exponent is given by

∆∗(Ls, Lc) = min{1, Ls + Lc}+

(
1− 1

Ls

)+

, (3.46)

and is achieved by uncoded transmission and HDA-WZ when Ls ≤ 1, and by JDS when

1 ≤ Ls ≤ Lc + 1.

These analytical results are in line with the numerical analysis carried out in Section

3.5. For Ls = Lc = 1, all the schemes achieve the optimal distortion exponent ∆∗(1, 1) =

1, which is far from the informed encoder upper bound given by ∆inf(1, 1) = 2, as

observed in Fig. 3.2. For Ls = 2 and Lc = 1, plotted in Fig. 3.3, the optimal distortion

exponent is given by ∆∗(2, 1) = 3/2, which is achieved by HDA-WZ, while uncoded

transmission is suboptimal since ∆u(2, 1) = 1. In this case JDS also achieves the optimal

distortion exponent, while SSCC with binning achieves a lower distortion exponent of

∆sb(2, 1) = 4/3. As observed in the numerical analysis, if no binning is used, SSCC

achieves the same distortion exponent as the uncoded transmission, and the one achieved

by using only the side information sequence, i.e., ∆u(2, 1) = ∆nb(2, 1) = ∆no(2, 1) = 1.

Although a similar behavior is observed for higher values of Ls, JDS does not achieve the

optimal distortion exponent in general. For the case of Ls = 10 and Lc = 1 plotted in

Fig. 3.4, we have ∆∗(10, 1) = 19/10, while ∆jd(Ls, 1) = 3/2 for Ls ≥ 2. However, when

Lc = 0.5 and Ls = 1.5, plotted in Fig. 3.5, JDS achieves the optimal distortion exponent

of ∆∗(1.5, 0.5) = 4/3, while HDA-WZ achieves a smaller distortion exponent given by

∆shda(1.5, 0.5) = 5/4. In this setup the performance of SSCC is improved if binning is

used since ∆sb(1.5, 0.5) = 6/5, while if binning is not used we have ∆sb(1.5, 0.5) = 1,

which coincides with the distortion exponent of uncoded transmission. In general, we

observe that the decay of the expected distortion for finite SNR values converges to the

distortion exponent in the asymptotic high SNR regime.
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3.7 Conclusions

We have studied the JSCC problem of transmitting a Gaussian source over a delay-

limited block-fading channel when block-fading side information is available at the de-

coder. We have assumed that only the receiver has full knowledge of the channel and

side information states while the transmitter is aware only of their distributions. In the

case of a static channel, we have shown the optimality of separate source and channel

coding when the side information gain follows a discrete or a continuous quasiconcave

distribution.

When both the channel and side information states are block-fading, the optimal

performance is not known in general. We have proposed achievable schemes based on

uncoded transmission, separate source and channel coding, joint decoding and hybrid

digital-analog transmission. We have also derived a lower bound on the expected distor-

tion by providing the encoder with the actual channel state. We call this the partially

informed encoder lower bound, since the side information state remains unknown to the

encoder. We have shown that this lower bound is tight for a certain class of continu-

ous quasiconcave side information fading distributions, and the optimal performance is

achieved by uncoded transmission. This, to the best of our knowledge, constitutes the

first communication scenario in which the uncoded transmission would be suboptimal

in the static setup and is optimal thanks to the existence of fading, while the known

digital encoding schemes fall short of the optimal performance. We have also proved

that joint decoding outperforms separate source and channel coding since the success of

decoding at the receiver depends on the joint quality of the channel and side information

states, rather than being limited by each of them separately. We have also shown nu-

merically that hybrid digital-analog transmission performs very close to the lower bound

for a wide range of channel and side-information distributions (in particular, we have

considered Gamma distributed channel and side information gains with different shape

parameters). However, it has also been observed that no unique transmission scheme

outperforms others at all cases.

In the high SNR regime, we have obtained closed-form expressions for the distortion

exponent, i.e., the optimal exponential decay rate of the expected distortion in the high

SNR regime, of the proposed upper and lower bounds for Nakagami distributed channel

and side information. Aligned with the numerical results in the finite SNR regime, we

have shown that hybrid digital-analog transmission outperforms other schemes in most

cases and achieves the optimal distortion exponent for certain values of channel and side

information diversity, and joint decoding achieves the optimal distortion exponent for

some values of side information diversity when the channel diversity is less than one, in

which case hybrid digital-analog transmission is suboptimal.



Chapter 4

Joint Source-Channel Coding

with Time-Varying Channel

and Side-Information: MIMO

In this chapter, we study a generalization of the problem studied in Chapter 3. We

consider the JSCC problem of transmitting a Gaussian source over a multiple-input

multiple-output (MIMO) block-fading channel when the receiver has access to a time-

varying correlated side information. As in the previous chapter, both the channel and

the side-information quality states are assumed to follow block-fading models, whose

states are unknown at the transmitter. Strict delay constraints apply, requiring the

transmission of a block of source samples, for which the side-information quality state

is constant, over a block of the channel, during which the channel state is constant. We

assume that the two blocks do not necessarily have the same length, and their ratio is

defined as the bandwidth ratio between the channel and the source bandwidths, similarly

to Section 1.1.1. While in Chapter 3 we have studied the effects of the side information

distribution on the expected distortion, here we assume that the side information fading

follows a Rayleigh distribution.

The use of multiple antennas at the transmitter and the receiver (MIMO) has been

proposed as a viable technology to significantly improve the performance over wireless

channels and has been already adopted in many current standards. The use of MIMO

provides additional degrees-of-freedom to the system which can be utilized in the form

of spatial multiplexing gain and spatial diversity gain. How to translate this additional

resources into performance improvements requires a careful design.

When the knowledge of the channel and side information states is available at both

the transmitter and the receiver (CSI-TR), Shannon’s separation theorem applies [28],

73
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that is, the optimal performance is achieved by first compressing the source with an

optimal source code and transmitting the compressed bits with a capacity achieving

channel code. However, as in Chapter 3, the optimality of source-channel separation

does not extend to non-ergodic scenarios such as the model studied in this chapter.

This problem has been studied extensively in the literature for MIMO channels,

mismatched bandwidth and in the absence of correlated side information at the receiver

[42, 59, 72]. Despite the ongoing efforts, the minimum achievable average distortion

remains an open problem; however, as observed in the previous chapter, more conclusive

results on the performance can be obtained by studying the distortion exponent, which

characterizes the exponential decay of the expected distortion in the high SNR regime

[61]. In the absence of side information at the receiver, the optimal distortion exponent

in MIMO channels is known in some regimes of operation, such as the large bandwidth

regime [15] and the low bandwidth regime [16]. However, the general problem remains

open. In [15] digital multi-layer superposition transmission schemes are shown to achieve

the optimal distortion exponent for high bandwidth ratios in MIMO systems. The

optimal distortion exponent in the low bandwidth regime is achieved through hybrid

digital-analog transmission [15,16]. In [39], superposition multi-layer schemes are shown

to achieve the optimal distortion exponent for some other bandwidth ratios. Overall,

multi-layer transmission has been shown to achieve the largest distortion exponents

among the existing schemes in the literature.

In this chapter, our goal is to find tight bounds on the distortion exponent when

transmitting a Gaussian source over a time-varying MIMO channel in the presence of

time-varying correlated side information at the receiver. We first derive upper bounds

on the distortion exponent by providing the channel state information to the encoder.

Then, we consider single layer encoding schemes based on separate source and channel

coding (SSCC), joint decoding (JDS), uncoded transmission and hybrid digital-analog

transmission. As shown in Chapter 3, in the SISO and matched bandwidth model,

uncoded transmission achieves the minimum expected distortion for certain side infor-

mation fading gain distributions. However, in the presence of additional degrees-of-

freedom provided by the MIMO channel and the available bandwidth, SSCC, JDS and

HDA schemes are expected to better exploit the additional resources and significantly

outperform uncoded transmission, specially in terms of the distortion exponent. On the

other hand, motivated by the improvements provided by multi-layer transmission in [15],

we then consider two different multi-layer joint decoding schemes based on successive

refinement of the source followed either by progressive transmission over the channel

(LS-JDS), or by superposing JDS codes in a broadcast fashion (BS-JDS), and show

that these schemes achieve the best distortion exponents.

The main results of this chapter can be summarized as follows:
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• We first derive an upper bound on the distortion exponent by providing both the

channel and the side information states to the encoder. Then, a tighter upper

bound is obtained by providing only the channel state to the encoder.

• We characterize the distortion exponent achieved by JDS. While this scheme

achieves a lower expected distortion than SSCC, we show that it does not im-

prove the distortion exponent.

• We then consider a hybrid digital-analog scheme (HDA-WZ) that combines JDS

with an analog layer. We show that HDA-WZ outperforms JDS not only in terms

of the average distortion, but also the distortion exponent.

• We extend JDS by considering multi-layer transmission, where each layer carries

successive refinement information for the source sequence. We consider both the

progressive (LS-JDS) and superposition (BS-JDS) transmission of these layers,

and derive the respective achievable distortion exponent expressions.

• We show that BS-JDS achieves the optimal distortion exponent for SISO/SI-

MO/MISO systems, thus characterizing the optimal distortion exponent in these

scenarios. We also show that HDA-WZ achieves the optimal distortion exponent

in SISO channels as well.

• In the general MIMO setup, we characterize the optimal distortion exponent in

the low bandwidth ratio regime, and show that it is achievable by both HDA-WZ

and BS-JDS. In addition, we show that in certain regimes of operation, LS-JDS

outperforms all the other proposed schemes.

The rest of the chapter is organized as follows. The problem statement is given in

Section 4.1. Then, known results on the diversity multiplexing tradeoff are provided in

Section 4.2. Two upper bounds on the system performance are derived in Section 4.3

and the optimal distortion exponent in the low bandwidth regime is discusses in Section

4.4. Various single-layer achievable schemes are studied in Section 4.5, while multi-layer

schemes are considered in Section 4.6. The characterization of the optimal distortion

exponent for certain regimes is relegated to Section 4.7. Finally, the conclusions are

presented in Section 4.8.

4.1 System Model

We wish to transmit a zero mean, unit variance real Gaussian source sequence Sm ∈ Rm

of independent and identically distributed (i.i.d.) random variables, i.e., Si ∼ N (0, 1),

over a complex MIMO block Rayleigh-fading channel with Mt transmit and Mr receiver

antennas, as shown in Figure 4.1. In addition to the channel output, time-varying

correlated source side information is also available at the decoder. Time-variations in

the source side information are assumed to follow a block fading model as well. The
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Figure 4.1: Block diagram of the joint source-channel coding problem with fading chan-
nel and side information qualities.

channel and the side information states are assumed to be constant for the duration of

one block, and independent of each other, and among different blocks. We assume that

each source block is composed of m source samples, which, due to the delay limitations of

the underlying application, are supposed to be transmitted over one block of the channel,

which consists of n channel uses. We define the bandwidth ratio of the system as1

b ,
2n

m
complex channel dimension per real source sample.

The encoder maps each source sequence Sm to a channel input sequence Xn ∈ CMt×n

using an encoding function f (m,n) : Rm → CMt×n such that the average power constraint

is satisfied:
∑n
i=1 Tr{E[XH

i Xi]} ≤Mtn. The memoryless slow fading channel is modeled

as

Yi =

√
ρ

Mt
HXi + Ni, i = 1, ..., n,

where H ∈ CMr×Mt is the channel matrix with i.i.d. zero mean complex Gaussian

entries, i.e., hij ∼ CN (0, 1), whose realizations are denoted by H, ρ ∈ R+ is the average

signal to noise ratio (SNR) in the channel, and Ni models the additive noise with

Ni ∼ CN (0, I). We define M∗ = max{Mt,Mr} and M∗ = min{Mt,Mr}, and consider

λM∗ ≥ · · · ≥ λ1 > 0 to be the eigenvalues of HHH .

In addition to the channel output Vn = [V1, ...,Vn] ∈ CMr×n, the decoder observes

Tm ∈ Rm, a randomly degraded version of the source sequence:

Tm =
√
ρsΓcS

m + Zm,

where Γc models Rayleigh fading2 in the quality of the side information satisfying

1This scaled definition is done for consistency of results with previous works in the distortion expo-
nent literature, which use real/real or complex/complex sources and channels[15].

2The assumption of a real source sequence Xm and a real fading coefficient Γc is made in order
to allow a degradation model possible. That is, the side-information qualities can be ordered among
different channel states. Complex source and fading side information sequences would not allow an
ordering in the quality of the side information sequences.
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E[Γ2
c ] = 1, ρs ∈ R+ models the average quality of the side information, and Zj ∼ N (0, 1),

j = 1, ...,m, models the noise. We define the side information gain as Γ , Γ2
c , and its

realization as γ. Then, Γ follows an exponential distribution with probability density

function (pdf):

pΓ(γ) = e−γ , γ ≥ 0.

In this work, we assume that the receiver knows the side information and the channel

realizations, γ and H, while the encoder is only aware of their distributions. The decoder

reconstructs the source sequence Ŝm = g(m,n)(Yn, Tm,H, γ) with a mapping g(m,n) :

Cn×Mr×Rm×CMt×Mr×R→ Rm. The distortion between the source sequence and the

reconstruction is measured by the quadratic average distortion D , 1
m

∑m
i=1(Si − Ŝi)2.

We are interested in characterizing the minimum expected distortion, E[D], where

the expectation is taken with respect to the source, the side information and channels

state realizations, as well as the noise terms, and expressed as

ED∗(ρ, ρs, b) , lim
n,m→∞,
2n≤mb.

min
f(m,n),g(m,n)

E[D].

In particular, we are interested in characterizing the optimal performance in the

high SNR regime, i.e., when ρ, ρs → ∞. We define x as a measure of the average side

information quality in the high SNR regime, as follows:

x , lim
ρ→∞

log ρs
log ρ

.

The performance measure we consider is the distortion exponent, defined as

∆(b, x) , − lim
ρ,ρs→∞

log E[D]

log ρ
,

4.2 Diversity-Multiplexing tradeoff

Here we depart shortly from the distortion exponent problem introduces above, and

briefly talk about another, more commonly used, performance measure in the high SNR

regime, that will be instrumented in our analysis. The diversity-multiplexing tradeoff

(DMT) measures the tradeoff between the rate and reliability in the transmission of

a message over a MIMO fading channel in the asymptotic high SNR regime. Hence,

the DMT is a performance measure for the channel coding problem over block-fading

channels. In this section we briefly review some known results on the DMT, which will

be useful in the distortion exponent analysis. We refer the reader to [73] for a more

detailed exposition of the DMT.
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For a family of channel codes with rate R = r log ρ, where r is the multiplexing gain,

the diversity gain is defined as

d(r) = − lim
ρ→∞

logPe(ρ)

log ρ
,

where Pe(ρ) is the probability of decoding error of the channel code. For each r, the

supremum of the diversity gain d(r) over all coding schemes is given by d∗(r). The

DMT for a MIMO channel is given as the solution to the following problem [73],

d∗(r) = inf
α+

M∗∑
i=1

(2i− 1 +M∗ −M∗)αi

s.t. r ≥
M∗∑
i=1

(1− αi), (4.1)

where α+ , {(α1, ..., αM∗) ∈ RM∗ : 1 ≥ α1 ≥ ... ≥ αM∗ ≥ 0}. The DMT obtained from

(4.1) is a piecewise-linear function connecting the points (k, d∗(k)), k = 0, ...,M∗, where

d∗(k) = (M∗ − k)(M∗ − k). More specifically, for r ≥ M∗, we have d∗(r) = 0, and for

0 ≤ r ≤ M∗ satisfying k ≤ r ≤ k + 1 for some k = 0, 1, ...,M∗ − 1, the DMT curve is

characterized by

d∗(r) , Φk −Υk(r − k), (4.2)

where we have defined

Φk , (M∗ − k)(M∗ − k) and Υk , (M∗ +M∗ − 2k − 1). (4.3)

4.3 Distortion Exponent Upper Bound

In this section we derive two upper bounds on the distortion exponent by extending the

two bounds on the expected distortion ED∗ obtained in Chapter 3 to the MIMO setup

with bandwidth mismatch, and analyzing their high SNR behavior.

4.3.1 Fully informed encoder upper bound

Following Chapter 3, the first upper bound, which we denote as the fully informed

encoder upper bound, is obtained by providing the transmitter with both the channel

state H and the side information state γ. At each realization, the problem reduces to

the static setup studied in [28], and source-channel separation theorem applies; that is,

the concatenation of a Wyner-Ziv source code with a capacity achieving channel code

is optimal at each realization. Averaging the achieved distortion over the realizations
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of the channel and side information states, the expected distortion is found as

EDinf(ρ, ρs, b) = EH,Γ

[
1

1 + ρsγ
2−bC(H)

]
,

where C(H) is the capacity of the MIMO channel in bits/channel use.

Following similar derivations in [15] and the Appendix of Chapter 3, we find an

upper bound on the distortion exponent, stated in the following lemma.

Lemma 14. The distortion exponent is upper bounded by the informed encoder upper

bound, given by

∆inf(x, b) = x+ ∆MIMO(b), (4.4)

where

∆MIMO(b) ,
M∗∑
i=1

min{b, 2i− 1 +M∗ −M∗}. (4.5)

4.3.2 Partially informed encoder upper bound

As in Chapter 3, a tighter upper bound can be constructed by providing the transmitter

with only the channel state realization H while the side information state γ remains

unknown. We call this the partially informed encoder upper bound. The optimality of

separate source and channel coding is shown in Chapter 3 when the side information

fading gain distribution is discrete, or continuous and quasiconcave for b = 1. The proof

easily extends to the non-matched bandwidth ratio setup and, since in our model pΓ(γ)

is exponential, and hence, is continuous and quasiconcave, separation is optimal at each

channel block.

As shown in Section 3.4, if pΓ(γ) is monotonically decreasing, the optimal source

encoder ignores the side information completely, and the side-information is used only

at the decoder for source reconstruction3. Concatenating this side-information-ignorant

source code with a channel code at the instantaneous capacity, the minimum expected

distortion at each channel state H is given by

Dop(ρ, ρs, b,H) =
1

ρs
e

2bC(H)

ρs E1

(
2bC(H)

ρs

)
,

where E1(x) is the exponential integral given by E1(x) =
∫∞
x
t−1etdt. Averaging over

3We note that when the distribution of the side information is not Rayleigh, the optimal encoder
follows a different strategy. For example, for quasiconcave continuous distributions the optimal source
code compresses the source aiming at a single target side information state. See Chapter 3 for details.
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the channel state realizations, the expected distortion is lower bounded as

ED∗pi(ρ, ρs, b) = EH[Dop(ρ, ρs, b,H)]. (4.6)

An upper bound on the distortion exponent is found by analyzing the high SNR

behavior of (4.6) as given in the next theorem.

Theorem 6. For M∗(2(l − 1) − 1 + M∗ − M∗) ≤ x < M∗(2l − 1 + M∗ − M∗) let

l ∈ [1, ...,M∗−1] be the integer satisfying the inequality, and let l = 1 for x ≤M∗(M∗+

M∗ − 1). Then, for 2k − 1 +M∗ −M∗ ≤ b < 2k + 1 +M∗ −M∗, k = l, ...,M∗ − 1, the

distortion exponent is upper bounded by

∆up(x, b) =



x if 0 ≤ b < x
M∗
,

bM∗ if x
M∗
≤ b < M∗ −M∗ + 1,

x+ d∗
(
x
b

)
if M∗ −M∗ + 1 ≤ b < x

M∗−k ,

∆MIMO(b) if x
M∗−k ≤ b < M∗ +M∗ − 1,

x+ d∗
(
x
b

)
if b ≥M∗ +M∗ − 1.

If x ≥M∗(M∗ +M∗ − 1), then,

∆up(b, x) = x+ d∗
(x
b

)
,

where d∗(r) is the DMT characterized in (4.2)-(4.3).

Proof. The proof is given in Appendix D.

By comparing the two upper bounds in Lemma 14 and Theorem 6, we can see

that the latter is always tighter. When x > 0, the two bounds meet only at the two

extremes, when either b = 0 or b→∞. Note that these bounds provide the achievable

distortion exponents when either both states or only the channel state is available at

the transmitter, illustrating the gains from the channel state feedback in fading JSCC

problems.

4.4 Optimal distortion exponent in the low band-

width regime

In this section we use the upper bound derived in the previous section to characterize the

optimal distortion exponent in the low bandwidth regime, i.e., 0 ≤ bM∗ ≤ 1. We show

that, if the available bandwidth is small, the optimal distortion exponent is achieved

by ignoring the channel and reconstructing the source sequence using only the side
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information. However, if more bandwidth is available, the optimal distortion exponent

is achieved by ignoring the side information, and employing the optimal transmission

scheme in the absence of side information.

First, we consider the MMSE reconstruction of Sm only from the side information

sequence Tm available at the receiver, i.e., Ŝi = E[Si|Ti]. The source sequence is recon-

structed with distortion Dno(γ) , (1 + ρsγ)−1, and averaging over the side information

realizations, the expected distortion is given by EDno = E[Dno(Γ)]. The achievable

distortion exponent is found as ∆no(x, b) = x, which meets the upper bound ∆up(x, b)

for 0 ≤ bM∗ ≤ x, characterizing the optimal distortion exponent in this regime.

Lemma 15. For 0 ≤bM∗≤ x, the optimal distortion exponent ∆∗(b, x)=x is achievable

by simple MMSE reconstruction of Sm only from the side information sequence Tm.

Additionally, Theorem 6 reveals that in certain regimes, the distortion exponent

is upper bounded by ∆MIMO(b), the distortion exponent upper bound in the absence

of side information at the destination [15, Theorem 3.1]. In fact, for x ≤ bM∗ ≤ 1,

we have ∆up(x, b) = bM∗, which is achievable by ignoring the side information and

using the hybrid digital-analog scheme proposed in [16]. In this scheme, which we

denote by superposed HDA (HDA-S), the source sequence is divided and transmitted

using two layers. The first layer transmits a part of the source sequence in an uncoded

fashion, while the second layer digitally transmits the second sequence part. Both

layers are superposed and the available power is allocated among them to maximize the

achievable distortion exponent. At the destination, the digital layer is decoded treating

the uncoded layer as noise. Then, the source sequence is reconstructed using both layers.

The achievable distortion exponent is given by ∆sh(x, b) = bM∗ for 0 ≤ bM∗ ≤ 1.

Lemma 16. For x ≤ bM∗ ≤ 1, the optimal distortion exponent is given by ∆∗(b, x) =

bM∗, and is achievable by ignoring the side information sequence Tm and using HDA-S.

In larger bandwidth ratio regimes, i.e., for bM∗ > 1, transmission schemes using

both the channel and the side information available are required.

4.5 Single layer transmission

In this section, we propose transmission schemes consisting of single layer code, and ana-

lyze their achievable distortion exponent performance. The illustration of the achievable

distortion exponents and its comparison between transmission techniques and the pro-

posed upper bound is deferred to Section 4.5.5.
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4.5.1 Separate source and channel coding scheme (SSCC)

In this section we consider the generalization of the SSCC scheme considered in Chapter

3 to MIMO channels and general bandwidth ratios. As in the single antenna setup,

the transmission suffers from two separate outage events: outage in channel decoding

and outage in source decoding. It is shown in Corollary 1 in Section 3.3.4 that, for

monotonically decreasing pdfs, such as pΓ(γ) considered here, the expected distortion

is minimized by avoiding outage in source decoding, that is, by not using binning.

Therefore, the optimal SSCC scheme compresses the source sequence at rate Rs ignoring

the side information, and transmits the compressed bits over the channel with a channel

code with rate Rc such that b
2Rc = Rs.

At the encoder, the quantization codebook consists of 2mRs length-m codewords,

Wm(i), i = 1, ..., 2mRs , generated through a ‘test channel’ given by W = S +Q, where

Q ∼ N (0, σ2
Q), and is independent of S. The quantization noise variance is such that

Rs = I(S;W ) + ε, for an arbitrarily small ε > 0, i.e., σ2
Q = (22(Rs−ε) − 1)−1. For

the channel code, a Gaussian channel codebook with 2nRc length-n codewords Xn(s) is

generated independently with X ∼ CN (0, I), and each codeword Xn(s), s ∈ [1, ..., 2nRc ],

is assigned to a quantization codeword Wm(i). Given a source sequence Sm, the encoder

searches for a quantization codeword Wm(i) jointly typical with Sm, and transmits the

corresponding channel codeword X(i).

The decoder recovers the digital codeword with high probability if Rc < I(X,Y).

An outage is declared whenever due to the channel randomness, the channel rate Rc is

above the capacity and the codeword cannot be recovered. Then, the outage event is

given by

Os = {H : Rc ≥ I(X; Y)} , (4.7)

where I(X; Y) = log det(I + ρ
M∗

HHH).

If Wm is successfully decoded, the source sequence is estimated with a MMSE

estimator using the quantization codeword and the side information sequence, i.e.,

Ŝi = E[Si|Wi, Ti], and reconstructed with a distortion Dd(bRc/2, γ), where

Dd(R, γ) , (ρsγ + 22R)−1. (4.8)

If there is an outage over the channel, only the side information is used in the source

reconstruction and the corresponding distortion is given by Dd(0, γ). The probability

of outage depends only on the channel state H. The expected distortion for SSCC can
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be written as

EDs(bRc) = EOcs [Dd(bRc/2,Γ)] + EOs [Dd(0,Γ)] (4.9)

=(1− Po(H))EΓ[Dd(bRc/2,Γ)] + Po(H)EΓ[Dd(0,Γ)],

where Po(H) , Pr{Rc ≥ log det(I + ρ
M∗

HHH)} is the channel probability of outage.

In the next theorem, the distortion exponent achievable by SSCC is provided.

Theorem 7. The achievable distortion exponent for SSCC, ∆s(b, x), is given by

∆s(b, x)=max

{
x, b

Φk + kΥk + x

Υk + b

}
, for b ∈

[
Φk+1 + x

k + 1
,

Φk + x

k

)
, k = 0, 1, ...,M∗ − 1,

where Φk and Υk are as defined in (4.3).

Proof. See Appendix D

4.5.2 Joint Decoding Scheme (JDS)

In this section we consider the generalization of the JDS scheme considered in Chapter

3 to MIMO channels and general bandwidth ratios, which, by joint decoding of the

channel and the source codewords, reduces the outage probability. It uses no explicit

binning at the encoding, and the success of decoding depends on the joint quality of the

channel and the side information. In the previous chapter, JDS is shown to outperform

SSCC at any SNR and to achieve the optimal distortion exponent in certain regimes.

At the encoder, we generate a codebook of 2mRj length-m quantization codewords

Wm(i) and an independent Gaussian codebook of size 2n
b
2Rj with length-n codewords

X(i) ∈ CMt×n with X ∼ CN (0, I), such that b
2Rj = I(S;W )+ε, for an arbitrarily small

ε > 0. Given a source outcome Sm, the transmitter finds the quantization codeword

Wm(i) jointly typical with the source outcome and transmits the corresponding channel

codeword X(i). Joint typicality decoding is performed such that the decoder looks for

an index i for which both (Xn(i),Yn) and (Tm,Wm(i)) are jointly typical. Then the

outage event is

Oj =

{
(H, γ) : I(S;W |T ) ≥ b

2
I(X; Y)

}
, (4.10)

where I(X; Y) = log det(I + ρ
M∗

HHH) and I(S;W |T ) = 1
2 log(1 + 2Rj−ε−1

γρs+1 ).

Similarly to SSCC, if there is no outage the source is reconstructed using the quan-

tization codeword and the side information sequence with an MMSE estimator, while

only the side information is used in case of an outage.

The joint decoding produces a binning-like decoding: only some Yn are jointly
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typical with X(s), generating a virtual bin of Wm codewords from which only one is

jointly typical with Tm. The size of those bins depends on the particular realizations of

H and Γ unlike in a Wyner-Ziv scheme, in which the bin sizes are designed in advance.

Since the outage event depends jointly on the channel and the side information states

(H, γ), the expectation over the states is not separable as in (4.9). Then, the expected

distortion for JDS is expressed as

EDj(Rj) = EOcj

[
Dd

(
b

2
Rj ,Γ

)]
+ EOj [Dd(0,Γ)].

JDS reduces the probability of outage, and hence, the expected distortion compared

to SSCC. However, both schemes achieve the same distortion exponent, as stated in the

following theorem.

Theorem 8. JDS achieves the same distortion exponent as SSCC characterized in

Theorem 7, i.e., ∆j(b, x) = ∆s(b, x).

Proof. See Appendix D.

Although JDS and SSCC achieve the same distortion exponent in the current setting,

JDS is shown to achieve larger distortion exponents than SSCC in general in Chapter

3. A comparison between the two schemes is deferred to Section 4.5.5.

4.5.3 Uncoded transmission

Uncoded transmission has been considered in Chapter 3, and shown to be exactly opti-

mal in terms of the expected distortion when the side information gain follows a mono-

tonically decreasing distribution function, such as pΓ(γ) in our model. However, for

general MIMO channels and bandwidth ratios, it falls short of the optimal performance,

since it cannot fully exploit the additional degrees-of-freedom in the system.

In uncoded transmission, the source samples are used directly as the channel inputs.

Since the channel is complex, we reorder the source sequence as S
m
2
c ∈ C

m
2 given by

S
m
2
c =

1√
2

(
[S1, ..., Sm2 ] + j[Sm

2 +1, ..., Sm]
)T
, (4.11)

where j=
√
−1. In the transmission we consider M∗ of the Mt transmit antennas since

onlyM∗ samples are effectively transmitted at each channel use, because rank{H} ≤M∗.
For bM∗≤1, the channel input Xn is generated scaling the first nM∗ source samples

ofX
m
2
c and mapping them into the channel input as Xn=[SM∗c,1 ,S

2M∗
c,M∗+1, ..,S

nM∗
c,(n−1)M∗+1]T .

At reception, the transmitted nM∗ source samples are reconstructed with an MMSE es-

timator using Yn and TnM∗ , while the remaining m
2 − nM∗ source samples that have

not been transmitted, are estimated using only TmnM∗+1. For bM∗ ≥ 1, the whole source
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sequence is transmitted in the first m
2M∗

channel uses scaling the power by bM∗, and

reconstructed at the decoder using an MMSE estimator. The minimum achievable dis-

tortion using uncoded transmission at uniform power P at state (H, γ) is given by

Du(P, γ,H) ,
M∗∑
i=i

1

1 + Pµiρ+ γρs
, (4.12)

where µ1 ≥ · · · ≥ µM∗ ≥ 0 are the ordered eigenvalues of the matrix HM∗H
H
M∗

, where

HM∗ is the submatrix of H obtained by taking the M∗ columns corresponding to the

antennas effectively used for transmission. Then, the expected distortion is found as

EDu =

bM∗E[Du(1,H,Γ)] + (1− bM∗)E[Du(0,H,Γ)] if bM∗ < 1,

E[Du(bM∗,H,Γ)] if bM∗ ≥ 1.

The distortion exponent for uncoded transmission is obtained similarly to ∆d(b, x)

and is given in the next theorem without proof.

Theorem 9. The distortion exponent for uncoded transmission, ∆u(b, x) is given by

∆u(b, x) =

x if bM∗ < 1,

max{1, x} if bM∗ ≥ 1.

In Section 4.5.5, the performance of uncoded transmission will be compared to the

proposed achievable schemes and upper bounds.

4.5.4 HDA Wyner-Ziv Coding (HDA-WZ)

In this section we consider a generalization of HDA-WZ in Chapter 3 to the MIMO

channel and to bandwidth ratios satisfying bM∗ ≥ 1. This scheme quantizes the source,

uses a scaled version of the quantization error as channel input, and applies joint decod-

ing at the decoder. In the SISO fading setup with b = 1, HDA-WZ is shown to achieve

the optimal distortion exponent for a wide family of side information distributions. We

note that, HDA-S introduced in Section 4.4 for bM∗ < 1, can be modified to include

joint decoding to better exploit the available side information and reduce the expected

distortion. However, the distortion exponent will not increase.

At the encoder, consider a quantization codebook of 2mRh length-m codewords

Wm(s), s = 1, ..., 2mRh , with a test channel W = S + Q, where Q ∼ N (0, σ2
Q) is inde-

pendent of S, and quantization noise variance is chosen such that Rh
2 = I(W ;S) + ε,

for an arbitrarily small ε > 0, i.e., σ2
Q , (2Rh−ε − 1)−1. Then, each Wm is reordered

into length- m
2M∗

complex codewords W(s) = [W1(s), ...,W m
2M∗

(s)] ∈ C
m

2M∗×M∗ , where
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Wi(s), i = 1, ..., m
2M∗

, is given by

Wi(s) =
1√
2

(
[WiM∗+1(s); ...;W(i+1)M∗(s)] + j[W(i+1)M∗+1(s); ...;W2iM∗(s)]

)T
,

Similarly, we can reorder Sm and Qm, and define Si and Qi.

We then generate 2mRh independent auxiliary random vectors U ∈ C(n− m
2M∗ )×M∗

distributed as Ui ∼ CN (0, I), for i = 1, ..., n− m
2M∗

and assign one to each W(s) to con-

struct the codebook of size 2mRh consisting of the pairs of codewords (W(s),U(s)),

s = 1, ..., 2mRh . For a given source sequence Sm, the encoder looks for the s∗-th

codeword W(s∗) such that (W(s∗), Sm) are jointly typical. A unique s∗ is found if

M∗Rh > I(W; S). Then, the pair (W(s∗),U(s∗)) is used to generate the channel input,

which is scaled to satisfy the power constraint:

Xi =


√

1
σ2
Q

[Si −Wi(s
∗)], for i = 1, ..., m

2M∗
,

Ui− m
2M∗

(s∗), for i = m
2M∗ + 1, ..., n.

Basically, in the first block of m
2M∗

channel accesses we transmit a scaled version of the

error in the quantization Qi in an uncoded fashion, while in the second block of n− m
2M∗

accesses we transmit a digital codeword.

The decoder looks for an index s such that W(s), Tm and the channel output cor-

responding to the uncoded input, Y
m

2M∗
W , [Y1, . . . ,Ym/2M∗ ], are jointly typical, while

simultaneously U(s) is jointly typical with the channel output that corresponds to the

coded input block, Y
n− m

2M∗
U , [Ym/2M∗+1, . . . ,Yn]. Let Ti = [T(i−1)M∗+1, ..., TiM∗ ]

H ,

for i = 1, ..., mM∗ , be blocks of Tm. At the receiver, it follows from Lemma 6 that

decoding is successful with high probability if

I(W; S) < M∗Rh < I(WU; YT) (4.13)

The outage event is obtained in Appendix D as

Oh =

{
(H, γ) : I(W,S) ≥ I(W; YWT) + (bM∗ − 1)I(U; YU )

}
, (4.14)

where I(U; YU ) = log det(I + ρ
M∗

HHH) and,

I(W; YWT) = log

(
(ξ(1 + σ2

Q))M∗ det(I + ρ
Mt

HHH))

det(I + σ2
Q( ρ

Mt
HHH + ξI))

)
,

where ξ , 1 + ρsγ.

If W
m

2M∗ is successfully decoded, each Sn is reconstructed with an MMSE estimator
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using Y and Tm with a distortion

Dh(σ2
Q,H, γ)=

1

M∗

M∗∑
i=1

(
1 + ρsγ +

1

σ2
Q

(
1 +

ρ

M∗
λi

))−1

. (4.15)

The derivation of (4.15) is found in Appendix D.

If an outage occurs and W is not decoded, only Tm is used in the reconstruction,

since Xn is uncorrelated with the source sequence by construction, and so is Yn. Using

an MMSE estimator, the achievable distortion is given by Dd(0, γ). Then, the expected

distortion for HDA-WZ is found as

EDh(Rh) = EOch [Dh(σ2
Q,H,Γ)] + EOh [Dd(0,Γ)].

The distortion exponent of HDA-WZ is given next.

Theorem 10. The distortion exponent achieved by HDA-WZ, ∆h(b, x), is given by

∆h(b, x) = max{x, bM∗} if bM∗ ≤ 1. If bM∗ > 1, the distortion exponent is given by

∆h(b, x) = x if 1 < bM∗ < x, and by

∆h(b, x) = 1 +
(bM∗ − 1)(Φk + kΥk − 1 + x)

bM∗ − 1 +M∗Υk
,

if

b ∈
[

Φk+1 − 1 + x

k + 1
+

1

M∗
,

Φk − 1 + x

k
+

1

M∗

)
, for k = 0, ...,M∗ − 1.

Proof. See Appendix D.

4.5.5 Comparison of single layer tranmission schemes

Here, we compare the performance of the single layer schemes presented in this section.

Figure 4.2 shows the expected distortion achievable by SSCC and JDS schemes in a

SISO and a 3× 3 MIMO setup for b = 2. It is observed that JDS outperforms SSCC in

both SISO and MIMO scenarios. We also observe that both SSCC and JDS fall short

of the expected distortion lower bound, ED∗pi. Moreover the gap increases with the

number of degrees-of-freedom in the system. We note that not only the gap between

the achievable distortion exponent increase, but also the gap between the slopes of the

curves, which means that the proposed transmission schemes perform especially poorly

in the high SNR regime.

To illustrate this, we compare the distortion exponent achieved by SSCC, JDS,

uncoded transmission, HDA-S and HDA-WZ in Figure 4.3 in a 2 × 2 MIMO channel.

First, we note that, as discussed in Section 4.4, for bM∗ ≤ 1, the upper bound is achieved
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Figure 4.2: Minimum expected distortion achievable by SSCC and JDS for a SISO and
a 3 × 3 MIMO channel for b = 2 and x = 1. The partially informed encoder bound is
also included.

Figure 4.3: Distortion exponents upper bounds and lower bounds for single-layer
schemes in function of b for x = 0.5 and 2×2 MIMO. The performance of these schemes
is also shown in the absence of side information, i.e., x = 0.
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by S-HDA and by only using the side information. SSCC, JDS and uncoded transmission

also achieve the optimal performance for 0 ≤ bM∗ ≤ x, since these schemes also use

the available side information. For larger bandwidth ratios, HDA-WZ improves upon

SSCC and JDS, while uncoded transmission achieves the optimal distortion exponent

for bM∗ = 1 and then saturates becoming highly suboptimal for large b values. Note

that uncoded transmission outperforms SSCC and JDS for the range x ≤ b . 0.7. We

also include the distortion exponent achievable when no side information is available,

which can be modeled by letting x = 0. Significant gains can be obtained by exploiting

the side information. However, this is not the case for uncoded transmission, for which

∆u(b, x) = ∆u(b, 0) = 1 for M∗b ≥ 1. In general we observe that single layer schemes are

not capable of fully exploiting the available degrees-of-freedom in the system, especially

in the large bandwidth regime. Single layer schemes depend on a single parameter, the

rate, and cannot adapt to the system, specially in those regimes in which the system

has many degrees-of-freedom available. This motivates us to consider other achievability

techniques, based on multi-layer transmission. In multi-layer transmission, each layer

provides additional degrees-of-freedom to the system, and therefore can adapt better to

the time variations and achieve higher distortion exponent values.

We also observe that the difference between the fully informed encoder upper bound

and the partially informed encoder upper bound.

4.6 Multi-layer transmission

In the previous section, we have observed that the distortion exponent achievable with

single layer schemes is far from the upper bound, especially in the high bandwidth

regime. Here, we consider multi-layer schemes to improve the achievable distortion

exponent in this regime. Multi-layer transmission is proposed in [15] to combat channel

fading by transmitting multiple layers that carry successive refinements of the source

[38]. At the receiver, as many layers as possible are decoded depending on the channel

state. The better the channel state, the more layers can be decoded and the smaller

is the distortion at the receiver. We propose the extension of the JDS schemes to

progressive multi-layer JDS transmission and superposed multi-layer JDS transmission,

and derive the corresponding distortion exponents.

4.6.1 Progressive multi-layer JDS transmission (LS-JDS)

In this section we consider the progressive transmission of JDS layers over the channel.

The refinement codewords are transmitted one after the other over the channel using

JDS transmission. Similarly to [15], we assume that each layer is allocated the same time

resources (or number of channel accesses). In the limit of infinite layers, this assumption
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does not incur a loss in performance.

At the encoder, we generate L Gaussian quantization codebooks, at rates bRl/2L =

I(S;Wl|W l−1
1 )+ε/2, l = 1, ..., L, and an arbitrarily small ε > 0, such that each Gaussian

codebook is a refinement for the previous layers [38]. The quantization codewords are

generated as Wl = S +
∑L
i=lQi, for l = 1, ..., L, where Ql ∼ N (0, σ2

l ) are independent

of each other. As shown in Appendix D, for a given rate tuple R , [R1, ..., RL] the

quantization noises satisfy

L∑
i=l

σ2
i = (2

∑l
i=1( bLRi−ε) − 1)−1, l = 1, ..., L. (4.16)

We generate L independent channel codebooks with n
L -lenght codewords Xn

l ∈
CMt×n/L with Xl,i ∼ CN (0, I). Each successive refinement codeword is transmitted

using JDS as in Section 4.5.2. At the destination, the decoder successively decodes

each refinement codeword using joint decoding from the first layer up to the L-th layer.

Then, l layers will be successfully decoded if

I(S,Wl|T,W l−1
1 ) <

b

2L
I(X; Y) ≤ I(S,Wl+1|T,W 1

l ),

that is, l layers are successfully decoded while there is an outage in decoding l+1 layers.

Let us define the outage event, for l = 0, ..., L, as follows

Olsl ,

{
(H, γ) :I(S,Wl|T,W l−1

1 ) ≥ b

2L
I(X; Y)

}
, (4.17)

where I(X,Y) = log det
(
I + ρ

M∗
HHH

)
, and, for R0 , 0,

I(S;Wl|W l−1
1 , T ) =

1

2
log

(
2
∑l
i=1

b
LRi + γρs

2
∑l−1
i=1

b
LRi + γρs

)
.

The details of the derivation are given in Appendix D. Due to the successive refinability

of the Gaussian source, provided l layers have been successfully decoded, the receiver

reconstructs the source with a MMSE estimator using the side information and the

decoded layers with a distortion given by Dd(
∑l
i=1 bRl/2L, γ). The expected distortion

can be expressed as follows.

EDls(R) =

L∑
l=0

E(Olsl )c
⋂
Olsl+1

[
Dd

(
l∑
i=1

bRl
2L

, γ

)]
. (4.18)

The distortion exponent achieved by LS-JDS is given next.
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Theorem 11. Let us define

φk ,M∗ −M∗ + 2k − 1, Mk ,M∗ − k + 1, (4.19)

and the sequence {ci} defined as

c0 = 0, ci = ci−1 + φi ln

(
M∗ − i+ 1

M∗ − i

)
,

for i = 1, ...,M∗ − 1 and cM∗ =∞.

The distortion exponent achieved by LS-JDS with infinite number of layers is given

by ∆∗ls(b, x) = x for b ≤ x/M∗, and for

ck−1 +
x

M∗ − k + 1
< b ≤ ck +

x

M∗ − k
,

k = 1, ...,M∗, the achievable distortion exponent is given by

∆∗ls(b, x) = x+

k−1∑
i=1

(M∗ −M∗ + 2i− 1)

+(M∗ − k + 1)(M∗ −M∗ + 2k − 1)×
(

1− e−
b(1−κ∗)−ck−1
M∗−M∗+2k−1

)
,

where

κ∗ =
φk
b
W

e b−ck−1
φk x

Mkφk

 ,

and W(z) is the function W of Lambert, which gives the principal solution for w in

z = wew.

Proof. See Appendix D

The proof of Theorem 11 indicates that the distortion exponent for LS-JDS is

achieved by allocating an equal rate among the first κ∗L layers to guarantee that the

distortion exponent is at least x. Then, the rest of layers, (1−κ∗)L, are used to further

increase the distortion exponent with the corresponding rate allocation. Note that for

x = 0, we have κ∗ = 0.

4.6.2 Superposed multi-layer JDS scheme (BS-JDS)

In this section, we consider that the successive refinements of the source are transmitted

by a superposition of JDS layers. The receiver decodes as many layers a possible using

successive joint decoding and reconstructs the source.
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At the encoder, generate L Gaussian quantization codebooks, at rates given by
b
2Rl = I(S;Wl|W l−1

1 ) + ε/2, l = 1, ..., L, and an arbitrarily small ε > 0, as in Section

4.6.1, and L channel codebooks Un
l , l = 1, . . . , L, i.i.d. with Ul,i ∼ CN (0, I). Let

ρ = [ρ1, ..., ρL, ρL+1]T be the power allocation among channel codebooks such that

ρ =
∑L+1
i=1 ρi. We consider a power allocation ρl = ρξl−1 − ρξl with 1 = ξ0 ≥ ξ1 ≥ . . . ≥

ξL ≥ 0 and define ξ , [ξ1, ..., ξL]. In the last layer, the layer L+ 1, Gaussian i.i.d. noise

Ñi ∼ CN (0, I) is transmitted using the remaining power ρL+1 , ρξL for mathematical

convenience. Then, the channel input Un is generated as the superposition of Un
l with

the corresponding power allocation
√
ρl as

Un =
1
√
ρ

L∑
j=1

√
ρjU

n
j +

√
ρξLÑn.

At the receiver, the decoder uses successive joint decoding from layer 1 up to layer L

considering the posterior layers as noise. Layer L + 1, containing the noise, is ignored.

The outage event at layer l, provided l − 1 layers have been decoded, is given by

Omll =

{
(H, γ) :

b

2
I(Xl; Y|Xl−1

1 ) ≤ I(S;Wl|T,W l−1
1 )

}
.

If l layers are decoded, the source is reconstructed at a distortion Dd(
∑l
i=1 bRi, γ) with

a MMSE estimator, and the expected distortion is found as

EDml(R, ξ)=

L∑
l=1

EOmlk+1

[
Dd

(
l∑
i=0

b

2
Ri,Γ

)]
,

where R , [R1, ..., RL] and OmlL+1 is the set of states in which the all L layers with

information are decoded.

The distortion exponent for the transmission of L coded layers using BS-JDS is given

in the next theorem.

Theorem 12. Let us define

ηk ,
b(k + 1)− Φk+1

Υk
and Γk ,

1− ηL−1
k

1− ηk
. (4.20)

The distortion exponent ∆L
ml(b, x) achieved by BS-JDS with L layers with a power

allocation ρl = ρξl−1 − ρξl , 1 = ξ0 ≥ ξ1 ≥ . . . ≥ ξL ≥ 0 and diversity multiplexing gain

r̂l = [(k + 1)(ξl−1 − ξl)− ε1], ε1 → 0 is given by ∆L
ml(b, x) = x for bM∗ ≤ x and by

∆L
ml(b, x) = x+ Φk −

Υk(Υk(x+ Φk) + xb(k + 1)Γk)

(Υk + b(1 + k))(Υk + b(1 + k)Γk)− b(k + 1)ΦkΓk
, (4.21)
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for

b ∈
[

Φk+1 + x

k + 1
,

Φk + x

k

)
, k = 0, ...,M∗ − 1.

The power allocation ξ used given by

ξ1 =
(Υk + ΦkΓk)(Υk + b(k + 1)− Φk − x)

(Υk + b(1 + k))(Υk + b(1 + k)Γk)− b(k + 1)ΦkΓk
,

ξ1 − ξ2 =
Φk(Υk + b(k + 1)− Φk − x)

(Υk + b(1 + k))(Υk + b(1 + k)Γk)− b(k + 1)ΦkΓk
. (4.22)

and for l = 2, ..., L,

ξl = ξ1 − (ξ1 − ξ2)
1− ηl−1

k

1− ηk
. (4.23)

Proof. See Appendix D.

An upper bound on the performance of BS-JDS is obtained for a continuum of

infinite layers, i.e., L→∞.

Corollary 2. The distortion exponent of BS-JDS in the limit of infinite layers, ∆∞ml(b, x),

is found, for k=0, ...,M∗−1, by

∆∞ml(b, x) = max{x, b(k + 1)} for b∈
[

Φk+1 + x

k
,

Φk
k + 1

)
,

and

∆∞ml(b, x) = Φk + x

(
b(1 + k)− Φk
b(1 + k)− Φk+1

)
for b ∈

[
Φk
k + 1

,
Φk + x

k

)
.

Proof. See Appendix D.

The solution in Theorem 12 is obtained by fixing the diversity multiplexing gains

of the code in each layer as r̂l = b[(k + 1)(ξl−1 − ξl) − ε1]. As discussed in Appendix

D, this choice excludes single layer JDS from the set of feasible solutions. By choosing

r2 = ... = rL = 0, BS-JDS scheme reduces to single layer JDS. Interestingly, for b in the

regions

b ∈
[

Φk
k
,

Φk + x

k

)
, k = 1, ...,M∗ − 1,

single layer JDS achieves a larger distortion exponent than ∆∞ml(b, x) in Corollary 2,

as shown in Figure 4.4. Note that this region is empty for x = 0, and thus, this
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phenomena does not appear in the absence of side information. Then, the achievable

distortion exponent for BS-JDS can be given as follows.

Lemma 17. BS-JDS achieves the distortion exponent

∆∗ml(b, x) ≥ max{∆∞ml(b, x),∆j(b, x)}.

The problem of optimizing the distortion exponent for BS-JDS can be formulated as

a linear optimization program, as shown in (D.43) in Appendix D and efficiently solved

numerically. In Figure 4.4 we show one instance of the numerical optimization for 2× 2

MIMO, x = 0.5 and L = 500 layers. We also include the distortion exponent achievable

by single layer JDS, i.e., when L = 1, and the exponent achievable by considering r̂ for

L = 2 and in the limit of infinite layers, given by ∆2
ml(b, x) and ∆∞ml(b, x), respectively.

We observe that the achievable distortion exponent for fixed multiplexing gains r̂ is

not continuous, even in the limit of infinite layers. However, in general the distortion

exponent is continuous when jointly optimized over the multiplexing gains and the power

allocations. We also observe that there is a significant improvement in the distortion

exponent just by using two layers. Also, we note that there is a tight match in the

numerical and the achievable distortion given in Lemma 17. Many more numerical

solutions suggest that, in fact, the optimal distortion exponent achievable by BS-JDS is

given by the best of ∆∞ml(b, x) and ∆j(b, x).

Conjecture 1. The optimal distortion exponent achievable by BS-JDS is given by

∆∗ml(b, x) = max{∆∞ml(b, x),∆j(b, x)}.

In next section, we will see that fixing the diversity multiplexing gain to r̂ suffices

for BS-JDS to meet the partially informed upper bound in the MISO/SIMO setup, and

thus, this conjecture is resolved for the positive in these case.

4.7 Comparisons and Discussion

In this section, we discuss the performance of the proposed schemes with respect to the

derived upper bounds and characterize the optimal distortion exponent for MISO/SI-

MO/SISO. In MISO/SIMO, i.e., M∗ = 1, we show that BS-JDS achieves the partially

informed encoder upper bound, thus characterizing the optimal distortion exponent. For

SISO, i.e., M∗ = M∗ = 1, HDA-WZ also meets the optimal distortion exponent. For

the general MIMO setup, the low bandwidth regime has been characterized in Section

4.4. However, the proposed schemes do not meet the upper bound for bM∗ > 1. Never-

theless, multi-layer transmission schemes perform close to the upper bound, especially

in the high bandwidth regime.
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Figure 4.4: Distortion exponent achieved by BS-JDS with L = 1, 2 and in the limit of
infinite layers with respect to the bandwidth ratio b for a 2×2 MIMO system and a side
information quality given by x = 0.5. Numerical results on the achievable distortion
exponent for L = 500 are also included.

4.7.1 Optimal Distortion Exponent for MISO/SIMO/SISO

We first particularize the upper bounds on the distortion exponent for M∗ = 1. The

informed encoder upper bound is found as

∆inf(x, b) = x+ min{b,M∗},

and the partially informed encoder upper bound is given by

∆∗up(b, x) =

max{x, b} for b ≤ max{M∗, x},

M∗ + x
(

1− M∗

b

)
for b > max{M∗, x}.

Notice that as the bandwidth ratio increases, the partially informed encoder upper

bound ∆∗up(b, x) converges to the fully informed encoder upper bound ∆inf(x, b).

Now we particularize the proposed lower bounds to M∗ = 1. The distortion exponent

for SSCC and JDS is given by

∆j(b, x) = max

{
x, b

x+M∗

b+M∗

}
,
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while for uncoded transmission we have

∆u(b, x) =

x if b < 1,

max{1, x} if b ≥ 1.

Note that for b = 1, uncoded transmission meets ∆∗up(b, x) = max{1, x}, while SSCC

and JDS are both suboptimal. Similalry happens in the general MIMO channels.

The following distortion exponent is achievable by HDA-S, for b ≤ 1 and HDA-WZ,

for b > 1, in the MISO/SIMO setup.

∆h(b, x) =

max{x, b} for b ≤ 1,

max{x, M
∗+(b−1)(M∗+x)
M∗+b−1 } for b > 1.

As seen in Section 4.4, HDA-S meets the partially informed upper bound for b ≤ 1.

HDA-WZ is in general suboptimal.

For the multi-layer transmission schemes, the distortion exponent acheivable by LS-

JDS is given by

∆∗ls(b, x) = x+M∗
(

1− e−
b(1−κ∗)
M∗

)
, κ∗=

M∗

b
W

(
e

b
M∗ x

M∗

)
.

As for BS-JDS, considering the achievable rate in Corollary 2, this scheme meets the

partially informed encoder lower bound in the limit of infinite layers, i.e., ∆∞ml(b, x) =

∆∗up(b, x). This fully characterizes the optimal distortion exponent in the MISO/SIMO

setup, as stated in the next theorem.

Theorem 13. The optimal distortion exponent ∆∗(b, x) for MISO/SIMO systems is

given by

∆∗(b, x) =

max{x, b} for b ≤ max{M∗, x},

M∗ + x
(

1− M∗

b

)
for b > max{M∗, x},

and is achieved by BS-JDS in the limit of infinite layers.

In Figure 4.5 we show the distortion exponent for a MISO/SIMO channel with

M∗ = 4 and x = 0.5, with respect to the bandwidth ratio b. We observe that, as given in

Theorem 13, BS-JDS achieves the optimal distortion exponent. As discussed in Section

4.5.5, single layer schemes performs poorly as the bandwidth ration increases. We

observe that HDA-WZ outperforms JDS in all regimes and that, although it outperforms

the multi-layer LS-JDS for low b values, LS-JDS achieves larger distortion exponents

than HDA-WZ for b ≥ 3.
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Figure 4.5: Distortion exponent ∆ with respect to the bandwidth ratio b for a 4 × 1
MISO system and a side information quality given by x = 0.5.

In Figure 4.6, we show upper and lower bounds on the distortion exponent for the

SISO case and x = 0.4. We observe that the performance of the schemes is similar

to the MISO/SIMO case. However, LS-JDS achieves worse distortion exponents than

HDA-WZ, which achieves the optimal distortion exponent for b > 1.

Lemma 18. The optimal distortion exponent for SISO channels is achieved by BS-JDS,

HDA-WZ and HDA-S.

4.7.2 General MIMO

Here, we consider the general MIMO channel. Figure 4.7 shows the upper and lower

bounds on the distortion exponents derived in the previous sections for a 2× 2 MIMO

channel with x = 0.5. First, it can be observed that, the optimal distortion exponent is

achieved by HDA-S and BS-JDS for b ≤ 0.5, as expected from Section 4.4. In addition,

we note that BS-JDS with infinite layers also achieves the optimal distortion exponent

in this regime, while the other schemes are suboptimal in general. In general, uncoded

transmission achieves the optimal distortion exponent at bM∗ = 1.

Lemma 19. Uncoded transmission achieves the optimal distortion exponent for bM∗=1.

For 0.5 < b . 2.4, HDA-WZ is the scheme achieving the largest distortion exponent,

and outperforms BS-JDS, and in particular, in all the regimes where the performance of
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Figure 4.6: Distortion exponents in SISO channels in function of b for x = 0.4.

Figure 4.7: Distortion exponent ∆ with respect to the bandwidth ratio b for a 2 × 2
MIMO system and a side information quality given by x = 0.5.

BS-JDS reduces to the performance of JDS, since HDA-WZ outperforms JDS in general.

For larger b values, the largest distortion exponent is achieved by BS-JDS. Note that for

b ≥ 4, ∆∗ml(b, 0.5) is very close to the partially informed encoder lower bound. We also

observe that for b & 2.4 LS-JDS outperforms HDA-WZ, but it is worse than BS-JDS.

This is not the case in other regimes, as will be seen next.

In Figure 4.8, we show the upper and lower bounds proposed for a 4 × 4 MIMO

channel with x = 0.5. We note that in this case, for bM∗ ≤ max{1, x}, ∆∗(b, 3) = 3,

which is achievable by all schemes only using the side information sequence at the

decoder. For this setup, LS-JDS achieves the best distortion exponent for intermediate
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Figure 4.8: Distortion exponent ∆ with respect to the bandwidth ratio b for a 4 × 4
MIMO system and a side information quality given by x = 3.

b values, outperforming both HDA-WZ and BS-JDS. Again, in the large bandwidth

regime, BS-JDS achieves the best distortion exponent, and performs close to the upper

bound. We note that as the number of antennas increases, the difference in performance

between JDS and HDA-WZ decreases.

4.8 Conclusions

We have studied the distortion exponent when transmitting a Gaussian source over

a time-varying fading MIMO channel in the presence of time-varying correlated side

information at the decoder. We have assumed a block-fading model for both the channel

and the side information states, and perfect state information of the channel and the

side information at the receiver, while the transmitter has only a statistical knowledge.

We have derived two upper bounds on the distortion exponent, as well as lower bounds

based on separate source and channel coding, joint decoding, uncoded transmission and

hybrid digital-analog transmission. We have proposed multi-layer transmission schemes

based on progressive transmission of joint decoding codes or the superposition of them.

We have considered the effects of the bandwidth ratio and the side information quality on

the distortion exponent, and shown that the multi-layer transmission scheme based on

superposition meets the upper bound in MISO/SIMO/SISO channels, solving the JSCC

problem in the high SNR regime. For the general MIMO channel, we have characterized

the optimal distortion in the low bandwidth regime and shown the multi-layer scheme

based on superposition performs very close to the upper bound.



Chapter 5

A Class of Orthogonal Relay

Channels with State

In this chapter, we consider a state-dependent orthogonal relay channel, in which the

channels connecting the source to the relay and the destination are orthogonal, and are

governed by a state sequence, which is assumed to be known only at the destination.

We call this model the state-dependent orthogonal relay channel with state information

available at the destination, and refer to it as the ORC-D model. See Fig. 5.1 for

an illustration of the ORC-D channel model. While the setups considered in previous

chapters are joint source-channel coding problems, this is a channel coding problem in

which the use of source coding tools will be required to achieve the optimal performance.

As discussed in Section 1.2, many practical communication scenarios can be mod-

elled by the ORC-D model. For example, consider a cognitive network with a relay,

in which the transmit signal of the secondary user interferes simultaneously with the

received primary user signals at both the relay and the destination. After decoding

the secondary user message, the destination obtains information about the interference

affecting the source-relay channel, which can be exploited to decode the primary trans-

mitter’s message, which may not be decoded at the relay. Similarly, consider a mobile

network with a relay (e.g., a femtostation), in which the base station (BS) operates

in the full-duplex mode, and transmits on the downlink channel to a user, in parallel

to the uplink transmission of a femtocell user, causing interference for the first user’s

transmission at the femtostation. While the relay has no prior information about this

interfering signal, the BS already knows it (if decoding of the secondary user’s message

is successful), which can be used to decode the primary user’s message.

The best known transmission strategies for the three terminal relay channel are

the decode-and-forward (DF), compress-and-forward (CF) and partial decode-compress-

100
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and-forward (pDCF) schemes, which were all introduced by Cover and El Gamal in [74].

In DF the relay decodes the source message and forwards it to the destination together

with the source terminal. DF is generalized by the partial decode-and-forward (pDF)

scheme in which the relay decodes and forwards only a part of the message. In the ORC-

D model, pDF would be optimal when the channel state information is not available at

the destination [75]; however, when the state information is known at the destination,

fully decoding and re-encoding the message transmitted on the source-relay link renders

the channel state information at the destination useless. Hence, we expect that pDF is

suboptimal for ORC-D in general.

In CF, the relay does not decode any part of the message, and simply compresses

the received signal and forwards the compressed bits to the destination using Wyner-

Ziv coding followed by separate channel coding. Using CF in the ORC-D model allows

the destination exploit its knowledge of the state sequence; and hence, it can decode

messages that may not be decodable by the relay. However, CF also forwards some noise

to the destination, and therefore, may be suboptimal in certain scenarios. For example,

as the dependence of the source-relay channel on the state sequence weakens, i.e., when

the state information becomes less informative, CF performance is expected to degrade.

pDCF combines both schemes: part of the source message is decoded by the relay,

and forwarded, while the remaining signal is compressed and forwarded to the desti-

nation. Hence, pDCF can optimally adapt its transmission to the dependence of the

orthogonal channels on the state sequence. Indeed, we show that pDFC achieves the

capacity in the ORC-D channel model, while pure DF and CF are in general suboptimal.

The main results of the chapter are summarized as follows:

• We derive an upper bound on the capacity of the ORC-D model, and show that

it is achievable by the pDCF scheme. This characterizes the capacity of this class

of relay channels.

• Focusing on the two-hop binary and Gaussian models, we show that applying

either only the CF or only the DF scheme is in general suboptimal.

• We show that the capacity of the ORC-D model is in general below the cut-set

bound. We identify the conditions under which pure DF or pure CF meets the

cut-set bound. Under these conditions the cut-set bounds is tight, and either DF

or CF scheme is sufficient to achieve the capacity.

While the capacity of the general relay channel is still an open problem, there have

been significant achievements within the last decade in understanding the capabilities

of various transmission schemes, and the capacity of some classes of relay channels has

been characterized. For example, DF is shown to be optimal for physically degraded

relay channels and inversely degraded relay channels in [74]. In [75], the capacity of

the orthogonal relay channel is characterized, and shown to be achieved by the pDF
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scheme. It is shown in [76] that pDF achieves the capacity of semi-deterministic relay

channels as well. CF is shown to achieve the capacity in deterministic primitive relay

channels in [77]. While all of these capacity results are obtained by using the cut-set

bound for the converse proof [24], the capacity of a class of modulo-sum relay channels

is characterized in [78], and it is shown that the capacity, achievable by the CF scheme,

can be below the cut-set bound. The pDCF scheme is shown to achieve the capacity of

a class of diamond relay channels in [79].

The state-dependent relay channel has recently attracted considerable attention in

the literature. Key to the investigation of the state-dependent relay channel model is

whether the state sequence controlling the channel is known at the nodes of the network,

the source, relay or the destination in a causal or non-causal manner. The relay channel

in which the state information is non-causally available only at the source is considered

in [80,81], and both causally and non-causally available state information is considered

in [82]. The model in which the state is non-causally known only at the relay is studied

in [83] while causal and non-causal knowledge is considered in [84]. Similarly, the relay

channel with state causally known at source and relay is considered in [85] and state non-

causally known at source, relay and destination in [86]. The compound relay channel

with informed relay and destination are discussed in [87] and [88]. The state-dependent

relay channel with structured state has been considered in [89] and [90]. To the best of

our knowledge, this is the first work that focuses on the state-dependent relay channel

in which the state information is available only at the destination.

The rest of the chapter is organized as follows. In Section II we provide the system

model and our main result. Section III is devoted to the proof of the achievability

and converse of the main result. In section IV, we provide two examples showing the

suboptimality of pDF and CF schemes, while in Section V we show that the capacity

is in general below the cut-set bound, and we provide conditions under which pure DF

and CF schemes meet the cut-set bound. Finally, Section VII concludes the chapter.

5.1 System Model and Main Result

We consider the class of orthogonal relay channels depicted in Fig. 5.1. The source

and the relay are connected through a memoryless channel characterized by p(yR|x1, z),

while the source and the destination are connected through an orthogonal memoryless

channel characterized by p(y2|x2, z). Both memoryless channels depend on an inde-

pendent and identically distributed (i.i.d.) state sequence {Z}ni=1, which is available at

the destination. The relay and the destination are connected by a memoryless chan-

nel p(y1|xR), which is independent of the state sequence zn. The input and output

alphabets are denoted by X1, X2, XR, Y1, Y2 and YR, and the state alphabet by Z.
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Figure 5.1: Orthogonal state-dependent relay channel with channel state information
available at the destination, denoted by ORC-D model.

Let W be the message to be transmitted to the destination with the assistance of

the relay. The message W is assumed to be uniformly distributed over the set W =

{1, ..., N}. An (M,n, νn) code for this channel consists of an encoding function at the

source:

f : {1, ...,M} → Xn1 ×Xn2 , (5.1)

a set of encoding functions {fr,i}ni=1 at the relay, whose output at time i depends on

the symbols it has received up to time i− 1:

XRi = fr,i(YR1, ..., YR(i−1)), i = 1, ..., n, (5.2)

and a decoding function at the destination

g : Yn1 × Yn2 ×Zn → {1, ...,M}. (5.3)

The probability of error, νn, is defined as

νn ,
1

M

M∑
w=1

Pr{g(Y n1 , Y
n
2 , Z

n) 6= w|W = w}. (5.4)

The joint probability mass function (pmf) of the involved random variables over the

set W ×Zn ×Xn1 ×Xn2 ×XnR × YnR × Yn1 × Yn2 is given by

p(w, zn, xn1 , x
n
2 , x

n
R, y

n
R, y

n
1 , y

n
2 ) = p(w)

n∏
i=1

p(zi)p(x1i, x2i|w)·

p(yRi|zi, x1i)p(xRi|yi−1
R )p(y1i|xRi)p(y2i|x2i, zi).

A rate R is said to be achievable if there exists a sequence of (2nR, n, νn) codes such
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that limn→∞ νn = 0. The capacity C of this class of state-dependent orthogonal relay

channels, denoted as ORC-D, is defined as the supremum of the set of achievable rates.

We define R0 as the capacity of the link connecting the relay to the destination, and

R1 as the capacity of the direct link connecting the source to the destination when the

channel state sequence is available at the destination:

R0 , max
p(xR)

I(XR;Y1), R1 , max
p(x2)

I(X2;Y2|Z), (5.5)

and let p∗(xR) and p∗(x2) be the channel input distributions achieving R0 and R1,

respectively.

Let us define P as the set of all joint pmf´s given by

P,{p(u, x1, z, yR, ŷR) :p(u, x1, z, yR, ŷR)=p(u, x1)p(z)p(yR|x1, z)p(ŷR|yR, u)},(5.6)

where U and ŶR are auxiliary random variables defines over the alphabets U and ŶR,

respectively.

The main result of this chapter, provided in the next theorem, is the capacity of the

class of relay channels described above.

Theorem 14. The capacity of the ORC-D relay channel is given by

C = sup
P

R1 + I(U ;YR) + I(X1; ŶR|UZ),

s.t. R0 ≥ I(U ;YR) + I(YR; ŶR|UZ), (5.7)

where |U| ≤ |X1|+ 3 and |ŶR| ≤ |U||YR|+ 1.

Proof. The achievability part of the theorem is proven in Section 5.2.1, while the con-

verse proof is given in Section 5.2.2.

In the next section, we show that the capacity of this class of state-dependent relay

channels is achieved by the pDCF scheme. To the best of our knowledge, this is the

first single relay channel model for which the capacity is achieved by pDCF, while the

partial decode-and-forward (pDF) and compress-and-forward (CF) schemes are both

suboptimal in general. In addition, the capacity of this relay channel is in general below

the cut-set bound [24]. In certain cases, pDF or CF is sufficient to achieve the capacity,

e.g., pDF is optimal when the channel state Z is absent or constant. These issues are

discussed in more detail in Sections 5.3 and 5.4.
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5.2 Proof of Theorem 14

We first show in Section 5.2.1 that the capacity region in Theorem 14 is achievable by

pDCF. Then, we derive the converse for Theorem 14 in Section 5.2.2.

5.2.1 Achievability

We derive the rate achievable by pDCF scheme for ORC-D using the achievable rate

expression for the pDCF scheme proposed in [74] for the general relay channel. The

discrete memoryless relay channel consists of four finite sets X , XR, Y and YR and a

set of probability distribution p(y, yR|x, xR). In this setup, X corresponds to the source

input to the channel, Y to the channel output available at the destination, while YR is

the channel output available at the relay, and XR is the channel input symbol chosen

by the relay. We note that the three terminal relay channel in [74] reduces to the ORC-

D-channel by setting Xn = (Xn
1 , X

n
2 ) and Y n = (Y n1 , Y

n
2 , Z

n), and p(y, rR|x1xR) =

p(y1, y2, yR, z|x1, x2, xR) = p(z)p(yR|x1, z)p(y1|xR)p(y2|x2).

In pDCF for the general relay channel, the source applies message splitting, and

the relay decodes only a part of the message. The part to be decoded by the relay is

transmitted through the auxiliary random variable Un, while the rest of the message

is superposed onto this through channel input Xn. Block Markov encoding is used for

transmission. The relay receives Y nR and decodes only the part of the message that

is conveyed by Un. The remaining signal Y nR is compressed into Ŷ nR . The decoded

message is forwarded through V n, which is correlated with Un, and the compressed

signal is superposed onto V n through the relay channel input Xn
R. At the destination

the received signal Y n is used to recover the message. See [74] for details. The achievable

rate of the pDCF scheme is given below.

Theorem 15. (Theorem 7,[74]) The capacity of a relay channel p(y, yR|x, xR) is lower

bounded by the following rate:

RpDCF = sup min {I(X;Y, ŶR|XR, U) + I(U ;YR|XR, V ),

I(X,XR;Y )− I(ŶR;YR|X,XR, U, Y )},

s.t. I(ŶR;YR|Y,XR, U) ≤ I(XR;Y |V ), (5.8)

where the supremum is taken over all joint pmf’s of the form

p(v)p(u|v)p(x|u)p(x1|v)p(y, yR|x, xR)p(ŷR|xR, yR, u).

Since ORC-D is a special case of the general relay channel model, the rate RpDCF

is achievable in an ORC-D as well. The capacity achieving pDCF scheme for the state-
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dependent channel from (5.8) is obtained by setting V = ∅ and generating Xn
R and Xn

1

independent of the rest of variables with distribution p∗(xR) and p∗(x1), respectively,

as given in the next lemma.

Lemma 20. For the class of relay channels characterized by the ORC-D model, the

capacity expression C defined in (5.7) is achievable by the pDCF scheme.

Proof. See Appendix E.

The optimal pDCF scheme for ORC-D applies independent coding over the source-

destination and the source-relay-destination branches. The source applies message split-

ting. Part of the message is transmitted over the source-destination branch and decoded

at the destination using Y n2 and Zn. In the relay branch, the part of the message to be

decoded at the relay is transmitted through Un, while the rest of the message is super-

posed onto this through the channel input Xn
1 . At the relay the part conveyed by Un is

decoded from Y nR , and the remaining signal Y nR is compressed into Ŷ nR using binning and

assuming that Zn is available at the decoder. Both Un and the bin index corresponding

to Ŷ nR are transmitted over the relay-destination channel using Xn
R. At the destination,

Xn
R is decoded from Y n1 , and Un and the bin index are recovered. Then, the decoder

looks for the part of message transmitted over the relay branch jointly typical with Ŷ nR
within the corresponding bin and Zn.

5.2.2 Converse

The proof of the converse consists of two parts. First we derive a single-letter upper

bound on the capacity, and then, using the single-letter expression of the upper bound we

provide an alternative expression for this bound, which coincides with the rate achievable

by pDCF.

Lemma 21. The capacity of the class of relay channels characterized by the ORC-D

model is upper bounded by

Rup = sup
P

min{R1 + I(U ;YR) + I(X1; ŶR|UZ), R1 +R0 − I(ŶR;YR|X1UZ)}. (5.9)

Proof. See Appendix E.

As stated in the next lemma, the upper bound Rup, given in Lemma 21, is equivalent

to the capacity expression C given in Theorem 14. Since the achievable rate meets the

upper bound, this concludes the proof of Theorem 14.

Lemma 22. The upper bound on the achievable rate Rup given in Lemma 21 is equiv-

alent to the capacity expression C in Theorem 14.

Proof. See Appendix E.
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5.3 The Two-Hop Relay Channel with State: Subop-

timality of Pure pDF and CF schemes

We have seen in Section 5.2 that the pDCF scheme is capacity-achieving for the class of

relay channels characterized by the ORC-D model. In order to prove the suboptimality

of the pure DF and CF schemes for this class of relay channels, we consider a simplified

system model, called the two-hop relay channel with state information available at the

destination (MRC-D), which is obtained by simply removing the direct channel from

the source to the destination, i.e., R1 = 0.

The capacity of this two-hop relay channel model and the optimality of pDCF follows

directly from Theorem 14. However, the single-letter capacity expression depends on the

joint pmf of X1, YR, XR and Y1 together with the auxiliary random variables U and ŶR.

Unfortunately, the numerical characterization of the optimal joint pmf of these random

variables is very complicated for most channels. A simple and computable upper bound

on the capacity can be obtained from the cut-set bound [25]. For MRC-D, the cut-set

bound is given by

RCS = min{R0,max
p(x1)

I(X1;YR|Z)}. (5.10)

Next, we characterize the rates achievable by the DF and CF schemes for MRC-D.

Since they are special cases of the pDCF scheme, their achievable rates can be obtained

by particularizing the achievable rate of pDCF for this setup.

DF Scheme

If we consider a pDCF scheme that does not perform any compression at the relay,

i.e., ŶR = ∅, we obtain the rate achievable by the pDF scheme. Note that the optimal

distributions of XR is given by p∗(xr). Then, we have

RpDF = min{R0, sup
p(x1,u)

I(U ;YR)}. (5.11)

From the Markov chain U − X1 − YR, we have that I(U ;YR) ≤ I(X1;YR), where the

equality is achieved by U = X1. That is, the performance of pDF is maximized by

letting the relay decode the whole message. Therefore, the maximum rate achievable

by pDF and DF for MRC-D coincide, and is given by

RDF = RpDF = min{R0,max
p(x1)

I(X1;YR)}. (5.12)
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Figure 5.2: The parallel binary symmetric MRC-D with parallel source-relay links. The
destination has side information about only one of the source-relay links.

CF Scheme

If the pDCF scheme does not perform any decoding at the relay, i.e., U = ∅, pDCF

reduces to CF. Then, the achievable rate for the CF scheme in MRC-D is easily seen to

be given by

RCF = sup I(X1; ŶR|Z)

s.t. R0 ≥ I(ŶR;YR|Z),

over p(x1)p(z)p(yR|x1, z)p(ŷR|yR). (5.13)

5.3.1 Two-Hop Parallel Binary Symmetric Channel

In this section we consider a special MRC-D as shown in Fig. 5.2, which we call the par-

allel binary symmetric MRC-D. For this setup, we characterize the optimal performance

of the DF and CF schemes, and show that in general pDCF outperforms both, and that

in some cases the cut-set bound is tight and coincides with the channel capacity. This

example proves the suboptimality of both DF and CF on their own for the ORC-D.

In this scenario, the source-relay channel consists of two parallel binary symmetric

channels. We haveX1 = (X1
1 , X

2
1 ), YR = (Y 1

R, Y
2
R) and p(yR|xR, z) = p(y1

R|x1
1, z)p(y

2
R|x2

1)

characterized by

Y 1
R = X1

1 ⊕N1 ⊕ Z, and Y 2
R = X2

1 ⊕N2,

where N1 and N2 are i.i.d. Bernoulli random variables with Pr{N1 = 1} = Pr{N2 =

1} = δ, i.e., N1 ∼ Ber(δ) and N2 ∼ Ber(δ). We consider a Bernoulli distributed state

Z, Z ∼ Ber(pz), which affects one of the two parallel channels, and is available at the

destination. We have X 1
1 = X 2

1 = Y1
R = Y1

R = N1 = N2 = Z = {0, 1}.
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From (5.10), the cut-set bound is given by

RCS = min{R0, max
p(x1

1x
2
1)
I(X1

1X
2
1 ;Y 1

RY
2
R|Z)}

= min{R0, 2(1− h2(δ))}, (5.14)

where h2(·) is the binary entropy function defined as h2(p) , −p log p−(1−p) log(1−p).
The maximum DF rate is achieved by X1

1 ∼ Ber(1/2) and X2
1 ∼ Ber(1/2), and is

found to be

RDF = min{R0, max
p(x1

1x
2
1)
I(X1

1X
2
1 ;Y 1

RY
2
R)}

= min{R0, 2− h2(δ ? pz)− h2(δ)}, (5.15)

where α ? β , α(1− β) + (1− α)β.

Following (5.13), the rate achievable by the CF scheme in the parallel binary sym-

metric MRC-D is given by

RCF = max I(X1
1X

2
1 , ŶR|Z),

s.t. R0 ≥ I(Y 1
RY

2
R; ŶR|Z)

over p(z)p(x1
1x

2
1)p(y1

R|z, x1
1)p(y2

R|x2)p(ŷR|y1
Ry

2
R). (5.16)

Let us define h−1
2 (q) as the inverse of the entropy function h2(p) for q ≥ 0. For

q < 0, we define h−1
2 (q) = 0.

As we show in the next lemma, the achievable CF rate in (5.16) is maximized by

transmitting independent channel inputs over the two parallel links to the relay by

setting X1
1 ∼ Ber(1/2), X2

1 ∼ Ber(1/2), and by independently compressing each of the

channel outputs Y 1
R and Y 2

R as Ŷ 1
R = Y 1

R ⊕ Q1 and Ŷ 2
R = Y 2

R ⊕ Q2, respectively, where

Q1 ∼ Ber(h−1
2 (1 − R0/2)) and Q2 ∼ Ber(h−1

2 (1 − R0/2)). Note that for R0 ≥ 2, the

channel outputs can be compressed errorlessly. The maximum achievable CF rate is

given in the following lemma.

Lemma 23. The maximum rate achievable by CF in the parallel binary symmetric

MRC-D is given by

RCF = 2

(
1− h2

(
δ ? h−1

2

(
1− R0

2

)))
. (5.17)

Proof. See Appendix E.

Now, we consider the pDCF scheme for the parallel binary symmetric MRC-D.

Although we have not been able to characterize the optimal choice of (U, ŶR, X
1
1 , X

2
1 )

in general, we provide an achievable scheme that outperforms both DF and CF schemes
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Figure 5.3: Achievable rates and the cut-set upper bound for the parallel binary sym-
metric MRC-D with respect to the binary noise parameter δ, for R0 = 1.2 and pz = 0.15.

and meets the cut-set bound in some regimes. Let X1
1 ∼ Ber(1/2) and X2

1 ∼ Ber(1/2)

and U = X2
1 , i.e., the relay decodes the channel input X2

1 , while Y 1
R is compressed using

ŶR = Y 1
R +Q, where Q ∼ Ber(h−1

2 (2−h2(δ)−R0)). The rate achievable by this scheme

is given in the following lemma.

Lemma 24. A lower bound on the achievable pDCF rate in the parallel binary sym-

metric MRC-D is given by

RpDCF ≥ min{R0, 2− h2(δ)− h2

(
δ ? h−1

2 (2− h2(δ)−R0)
)
}.

Proof. See Appendix E.

We notice that for pz ≤ h−1
2 (2−h2(δ)−R0), or equivalently, δ ≤ h−1

2 (2−h2(pz)−R0),

the proposed pDCF is outperformed by DF. In this regime, pDCF can achieve the same

performance by decoding both channel inputs, reducing to DF.

Comparing the cut-set bound expression in (5.14) with RDF in (5.15) and RCF in

(5.17), we observe that DF achieves the cut-set bound if R0 ≤ 2−h(δ ? pz)−h(δ) while

RCF coincides with the cut-set bound if R0 ≥ 2. On the other hand, the proposed

suboptimal pDCF scheme achieves the cut-set bound if R0 ≥ 2 − h2(δ), i.e., for δ ≥
h−1

2 (2 − R0). Hence, the capacity of the parallel binary symmetric MRC-D in this

regime is achieved by pDCF, while both DF and CF are suboptimal, as stated in the

next lemma.
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Lemma 25. If R0 < 2 and δ ≥ h−1
2 (2 − R0), pDCF achieves the capacity of the

parallel binary symmetric MRC-D, while pure CF and DF are both suboptimal under

these constraints. For R0 ≥ 2, both CF and pDCF achieve the capacity.

The achievable rates of DF, CF and pDCF, together with the cut-set bound are

shown in Fig. 5.3 with respect to δ for R0 = 1.2 and pz = 0.15. We observe that in this

setup, DF outperforms CF in general, while for δ ≤ h−1
2 (2−R0− h2(pz)) = 0.0463, DF

outperforms pDCF as well. We also observe that pDCF meets the cut-set bound for

δ ≥ h−1
2 (2 − R0) = 0.2430, characterizing the capacity in this regime, and proving the

suboptimality of both the DF and CF schemes when they are used on their own.

5.3.2 Two-Hop Binary Symmetric Channel

In order to gain further insights into the proposed pDCF scheme, we look into the binary

symmetric MRC-D, in which, there is only a single channel connecting the source to the

relay, given by

YR = X1 ⊕N ⊕ Z, (5.18)

where N ∼ Ber(δ) and Z ∼ Ber(pz).

Similarly to Section 5.3.1, the cut-set bound and the maximum achievable rates for

DF and CF are found as

RCS = min{R0, 1− h2(δ)}, (5.19)

RDF = min{R0, 1− h2(δ ? pz)}, (5.20)

RCF = 1− h2(δ ? h−1
2 (1−R0))), (5.21)

where RDF is achieved by X1 ∼ Ber(1/2), and RCF can be shown to be maximized by

X1 ∼ Ber(1/2) and ŶR = YR ⊕Q, where Q ∼ Ber(h−1
2 (1−R0)) similarly to Lemma 23.

Note that, for YR independent of Z, i.e., pz = 0, DF achieves the cut-set bound while

CF is suboptimal. However, CF outperforms DF whenever pz ≥ h−1
2 (1−R0).

For the pDCF scheme, we consider binary (U,X1, ŶR), with U ∼ Ber(p), a superpo-

sition codebook X1 = U ⊕W , where W ∼ Ber(q), and ŶR = YR ⊕Q with Q ∼ Ber(α).

As stated in the next lemma, the maximum achievable rate of this pDCF scheme is

obtained by reducing it to either DF or CF, depending on the values of pz and R0.

Lemma 26. For the binary symmetric MRC-D, pDCF with binary (U,X1, ŶR) achieves

the following rate.

RpDCF = max{RDF , RCF } =

min{R0, 1− h2(δ ? pz)} if pz < h−1
2 (1−R0),

1− h2(δ ? h−1
2 (1−R0)) if pz ≥ h−1

2 (1−R0).
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Figure 5.4: The two-hop Gaussian relay channel with source-relay channel state infor-
mation available at the destination.

This result justifies the pDCF scheme proposed in Section 5.3.1 for the parallel

binary symmetric MRC-D. Since the channel p(y2
1 |x2) is independent of the channel

state Z, the largest rate is are achieved if the relay decodes X2
1 from Y 2

R. However, for

channel p(y1
1 |x1, z), which depends on Z, the relay either decodes X1

1 , or compress Y 1
R,

depending on pz.

5.3.3 Two-Hop Gaussian Channel with State

Next, we consider an AWGN two-hop channel, which we denote by Gaussian MRC-D,

in which the source-relay link is characterized by YR = X1 + V , while the destination

has access to correlated state information Z. We assume that V and Z are zero mean

jointly Gaussian random variables with a covariance matrix

CZV =

[
1 ρ

ρ 1

]
. (5.22)

The channel input at the source has to satisfy the power constraint E[|Xn
1 |2] ≤ nP .

Finally, the relay and the destination are connected by a noiseless link of rate R0 (see

Fig. 5.4 for the channel model).

In this case, the cut-set bound is given by

RCS = min

{
R0,

1

2
log

(
1 +

P

1− ρ2

)}
. (5.23)

It easy to characterize the optimal DF rate, achieved by a Gaussian input, as follows:

RDF = min

{
R0,

1

2
log(1 + P )

}
. (5.24)

For CF and pDCF, we consider the achievable rate when the random variables

(X1, U, ŶR) are constrained to be jointly Gaussian, which is a common assumption

in evaluating achievable rates, yet potentially suboptimal. For CF, we generate the

compression codebook using ŶR = YR + Q, where Q ∼ N (0, σ2
q ). Optimizing over σ2

q ,
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Figure 5.5: Achievable rates and the cut-set upper bound for the two-hop AWGN relay
channel with source-relay channel state information at the destination for R0 = 1 and
P = 0.3.

the maximum achievable rate is given by

RCF = R0 −
1

2
log

(
P + 22R0(1− ρ2)

P + 1− ρ2

)
. (5.25)

For pDCF, we let U ∼ N (0, αP1), and X1 = U + T to be a superposition codebook

where T is independent of U and distributed as T ∼ N (0, ᾱP1), where ᾱ , 1 − α. We

generate a quantization codebook using the test channel ŶR = YR + Q as in CF. Next

lemma shows that with this choice of random variables, pDCF reduces either to pure

DF or pure CF, similarly to the two-hop binary model in Section 5.3.2.

Lemma 27. The optimal achievable rate for pDCF with jointly Gaussian (X1, U, ŶR)

is given by

RpDCF = max{RDF , RCF } =

min {R0, 1/2 log(1 + P )} if ρ2 ≤ 2−2R0(1 + P ),

R0 − 1
2 log

(
P+22R0 (1−ρ2)

P+1−ρ2

)
if ρ2 > 2−2R0(1 + P ).

Proof. See Appendix E.

In Fig. 5.5 the achievable rates are compared with the cut-set bound. It is shown

that DF achieves the best rate when the correlation coefficient ρ is low, i.e., when the

destination has low quality channel state information, while CF achieves higher rates

for higher values of ρ. It is seen that pDCF achieves the best of the two transmission
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schemes. Note also that for ρ = 0 DF achieves the cut-set bound, while for ρ = 1 CF

achieves the cut-set bound.

Although this example proves the suboptimality of the DF scheme for the channel

model under consideration, it does not necessarily lead to the suboptimality of the CF

scheme as we have constrained the auxiliary random variables to Gaussian.

5.4 Comparison with the Cut-Set Bound

In the examples considered in Section 5.3, we have seen that for certain conditions, the

choice of certain random variables allows us to show that the cut-set bound and the

capacity coincide. For example, we have seen that for the parallel binary symmetric

MRC-D the proposed pDCF scheme achieves the cut-set bound for δ ≥ h−1
2 (2−R0), or

Gaussian random variables meet the cut-set bound for ρ = 0 or ρ = 1 in the Gaussian

MRC-D. An interesting question is whether the capacity expression in Theorem 14

always coincides with the cut-set bound or not; that is, whether the cut-set bound is

tight for the relay channel model under consideration.

To address this question, we consider the two-hop binary channel in (5.18) for Z ∼
Ber(1/2). The capacity C of this channel is given in the following lemma.

Lemma 28. The capacity of the binary symmetric MRC-D with YR = X1 ⊕ N ⊕ Z,

where N ∼ Ber(δ) and Z ∼ Ber(1/2), is achieved by CF and pDCF, and is given by

C = 1− h2(δ ? h−1
2 (1−R0)). (5.26)

Proof. See Appendix E.

From (5.19), the cut-set bound is given by RCS = 1− h2(δ). It then follows that in

general the capacity is below the cut-set bound. Note that for this setup, RDF = 0 and

pDCF reduces to CF, i.e., RpDCF = RCF . See Fig. 5.6 for comparison of the capacity

with the cut-set bound for varying δ values.

CF suffices to achieve the capacity of the binary symmetric MRC-D for Z ∼ Ber(1/2).

While in general pDCF outperforms DF and CF, in certain cases these two schemes are

sufficient to achieve the cut-set bound, and hence, the capacity. For the ORC-D model

introduced in Section 5.1, the cut-set bound is given by

RCS = R1 + min{R0,max
p(x1)

I(X1;YR|Z)}. (5.27)

Next, we present four cases for which the cut-set bound is achievable, and hence, is

the capacity:
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Figure 5.6: Achievable rates, capacity and cut-set upper bound for the two-hop binary
relay channel with respect to δ for R0 = 0.25 and pz = 0.5.

1. If I(Z;YR) = 0, the setup reduces to the class of orthogonal relay channels studied

in [91], for which the capacity is known to be achieved by pDF.

2. If H(YR|X1Z) = 0, i.e., YR is a deterministic function of X1 and Z, the capacity,

given by

R1 + min{R0,max
p(x1)

I(X1;YR|Z)},

is achievable by CF.

3. If maxp(x1) I(X1;YR) ≥ R0, the capacity, given by C = R1 +R0, is achievable by

pDF.

4. Let arg maxp(x1) I(X1;YR|Z) = p̄(x1). If R0 > H(ȲR|Z) for ȲR induced by p̄(x1),

the capacity, given by R1 + I(X̄1; ȲR|Z), is achievable by CF.

Proof. See Appendix E.

These cases can be observed in the examples from Section 5.3. For example, in the

Gaussian MRC-D, with ρ = 0, YR is independent of Z, and thus, DF meets the cut-set

bound as stated in case 1. Similarly, for ρ = 1 CF meets the cut-set bound since YR is

a deterministic function of XR and Z, which corresponds to case 2.

For the parallel binary symmetric MRC-D in Section 5.3.1, pDCF achieves the cut-set

bound if δ ≥ h−1
2 (2−R0) due to the following reasoning. Since Y 1

R is independent of X1
1 ,

from case 1, DF should achieve the cut-set bound. Once X1
1 is decoded, the available

rate to compress Y2 is given by R0 − I(X1;Y1) = R0 − 1 + h2(δ), and the entropy
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of Y2, given the channel state at the destination, is given by H(Y2|Z) = 1 − h2(δ).

For δ ≥ h−1
2 (2 − R0) we have R0 − I(X1;Y1) ≥ H(Y2|Z). Therefore the relay can

compress Y2 losslessly, and transmit to the destination. This corresponds to case 4.

Thus, the capacity characterization in the parallel binary symmetric MRC-D is due to

a combination of cases 1 and case 4.

5.5 Conclusion

We have considered a class of orthogonal relay channels, in which the source and the

relay are connected with a channel that depends on a state sequence, known at the

destination. We have characterized the capacity of this class of relay channels, and

shown that it is achieved by the partial decode-compress-and-forward (pDCF) scheme.

This is the first three-terminal relay channel model for which the pDCF is shown to be

capacity achieving while partial decode-and-forward (pDF) and compress-and-forward

(CF) schemes are both suboptimal in general. We have also shown that, in general, the

capacity of this channel is below the cut-set bound.



Chapter 6

Conclusions

In mid 20th century, Shannon settled the fundamental principles of information theory

and reliable communication. In his groundbreaking paper, Shannon proved that, with-

out incurring any performance loss, the communication problem can be divided into

two separate simpler problems: data compression and data transmission. Since then,

communication networks has systematically followed this division in their architecture

design. This separate operation framework presents significant advantages in terms of

simplicity and modularity, which led to the development of highly complex networks,

such as the Internet. However, this approach has created a bottleneck in the design

of wireless networks, since they significantly differ from wired networks, for which the

layered framework was originally designed. Wireless channels are highly dynamic and

present a broadcast nature, causing interferences in nearby devices, as opposed to wired

channels, which are, essentially, time-invariant and non-interfering.

Moreover, sources and channels in wireless communication networks exhibit statis-

tical correlation, which can stem from the physical nature of the underlying sources or

can be created within the network. While current architectures ignore this correlation,

communication technologies that exploit it, and go beyond the layered architecture ap-

proach, can become a key feature of future high performance networks, as information

theory promises significant gains. However, translating the available correlation into

performance improvements implies a careful system design and the use of appropriate

communication strategies.

In this dissertation, we have studied potential novel technologies for next generation

wireless networks from an information theoretic perspective. We have focused on three

distinct problems involving the availability of correlated side information in wireless

networks, and developed fundamental performance bounds and novel communication

schemes that go beyond the classical separate source and channel coding approach.

We have identified operation regimes in which significant performance gains can be

117
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expected. In general, joint source-channel coding (JSCC) schemes, such as uncoded

transmission, joint decoding, hybrid digital-analog (HDA) transmission and multi-layer

transmission, have been shown to be able to provide significant performance gains over

separate source and channel (SSCC) schemes. Under certain conditions, the proposed

schemes have been shown to achieve the optimal performance, proving the necessity of

JSCC in the presence of correlated information in wireless networks. Uncoded trans-

mission plays a major role in the JSCC schemes considered in this thesis and, despite its

simplicity, its optimality has been proven in many regimes of operation, in which SSCC

is strictly suboptimal. On the other hand, we have also shown that the benefits of JSCC

schemes are not restricted to JSCC problems. We have shown that a combination of

channel coding and source coding techniques, are required in certain multi-terminal

channel problems in order to achieve the channel capacity.

In Chapter 2, we have studied the joint source-channel Gaussian one-helper problem,

in which two correlated Gaussian sources are available at two separate terminals and

have to be transmitted over a time-invariant Gaussian MAC. Of the two sources, only

one of the sources has to be reconstructed at the destination with minimum distortion,

while the terminal with the second source acts as a helper.

We have characterized the optimal performance achievable by SSCC and uncoded

transmission, and seen that, for low SNR and high correlation regimes, the latter out-

performs SSCC. On the contrary, SSCC has been shown to perform better at high SNR

and low correlation regimes. The optimality of separation breaks down in this scenario

because by exploiting the correlated source sequences, each terminal can generate corre-

lated channel inputs. This is unfeasible for SSCC, which can only generate independent

inputs in this distributed setup. The correlation between the channel inputs brings

an additional degree-of-freedom to the system, which potentially improves the perfor-

mance. However, the amount of correlation that can be created is limited by the source

correlation. We have used this fact, together with cut-set bound arguments to obtain a

lower bound on the achievable distortion.

While we have seen that uncoded transmission outperforms SSCC, the good perfor-

mance of uncoded transmission is dependent on certain source and channel matching

conditions and, in general, uncoded transmission is not capable of exploiting the avail-

able degrees-of-freedom in the system. In order to benefit from both digital and analog

transmission, we have considered a generalized HDA transmission scheme based on

power allocation among digital and analog signals, denoted by I-HDA. The correspond-

ing signals are transmitted by superposition, and the analog transmissions are treated

as noise when decoding the digital codewords. This scheme includes pure SSCC and

uncoded transmission schemes as particular cases. A second HDA transmission scheme,

denoted by S-VQ, has also been considered. In the S-VQ scheme, at each terminal, the

source is quantized and superposed onto an uncoded analog layer. These two schemes
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have been numerically shown to outperform pure SSCC and pure analog transmission

by better exploiting the degrees-of-freedom in the system. We have observed that,

both HDA schemes reduce to pure analog transmission in certain regimes, for which

we conjecture that uncoded transmission is optimal. These results indicate that, even

simple uncoded transmission is capable of outperforming SSCC, and in fact, achieve the

best known performance, although more advanced schemes have been shown to provide

higher gains in general.

In Chapter 3, we have looked at the JSCC problem of transmitting a Gaussian

source over a time-varying fading channel with delay constraints and minimum expected

distortion. We have studied the benefits of having correlated side information at the

receiver whose quality, i.e., correlation with the source signal, varies over time, assuming

that the states of the time-varying channel and side information are available only at the

destination. In this case, contrary to the helper setup, the side information is provided

to the destination through an orthogonal link. The optimality of Shannon’s separation

breaks down since, under delay constraints, SSCC cannot adapt to the channel and side

information variations and suffers from outages in both the source and channel codes.

Therefore, JSCC techniques that jointly adapt to the channel and the side information

states are required.

We have derived a lower bound on the expected distortion by providing the encoder

with the channel state, and shown that in this case, SSCC achieves the optimal per-

formance, although the side information state is unknown at the transmitter. We have

proved the optimality of uncoded transmission under discrete and continuous quasicon-

cave side information fading distributions, by showing that under these distributions

uncoded transmission achieves the lower bound, rendering the available side informa-

tion useless in transmission. This is the first known case, in which uncoded transmission

becomes optimal due to fading while it would be suboptimal in the static case. We have

also shown that, under this class of distributions, the optimal SSCC scheme ignores

the available side information and uses the side information only for reconstruction at

the destination. However, for other side information fading distributions, performance

improvements can be achieved by exploiting the available side information.

We have shown that SSCC performs poorly compared to joint designs and considered

a transmission schemes based on joint source and channel decoding (JDS), compensat-

ing bad quality channel states with good side information realizations (or the reverse),

thus reducing the outage probability compared to SSCC. We have also considered an

HDA scheme based on joint decoding that transmits an uncoded layer on top of a digital

layer (SHDA). We have provided results in the finite SNR regime, and shown that, in

general, JDS outperforms SSCC and, we have numerically observed that SHDA trans-

mission performs very close to the lower bound. While the optimal transmission strategy

remains open for finite SNR values, we have studied the high SNR performance, and
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characterized the distortion exponent in certain regimes of operation. We have shown

that SHDA achieves the optimal distortion exponent for a family of side information

distributions. However, in certain regimes of operation, JDS achieves the optimal dis-

tortion exponent while SHDA is suboptimal. Therefore, none of the schemes outperform

the other in general.

The results in this chapter have been extended in Chapter 4 to MIMO channels and

general bandwidth ratios, which provide the system with additional degrees-of-freedom.

We have focused on the high SNR regime and assumed that the side information fading

follows a Rayleigh distribution, and have considered the effects of its quality. By general-

izing the bounds in the previous chapter, we have shown that in the very low bandwidth

regime, the optimal distortion exponent is achieved by using only the side information,

ignoring the channel output, and in the low bandwidth regime, by ignoring the side

information and only using the optimal scheme in the absence of side information.

Then, we have considered larger bandwidth ratios. While in the SISO setup single

layer schemes are sufficient, they fall short of the optimal performance in the MIMO

setup. SSCC and JDS have been shown to achieve the same distortion exponent de-

spite the latter suffering from fewer outages. Uncoded transmission has been shown

to be highly suboptimal, specially for large bandwidth ratios, since it is not capable

of exploiting the additional degrees-of-freedom in the system. We have also proposed

an HDA scheme, which we call HDA-WZ, and shown that it outperforms the previous

schemes. However, these schemes are not sufficient to exploit the degrees-of-freedom

in the system, especially in the large bandwidth regime. We have considered multi-

layer transmission schemes that transmit successive refinement layers of the source to

combat the uncertainty, either in a progressive (LS-JDS) or with a broadcast (BS-JDS)

approach. We have shown that these schemes achieve larger distortion exponents and

that, in particular, BS-JDS achieves the optimal performance in MISO/SIMO/SISO

setups, solving the JSCC problem in the high SNR regime. For the general MIMO

channel, we have characterized the optimal distortion in the low bandwidth regime and

shown that BS-JDS performs very close to the upper bound. However, we have also

observed that LS-JDS outperforms BS-JDS for intermediate bandwidth ratio values,

and thus both schemes are required to achieve the largest distortion exponent values,

depending on the regime of operation.

In general, providing an estimation of the channel and side information state to the

transmitter is costly. Although in Chapters 3 and 4 the transmitter is not aware of the

current channel and side information states, the results in these chapters indicate that,

in the high SNR regime, some schemes achieve the optimal performance of a transmitter

that perfectly knows the channel state. We have also quantified the optimal performance

of a transmitter that perfectly knows the channel and side information state, illustrating

the gains from the channel state feedback in delay limited JSCC problems. The results
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in Chapters 3 and 4 indicate that, having correlated side information available at the

receiver can be exploited to obtain significant performance gains, despite the transmitter

not being aware of the current state of this information.

Finally, in Chapter 5, we have studied the capacity of a class of orthogonal relay

channels in the presence of channel side information at the destination. We have mod-

eled the side information in this setting as follows: the source and the relay, and the

source and the destination are connected through orthogonal channels that depend on

a common state sequence, which is fully known at the destination, and unknown at

the source and the relay. While this is essentially a channel coding problem, source

compression techniques are required to optimally exploit the side information. We have

considered the partial-decode-and-forward (pDF) scheme, which decodes part of the

message at the relay and forwards it to the destination, removing the channel noise but

rendering the channel state available at the destination useless. We have also considered

compress-and-forward (CF), which compresses the relay received signal and forwards to

the destination, which decodes the message using the state information available. How-

ever, CF also forwards the channel noise. We have characterized the capacity of this class

of relay channels, and proved the optimality of the partial decode-compress-and-forward

scheme (pDCF), which combines both DF and CF. To the best of our knowledge, this

is the first three terminal channel model for which partial-decode-compress-and-forward

has been shown to be optimal. We have also proved that, in general, neither the pDF

nor the CF scheme can achieve the capacity on its own. The results in this chapter

show the importance of a fundamental understanding on how to exploit the side infor-

mation in communication networks in order to translate the available side information

to significant performance improvements.

Even though the nature of the side information and the performance measure in the

three scenarios studied in this thesis are quite different, our results concerning these

three different scenarios emphasize the significant benefits of exploiting correlated side

information when designing a communication system.

Future Research Directions

In this thesis we have studied several open problems concerning the availability of corre-

lated side information in the network and the use of JSCC schemes to efficiently exploit

it. While in some cases we have fully solved these problems, there are still a plethora of

questions that could be further explored to improve the understanding of fundamental

benefits of side information. Here, we discuss some potential research direction that can

be pursued.

In Chapter 2, we have provided achievable schemes based on separate source and

channel coding, uncoded transmission and HDA schemes that combine the two schemes,
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however, their performance is far from the proposed lower bound. We believe that the

large gap between the lower and upper bounds is caused by the looseness of the lower

bound. Tightening this bound is a challenging problem that requires significant effort.

Advances in this line of research could lead to improved performance bounds for the

transmission of correlated sources in other multi-terminal setups, such as the JSCC

interference channel, where little is known.

In Chapters 3 and 4, we have fully characterized the minimum expected distortion

in some regimes, for which uncoded transmission has been shown to be optimal. How-

ever, most of the optimality results in these chapters have been obtained in terms of the

distortion exponent, that is, in the high SNR regime. Further research for the expected

distortion in the finite SNR regimes is required. Although this is a very challenging

problem that remains open even in the absence of side information, it would be interest-

ing to study the optimal performance of LS-JDS and BS-JDS in the finite SNR regime,

and quantify the potential improvements with respect to SSCC based schemes. We ex-

pect this improvement to be quite significant. A noticeable performance improvement

is observed in the simulations even when a single layer is used. It would also be interest-

ing to further investigate why the achievable distortion exponent for BC-JDS reduces

to the performance of JDS in certain regimes, while this does not occur in the absence

of side-information. We have also quantified the optimal performance when perfect

feedback of the channel and/or side information states is available to the transmitter.

An interesting research direction would be to study this problem when the feedback

is rate limited, and to characterize the optimal resource allocation among the channel

and the side information feedback, as well as to identify the performance of the schemes

proposed in this thesis in this model.

Extensions of the tools developed in Chapters 3 and 4 to multi-terminal problems,

such as the MAC, the BC, the IC, the relay channel, or a time-varying version of the one-

helper problem studied in Chapter 2, would be interesting. We believe that techniques

that combine joint decoding, HDA and multi-layer schemes could provide significant

gains in these JSCC scenarios, as well.

Finally, in Chapter 5, we have characterized the capacity of a class of relay channel

with state information at the destination. More general relay models can be considered

that go beyond the orthogonal setup studied in this chapter. However, we believe that

this is an extremely challenging problem, since even simpler relay scenarios without

channel state, have remained unsolved for many years.

There are still many challenges and open problems to be solved concerning the

availability of side information. As wireless networks become more densified in future

generations and the M2M paradigm becomes popular, we believe that the role of corre-

lated side information in the network will become a key feature to improve the network

performance. Information theory will be instrumental in developing novel transmission
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strategies that go beyond Shannon’s separation paradigm, and settle the fundamental

principles of the networks of tomorrow. We hope that the research work presented in

this Ph.D. thesis has contributed to achieving this goal, as well as to raise awareness

about the potential benefits of side information explotation in wireless networks.
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Appendix A

Some Notions and Results

In this appendix, we briefly review the notions of types and strong typicality that are

used in this thesis, following [92] .

Let X and Y be a random variable over alphabets X and Y, respectively, jointly

distributed following pXY (x, y), and with marginal distribution pX(x) and pY (y).

Definition 1. Given a distribution pX(x), the type Pxn of an n-tuple xn is the empirical

distribution

Pxn =
1

n
N(a|xn)

where N(a|xn) is the number of occurrences of the letter a in xn.

Definition 2. The set of all n-tuples xn with type Q is called the type class Q and

denoted by TnQ.

Definition 3. The set of δ-strongly typical n-tuples according to pX(x) is denoted by

Tn[X]δ
and is defined by

Tn[X]δ
=
{
x ∈ Xn :

∣∣∣∣ 1nN(a|xn)− PX(a)

∣∣∣∣ ≤ δ ∀a ∈ X
and N(a|xn) = 0 whenever pX(x) = 0

}
. (A.1)

The definitions of type and strong typicality can be extended to joint and conditional

distributions in a similar manner [92].

Next, we provide some results concerning typical sets used in the thesis.

Lemma 29. Given a random variable X distributed following pX(x), for each xn ∈
Tn[X]δ

we have ∣∣∣∣ 1n log |Tn[X]δ
| −H(X)

∣∣∣∣ ≤ δ

|X |
(A.2)
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for sufficiently large n.

Lemma 30. Given a joint distribution pXY (x, y), if (xi, yi) is drawn independent and

identically distributed (i.i.d.) with pX(x)pY (y) for i = 1, . . . , n, then

Pr{(xn, yn) ∈ Tn[XY ]δ
} ≤ 2−n(I(X;Y )−3δ). (A.3)

Finally, we have the following lemma.

Lemma 31. For a joint distribution pXY Z(x, y, z), if (xi, yi, zi) is drawn i.i.d. with

pX(x)pY (y)pZ(z) for i = 1, . . . , n, where pX(x), pY (y) and pZ(z) are the marginals,

then

Pr{(xn, yn, zn) ∈ Tn[XY Z]δ
} ≤ 2−n(I(X;Y,Z)+I(Y ;X,Z)+I(Z;Y,X)−4δ). (A.4)
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Proofs for Chapter 2

B.1 Proof of Lower Bound

Using the rate-distortion functions, we will lower bound some mutual information terms.

We have,

I(Sn1 ;Y n|Sn2 )
(a)

≥ I(Sn1 ; Ŝn1 |Sn2 ) (B.1)

=

n∑
i=1

I(S1i; Ŝ
n
1 |Sn2 Si−1

11 )

(b)

≥
n∑
i=1

h(S1i|Si−1
11 Sn2 )− h(S1i|Ŝ1iS2i)

(c)
=

n∑
i=1

h(S1i|S2i)− h(S1i|Ŝ1iS2i)

=

n∑
i=1

I(S1i; Ŝ1i|S2i)

(d)

≥ n

n∑
i=1

1

n
RS1|S2

(
E[(S1i − Ŝ1i)

2]
)

(e)

≥ nRS1|S2

(
1

n

n∑
i=1

E[(S1i − Ŝ1i)
2]

)
(f)

≥ nRS1|S2
(D + ε),

where (a) follows from the data processing inequality, (b) follows since conditioning

reduces entropy, (c) follows due to the sources being i.i.d., (d) follows from the definition

of RS1|S2
(·) in (2.6), (e) follows from the convexity of RS1|S2

(·), and (f) follows since D

is achievable.
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On the other hand, we have the following

I(Sn1 S
n
2 ;Y n)

(a)

≥ I(Sn1 ; Ŝn1 ) (B.2)

(b)

≥
n∑
i=1

h(S1i)− h(S1i|Ŝ1i)

≥
n∑
i=1

I(S1i; Ŝ1i)

(c)

≥ n

n∑
i=1

1

n
RS1

(
E[(S1i − Ŝ1i)

2]
)

(d)

≥ nRS1(D + ε),

where (a) follows from the data processing inequality; (b) follows since conditioning

reduces entropy, (c) follows from the definition of RS1
(D1) in (2.5), (d) follows from the

convexity of RS1
(D1) and from the achievability of D.

Next, we upper bound the mutual information terms in (B.2) and (B.1). For (B.2)

we have

I(Sn1 ;Y n|Sn2 ) =

n∑
i=1

h(Yi|Sn2 Y i−1
1 )− h(Yi|Sn1 Sn2 Y i−1

1 )

=

n∑
i=1

h(Yi|Sn2 Y i−1
1 X2i)− h(Yi|Sn1 Sn2 Y i−1

1 X1iX2i)

(a)

≤
n∑
i=1

h(Yi|X2i)− h(Yi|X1iX2i)

=

n∑
i=1

I(X1i;Yi|X2i), (B.3)

where (a) follows from the Markov chain Yi −X1iX2i − Sn1 Sn2 Y i−1
1 .

Then, for (B.1) we have

I(Sn1 S
n
2 ;Y n) = h(Y n)−

n∑
i=1

h(Yi|Sn1 Sn2 Y i−1
1 )

≤ h(Y n)−
n∑
i=1

h(Yi|Sn1 Sn2 Y i−1
1 X1iX2i)

(a)
= h(Y n)− h(Yi|X1iX2i)

≤
n∑
i=1

h(Yi)− h(Yi|X1iX2i)

=

n∑
i=1

I(Yi;X1iX2i), (B.4)



Appendix B. Proofs for Chapter 2 129

where (a) is due to the Markov chain Yi −X1iX2i − Sn1 Sn2 Y i−1
1 .

Expressions in (B.3) and (B.4) can be jointly upper bounded using the following

lemma, derived in the context of a MAC channel with feedback in [93].

Lemma 32 (From [93]). Let {X1i} and {X2i} be zero-mean satisfying 1
n

∑n
i=1 E[X2

ki] ≤
Pk for k = 1, 2. Let Yi = X1i + X2i + Zi where Zi ∼ N (0, N) and, for every i, is

independent of (X1i, X2i). Let ρn ∈ [0, 1] be defined as

ρn ,
| 1n
∑n
i=1 E[X1iX2i]|√

( 1
n

∑n
i=1 E[X2

1i])(
1
n

∑n
i=1 E[X2

2i])
. (B.5)

Then,

n∑
i=1

I(Yi;X1iX2i) ≤
n

2
log

(
1 +

P1 + P2 + 2ρn
√
P1P2

N

)
,

n∑
i=1

I(Xji;Yi|Xji) ≤
n

2
log

(
1 +

Pj(1− ρ2
n)

N

)
, j = 1, 2.

Next, we bound the correlation between the channel inputs (Xn
1 , X

n
2 ) at each trans-

mitter, denoted in Lemma 32 by ρn. While, in the presence of feedback, channel inputs

can potentially be arbitrarily correlated, i.e., 0 ≤ ρn ≤ 1, in the Gaussian helper setup,

the correlation is limited by the correlation between the source sequences, therefore, we

have 0 ≤ ρn ≤ ρ.

Lemma 33. The correlation between the channel inputs, denoted by ρn and defined in

(B.5), is upper bounded by the correlation between the source sequences as follows

0 ≤ ρn ≤ ρ. (B.6)

Proof. The proof uses the following result from [13, Lemma B.2], given next.

Lemma 34. For any coding scheme with encoding functions of the form Xn
i = fni (Sni )

for i = 1, 2 that satisfy the power constraint (2.2) and reduction E[Xi,k] = 0, for i ∈
{1, 2} and k = 1, ..., n, and the encoder input sequences are jointly Gaussian as in (2.1)

with 0 ≤ ρ ≤ 1 and σ2
1 = σ2

2 = σ2, any time-k encoder output X1,k and X2,k satisfy

E[X1iX2i]√
E[X2

1i]
√

E[X2
2i]
≤ ρ. (B.7)
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Using Lemma 34, we can bound ρn in (B.5) as follows

ρn =
| 1n
∑n
i=1 E[X1iX2i]|√

( 1
n

∑n
i=1 E[X2

1i])(
1
n

∑n
i=1 E[X2

2i])

(a)

≤
| 1n
∑n
i=1 ρ

√
E[X2

1i]
√

E[X2
2i]|√

( 1
n

∑n
i=1 E[X2

1i])(
1
n

∑n
i=1 E[X2

2i])

(b)

≤
| 1nρ
√∑n

i=1 E[X2
1i]
√∑n

i=1 E[X2
2i]|√

( 1
n

∑n
i=1 E[X2

1i])(
1
n

∑n
i=1 E[X2

2i])

= ρ. (B.8)

where (a) is due to (B.7) and (b) follows from the Cauchy-Schwarz inequality.

Finally, in order to prove Lemma 1, we applying Lemma 32, to upper bound (B.3) and

(B.4) and combining with the lower bound in (B.2) and (B.1) we obtain the inequalities

in Lemma 1. Applying Lemma 34 we bound ρn, which completes the proof.
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Proofs for Chapter 3

C.1 Proof of Theorem 2

C.1.1 Separation for Discrete Distributions

For Γ with two states optimality of separation can be obtained as a special case of

the model studied in [71]. This result can be extended to M receivers (or states) by

combining the converses in [71] and [5, Sec.VII] for M side information states, i.e., Tni,1,

i = 1, ...,M . The direct part is shown by the concatenation of the optimal source code

in [5] and an optimal channel code.

First, we consider the converse. We have,

nC
(a)

≥ I(Xn;Y n)
(b)

≥ I(Sn;Y n)
(c)
= I(Sn, TnM,1;Y n)

(d)

≥ I(Sn;Y n|TnM,1)

(e)
= I(Sn;Y n, Tn1,1, T

n
2,1, ..., T

n
M−1,1|TnM,1)− I(Sn;TnM−1,1|Y n, TnM,1)

−I(Xn;Y nM−2,1|V n, Y nM−1,1, Y
n
M,1)− · · · − I(Sn;Tn1,1|Y n, Tn2,1, ..., TnM,1)

=

n∑
i=1

[
I(Si;Y

n, Tn1,1, T
n
2,1, ..., T

n
M−1,1|TnM,1, S

i−1
1 )− I(Sn;TM−1,i|Y n, T i−1

M−1,1, T
n
M,1)

−I(Sn;TM−2,i|Y n, T iM−2,1, T
n
M−1,1, T

n
M,1)

− · · · − I(Xn;Y1,i|V n, Y i1,1, Y n2,1, ..., Y nM,1)
]
,

where (a) is due to the definition of capacity, (b) is due to the data processing inequality,

(c) is due to the Markov chain TnM,1 − Sn − Y n, (d) and (e) are due to the chain rule of

the mutual information.

131
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From this point, by applying the steps in [5, Sec.VII] with some slight modifications

we obtain

nC ≥
n∑
i=1

[
I(Si;WM,i|TM,i) + I(Si;WM−1,i|TM−1,i,WM,i)

+I(Si;WM−2,i|TM−2,i,WM−1,i,WM,i) + · · ·+ I(Si;W1,i|T1,i,W2,i, ...,WM,i)
]

=

n∑
i=1

M∑
l=1

I(Si;Wl,i|Tl,i,Wl+1,i, ...,WM,i),

where we have defined the random variables

WM,i = (Y n, T i−1
M−1,1, T

n/i
M ),

WM−1,i = (Si−1
1 , T i−1

M−2,1, T
n
M−1,i+1,WM,i),

WM−2,i = (T i−1
M−3,1, T

n
M−2,i+1,WM−1,i),

WM−3,i = (T i−1
M−4,1, T

n
M−3,i+1,WM−2,i),

...

W1,i = (Tn1,i+1,W2,i),

for i = 1, ..., n. Note that the random variables satisfy the Markov chain condition

WM,i − · · · −W1,i − Si − T1,i − · · · − TM,i.

Applying the usual techniques by defining the auxiliary random variable Q ∼ Unif[1, n],

SiQ, WiQ, and TiQ for i = 1, ...,M , we obtain the single letter condition,

C ≥ RHB(D). (C.1)

Finally, the right hand side of (C.1) is given by the Heegard-Berger rate-distortion

function, RHB(D), and does not depend on the number of receivers but only on the

sum of the mutual information terms, each one corresponding to a receiver with side

information Yi, as discussed in [43]. Hence, the converse applies for countably many

receivers as well.

The achievability follows from Heegard-Berger source coding [5, Sec.VII] followed by

channel coding at rate R = C.

C.1.2 Separation for Continuous Quasiconcave Distributions

To prove the optimality of separation when pΓ(γ) is a continuous quasiconcave distri-

bution, we construct a lower bound on the expected distortion ED∗sta by discretizing



Appendix C. Proofs for Chapter 3 133

the continuum of side information states, and show that this bound is achievable in the

limit of finer discretizations.

We divide the side information state γ into some partition s given by [s0, s1), [s1, s2), ...,

such that s0 = 0 < s1 < ... < si < · · · and γ ∈ [si−1, si) if si−1 ≤ γ < si for some

i = 1, 2, .... The length of the partition [si−1, si) is defined by ∆si, i.e., ∆si , si− si−1.

Let us define γ̄ > 0 as the super-level set γ̄ satisfying (3.11). The partition is chosen

such that for some index j, we have sj = γ̄. A fading realization belongs to the interval

[si−1, si) with probability pi =
∫ si
si−1

pΓ(γ)dγ.

We assume that when γ belongs to the interval [si−1, si), a genie substitutes the

current side information sequence T = γcS + N with a sequence with gain si, i.e.,

T̃ ,
√
siS + N . Note that this receiver has a better performance as noise can be

added to Ỹ to recover the original side information sequence if required. Hence, the

expected distortion for a given partition s, denoted by ED∗gen(s), is a lower bound

on the expected distortion of the continuous fading setup. The genie aided system now

consists of a countable number of receivers and, due to the optimality of separation under

countable number of side information states, ED∗gen(s) is achieved by the concatenation

of a Heegard-Berger source encoder with side information states s1, s2, ... and a capacity

achieving channel code. Then, for a given partition s, we have,

ED∗gen(s) = ED∗C(C), (C.2)

where ED∗C(·) is defined in (3.9).

With the channel state hc known, expected distortion ED∗Q(C) is achievable with

separate source and channel coding by concatenating a single layer source encoder for

side information state γ̄, and a channel code at a rate arbitrarily close to C. Then,

ED∗gen(s) ≤ ED∗sta ≤ ED∗Q(C). (C.3)

As the partition gets finer in the sense that maxi ∆si → 0, the limiting behavior of

ED∗gen(s) can be obtained by noting that once the optimality of separation is proved

for each ED∗gen(s), the problem reduces to the problem studied in [43]. Hence, by

[43, Proposition 4] and [43, Proposition 5], ED∗gen(s) converges to ED∗Q(C), i.e.,

lim
maxi ∆si→0

ED∗gen(s) = ED∗Q(C). (C.4)

Then from inequality (C.3) we have, in the limit of finer partitions, ED∗sta = ED∗Q(C).

This completes the proof.
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C.2 Proof of Lemma 7

In order to show the convergence of ED∗pi to EDinf, first, we construct an upper bound

on ED∗pi and we show that this bound converges to EDinf for large enough L.

The lower bound ED∗pi is achieved by the concatenation of a capacity achieving

channel code with a single-layer source code targeting the side information state γ̄, the

solution to (3.11), for each realization of H. Instead, we consider that, for a given L the

source coding is done targeting the state

γ̄L , µ− δ, (C.5)

where µ , E[ΓL] is the mean of ΓL and δ ,
√
σ2
L. The expected distortion achieved by

this scheme is an upper bound on ED∗pi and is found, similarly to ED∗pi, to be given by

EDlay , EH

[
EDQ

(
1

2
log(1 +H)

)]
=

∫ γ̄L

0

pL(γ)

1 + γ
dγ +

∫
h

∫ ∞
γ̄L

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh,

where EDQ(R) is given as in (3.10) for γ̄ substituted by γ̄L and pL(γ) is the pdf of ΓL.

Then, we have the following bound

EDpi∗−EDinf ≤ EDlay − EDinf

=

∫ γ̄L

0

pL(γ)

1 + γ
dγ +

∫
h

∫ ∞
γ̄L

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh−

∫
h

∫
γ

pH(h)pL(γ)

(1 + h)(1 + γ)
dγdh

(a)

≤
∫ γ̄L

0

pL(γ)dh+

∫
h

∫ ∞
γ̄L

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh−

∫
h

∫ µ+δ

µ−δ

pH(h)pL(γ)

(1 + h)(1 + γ)
dγdh

= Pr[ΓL < γ̄L] +

∫
h

∫ µ+δ

γ̄L

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh

+

∫
h

∫ ∞
µ+δ

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh−

∫
h

∫ µ+δ

µ−δ

pH(h)pL(γ)

(1 + h)(1 + γ)
dγdh

(b)

≤ Pr[ΓL < γ̄L] +

∫
h

∫ µ+δ

µ−δ

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh

+Pr[ΓL ≥ µ+ δ]−
∫
h

∫ µ+δ

µ−δ

pH(h)pL(γ)

(1 + h)(1 + γ)
dγdh

(c)
= Pr[|ΓL − µ| ≤ δ] +

∫
h

∫ µ+δ

µ−δ

h(γ − γ̄L)pL(γ)pH(h)

((1 + h)(1 + γ̄L) + γ − γ̄L)(1 + h)(1 + γ)
dγdh

(d)

≤ Pr[|ΓL − µ| ≤ δ] + EH [H] · 2δ
(e)

≤ σ2
L

δ
+ EH [H] · 2δ
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where (a) follows since 1
(1+γ) ≤ 1 for the first integral, and because we are reducing the

integration region in the third one, (b) follows due to∫
h

∫ ∞
µ+δ

pL(γ)pH(h)

(1 + h)(1 + γ̄L) + γ − γ̄L
dγdh ≤

∫
h

∫ ∞
µ+δ

pL(γ)pH(h)dγdh

= Pr[ΓL ≥ µ+ δ].

Then (c) follows since γ̄L = µ − δ, and subtracting the two integrals, (d) follows from

the following bound,∫
h

∫ µ+δ

µ−δ

h(γ − γ̄L)pL(γ)pH(h)

((1 + h)(1 + γ̄L) + γ − γ̄L)(1 + h)(1 + γ)
dγdh

≤
∫
h

∫ µ+δ

µ−δ
h(γ − γ̄L)pL(γ)pH(h)dγdh

(f)

≤ E[H] · (µ+ δ − γ̄L)

∫ µ+δ

µ−δ
pL(γ)dγ

(g)

≤ E[H] · 2δ

where (f) follows since γ ≤ µ+ δ in the integration region; (g) follows since γ̄L = µ− δ
and

∫ µ+δ

µ−δ pL(γ)dγ ≤ 1. Finally, (e) follows from Chebyshev’s inequality.

By the choice of δ =
√
σ2
L, we have

ED∗pi − EDinf ≤
σ2
L

δ
+ E[H] · 2δ =

√
σ2
L + E[H] · 2

√
σ2
L,

and the difference converges to 0 from the assumption σ2
L → 0 for L → ∞. This

completes the proof.

C.3 Converse

C.3.1 Partially Informed Encoder Upper Bound

In Section 3.3.2 we have seen that for continuous quasiconcave pdfs, ED∗pi is obtained

by averaging the expected distortion achievable by the concatenation of a single layer

source code designed for the side information state γ̄(h) and an optimal channel code

for the current channel state h. For each h, the optimal γ̄(h) is determined by solving

(3.11) with R = C(h) = 1
2 log(1 + h). Note that γ̄(h) is a random variable dependant

on the realization of the channel fading H.

An upper bound on the distortion exponent can be found by lower bounding ED∗pi.

First, we note that ED∗Q(R) in (3.10) is a convex function of R. This follows from the

time-sharing arguments and convexity of the Heegard-Berger rate-distortion function
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[5]. Then, by Jensen’s inequality, we have

ED∗pi = EH [ED∗Q(C(H))] ≥ ED∗Q(EH [C(H)]), (C.6)

where

ED∗Q(EH [C(H)]) =

∫ γ̃

0

pΓ(γ)

1 + γ
dγ +

∫ ∞
γ̃

pΓ(γ)

(γ̃ + 1)22EH [C(H)] + γ − γ̃
dγ, (C.7)

and γ̃ is the solution to (3.11) with R = EH [C(H)], that is, the ergodic capacity of the

channel. Note that γ̃ depends only on the ergodic capacity of the channel and not on the

current channel state realization, and therefore, is not a random variable, as opposed to

γ̄(h).

Now, since C(h) is a concave function of h, applying Jensen’s inequality again, we

have

EH [C(H)] = EH

[
1

2
log(1 +H)

]
≤ 1

2
log(1 + E[H]) =

1

2
log(1 + ρ), (C.8)

that is, the ergodic capacity of the channel is lower than the capacity of a static channel

with the same average SNR.

We define, for γ̂ ≥ 0,

EDpe(γ̂) ,
∫ γ̂

0

pΓ(γ)

1 + γ
dγ +

∫ ∞
γ̂

pΓ(γ)

(γ̂ + 1)(1 + ρ) + γ − γ̂
dγ. (C.9)

Then, we have

ED∗pi
(a)

≥
∫ γ̃

0

pΓ(γ)

1 + γ
dγ +

∫ ∞
γ̃

pΓ(γ)

(γ̃ + 1)(1 + ρ) + γ − γ̃
dγ

(b)

≥ min
γ̂≥0.

EDpe(γ̂) , ED∗pe, (C.10)

where (a) follows from inequality (C.8), and (b) follows from the definition in (C.9).

Now, we obtain the exponential behavior of ED∗pe. Consider a sequence of normalized

gamma distributed random variables H0 ∼ Υ(L, θ) under the change of variables A =

− logH0

log ρ . The pdf for A is found as

pA(α) =

∣∣∣∣∂H0

∂α

∣∣∣∣ pH0
(h0) = ρ−αpH0

(ρ−α) log ρ. (C.11)

Then, pA(α) is given by

pA(α) = ρ−α
1

θL
1

Ψ(L)
ρ−α(L−1)e−

ρ−α
θ log ρ =

1

θL
1

Ψ(L)
ρ−Lαe−

ρ−α
θ log ρ,
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and the exponential behavior is found as

SA(α) = − lim
ρ→∞

log pA(a)

log ρ
=

Lα if α ≥ 0,

+∞ if α < 0.
(C.12)

For the model considered in Section 3.5, the SNR exponent for the Nakagami fading

channel, H0 ∼ Υ(Lc, L
−1
c ), is given by SA(α) = Lcα for α ≥ 0, and for the Nakagami

fading side information, Γ0 ∼ Υ(Ls, L
−1
s ), we have SB(β) = Lsβ for β ≥ 0.

Define κ , log γ̂
log ρ , such that γ̂ = ρκ. Applying the change of variables to (C.9), in the

high SNR regime, we have

EDpe(ρ
κ) =

∫
Ape

pB(β)

1 + ρ1−β dβ +

∫
Acpe

pB(β)

(ρκ + 1)(1 + ρ) + ρ1−β − ρκ
dβ (C.13)

.
=

∫
Ape

ρ−(1−β)+

pB(β)dβ +

∫
Acpe

ρ−(κ++1)pB(β)dβ

.
=

∫
Ape

ρ−[(1−β)++SB(β)]dβ +

∫
Acpe

ρ−[κ++1+SB(β)]dβ,

where we have defined

Ape , {β : γ̂ ≥ ρ1−β} = {β : κ ≥ 1− β},

and we have used the fact that, in the high SNR asymptotic, and for β ∈ Acpe, we have

[(ρκ + 1)(1 + ρ) + ρ1−β −ρκ]−1 .
= [ρκ

+

ρ1 + ρmax{1−β,κ}]−1

.
= ρ−max{κ++1,(1−β)+}

= ρ−(κ++1),

which follows since ρx + ρy
.
= ρmax{x,y} for x, y ≥ 0, and we have 1−β > κ for β ∈ Acpe.

Similarly, in the high SNR limit we have (1 + ρ1−β)−1 .
= ρ−(1−β)+

.

Since the exponents in the integral do not depend on ρ, the distortion exponent

for each integral can be found by applying Varadhan’s Lemma [94] separately for each

integral term, similar to the proof of Theorem 4 in [73]. We define

∆p1(κ) , inf
Ape

(1− β)+ + SB(β), (C.14)

and

∆p2(κ) , inf
Acpe

κ+ + 1 + SB(β), (C.15)
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and write (C.10) as follows

ED∗pi ≥ min
κ∈R
{EDpe(ρ

κ)}
.
≥ min

κ∈R
{ρ−∆p1(κ) + ρ−∆p2(κ)} .= ρ−maxκ∈R min{∆p1(κ),∆p2(κ)}.

Then, the distortion exponent is upper bounded by

max
κ∈R

min{∆p1(κ),∆p2(κ)}. (C.16)

We solve the optimization problem in (C.16) with SB(β) = Lsβ, and denote the

optimal value by ∆pe(Ls, Lc). We note that we can restrict the domain of β in (C.14)

and (C.15) to β ≥ 0 without loss of optimality since SB(β) = +∞ for β < 0.

First, we consider the case κ < 0. In that case, ∆p1(κ) is minimized by β∗ = 1− κ
and we have ∆p1(κ) = Ls(1− κ). On the other hand, we have

∆p2(κ) = inf
β≥0

1 + Lsβ

s.t. β < 1− κ, (C.17)

which is minimized by β∗ = 0, and ∆p2(κ) = 1. Then, from (C.16), we have ∆pe(Ls, Lc) =

maxκ<0 min{Ls(1−κ), 1}, which is maximized by κ = −∞, and we have ∆pe(Ls, Lc) =

1.

Next, we consider the case κ ≥ 0. Substituting SB(β) = Lsβ in ∆p1(κ) in (C.14), we

note that we can constrain our search to 0 ≤ β ≤ 1, since any β > 1 can only increase

the objective function. We have,

∆p1(κ) = inf
0≤β≤1

1 + (Ls − 1)β

s.t. β ≥ 1− κ. (C.18)

Since for Ls > 1, 1 + (Ls − 1)β is increasing in β, the minimum is achieved by β∗ =

(1− κ)+ and ∆p1(κ) = 1 + (Ls− 1)(1− κ)+. On the contrary, for Ls ≤ 1, the objective

function is decreasing in β, and is minimized at β∗ = 1, which yields ∆p1(κ) = Ls.

Similarly, for ∆p2(κ) in (C.15), we have

∆p2(κ) = inf
β≥0

κ+ 1 + Lsβ

s.t. β < 1− κ. (C.19)

This problem is minimized by β∗ = 0, for which ∆p2(κ) = 1 +κ, for 0 ≤ κ < 1, and has

no solution for κ ≥ 1, since there are no feasible β in the optimization set.

Then, substituting in (C.16), for Ls ≤ 1, we have ∆pe(Ls, Lc) = maxκ≥0 min{Ls, 1+

κ} = Ls, and ∆pe(Ls, Lc) = 1. For Ls > 1, since ∆p1(κ) is decreasing in κ while
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∆p2(κ) is increasing in κ, the maximum ∆pe(Ls, Lc) in (C.16) is achieved when the two

exponents are equal, i.e., 1 + κ = 1 + (Ls − 1)(1− κ), from which we find

∆pe(Ls, Lc) = 2− 1

Ls
, for κ∗ =

Ls − 1

Ls
∈ (0, 1). (C.20)

Now, we find the maximizing κ for each Ls regime to obtain ∆∗pe(Ls, Lc). For

Ls ≤ 1, the distortion exponent is maximized by κ = −∞ and ∆pe(Ls, Lc) = 1, since

∆pe(Ls, Lc) = Ls for any κ ≥ 0. On the contrary, for Ls ≥ 1, the distortion exponent

is maximized as (C.20), while ∆pe(Ls, Lc) = 1 if we consider κ < 0.

Note that when Ls ≤ 1, the side information gain distribution is monotonically

decreasing. Then γ̄(h) = 0 for any h from Proposition 1, and therefore, from Theorem

3, uncoded transmission achieves the minimum expected distortion, i.e., ED∗pi = EDu.

The distortion exponent for uncoded transmission ∆u(Ls, Lc) is calculated in Appendix

C as ∆u(Ls, Lc) = min{1, Ls+Lc}. Comparing ∆u(Ls, Lc) with ∆pe(Ls, Lc), we observe

that the proposed lower bound on ED∗pi is in general not tight due to inequality (C.8).

C.3.2 Informed Encoder Upper Bound

Expressing the informed encoder lower bound EDinf in (3.14) in terms of α and β, the

distortion exponent is found by using Varadhan’s Lemma as follows,

EDinf =

∫∫
h,γ

pH(h)pΓ(γ)

(1 + h)(1 + γ)
dhdγ

=

∫∫
α,β

pA(α)pB(β)

(1 + ρ1−α)(1 + ρ1−β)
dαdβ

.
=

∫
R2

pA(α)pB(β)

ρ(1−α)++(1−β)+ dαdβ

.
= ρ−∆inf(Ls),

where the distortion exponent is found as the solution to the following optimization

problem,

∆inf(Ls, Lc) , inf
R2

(1− α)+ + (1− β)+ + SA(α) + SB(β). (C.21)

We note that we can reduce the optimization domain to α, β ≥ 0 since SA(α) = SB(β) =

+∞ for α, β < 0. Evaluating for SA(α) = Lcα and SB(β) = Lsβ, the minimum

in (C.21) is achieved by α∗ = 1 if Lc < 1 and α∗ = 0 if Lc ≥ 1, and by β∗ = 1

if Ls < 1, and β∗ = 0 for Ls ≥ 1. Then, the minimum is found to be given by

∆inf(Ls, Lc) = min{1, Lc}+ min{1, Ls}.
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C.4 Distortion Exponent Derivations

C.4.1 Uncoded transmission

Similarly to the proof in Appendix C.3.1 , applying the change of variables H0 = ρ−A

and Γ0 = ρ−B , and Varadhan’s lemma, we have

EDu =

∫∫
α,β

pA(α)pB(β)

1 + ρ1−α + ρ1−β dαdβ
.
= ρ−∆u(Ls),

where the distortion exponent is found by substituting SA(α) = Lcα and SB(β) = Lsβ

as

∆u(L,Lc) = min
0≤α,β≤1

max{1− α, 1− β}+ Lcα+ Lsβ.

Note that we can constraint to 0 ≤ α, β ≤ 1 without loss in optimality since any α, β > 1

achieve a larger solution. Then, if 1−α ≥ 1−β, the minimum is achieved by β∗ = α∗ and

α∗ = 0 if Ls +Lc ≥ 1, while α∗ = 1 if Ls +Lc < 1. Similarly occurs by symmetry when

1−α < 1−β. Then, the minimum is found to be given by ∆u(Ls, Lc) = min{Ls+Lc, 1}.

C.4.2 Separate Source and Channel Coding (SSCC)

Here we find the distortion exponent of SSCC. Let us define the events

O1 , {(h, γ) : Rc ≥ I(U ;V )},

O2 , {(h, γ) : Rc < I(U ;V ), Rc ≤ I(X;W |Y )}.

Event O1 corresponds to an outage due to bad quality of the channel, and O2 corre-

sponds to a correct decoding of the channel codeword while an outage occurs due to the

bad quality of the side information. It is readily seen that Osb = O1

⋃
O2. Consider the

change of variables H0 = ρ−A, Γ0 = ρ−B , Rs = rs
2 log ρ and Rc = rc

2 log ρ, for rs ≥ 0

and rc > 0. We consider rs = 0 to allow SSCC to transmit without binning. We have

EDsb(Rc, Rs) =

∫
Ocsb

pH(h)pΓ(γ)

22(Rc+Rs−ε) + γ
dhdγ +

∫
Osb

pH(h)pΓ(γ)

1 + γ
dhdγ

=

∫
Acsb(ρ)

pA(α)pB(β)

ρrc+rs + ρ1−β dαdβ +

∫
Asb(ρ)

pA(α)pB(β)

1 + ρ1−β dαdβ,

where we have defined Asb(ρ) , A1(ρ)
⋃
A2(ρ), and A1(ρ) characterizes O1 in terms of

α and β, and is given by

A1(ρ) ,

{
(h, γ) : Rc ≥

1

2
log(1 + h)

}
= {(α, β) : ρrc ≥ 1 + ρ1−α},
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and similarly for O2 we have

A2(ρ) ,

{
(h, γ) : Rc <

1

2
log(1 + h), Rc ≤

1

2
log

(
1 +

22(Rs+Rc−ε) − 1

1 + γ

)}
=

{
(α, β) : ρrc < 1 + ρ1−α, ρrc ≤ 1 +

2−2ερrs+rc

1 + ρ(1−β)

}
.

Using similar bounding techniques to the ones used in Appendix C, it is not hard to

show that in the high SNR regime, we have

EDsb(Rc, Rs)
.
=

∫
Ac1∩Ac2

pA(α)pB(β)

ρmax{rc+rs,1−β}
dαdβ +

∫
A1∪A2

pA(α)pB(β)

ρ(1−β)+ dαdβ,

where the equivalent outage sets in the high SNR are

A1 , {(α, β) : rc ≥ (1− α)+},

A2 , {(α, β) : rc < (1− α)+, rc ≤ (rs + rc − (1− β)+)+}.

Let r , [rc, rs]. Applying Varadhan’s lemma, the distortion exponent of each integral

term are found as

∆s1(r) = inf
R2

max{rc + rs, 1− β}+ SA(α) + SB(β)

s.t. rc < (1− α)+, rc > (rs + rc − (1− β)+)+,

and

∆s2(r) = inf
R2

(1− β)+ + SA(α) + SB(β) (C.22)

s.t. rc ≥ (1− α)+,

or rc < (1− α)+, rc ≤ (rs + rc − (1− β)+)+.

We can limit the optimization to 0 ≤ α, β ≤ 1 without loss of optimality. First, we find

the distortion exponent for Ls ≥ 1. We start with ∆s1(r). If rc + rs ≥ 1− β, we have

∆s1(r) = inf
α,β≥0

rs + rc + Lcα+ Lsβ (C.23)

s.t. α < 1− rc, 1− (rs + rc) ≤ β < 1− rs.

The minimum is achieved by β∗ = (1 − (rs + rc))
+ and α∗ = 0 and we have ∆s1(r) =

rs + rc + Ls(1− (rs + rc))
+ for rc < 1, rs < 1. If 1− β > rc + rs,

∆s1(r) = inf
α,β≥0

1 + Lcα+ (Ls − 1)β (C.24)

s.t. α < 1− rc, β < 1− (rs + rc).
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The minimum is achieved by α∗ = β∗ = 0, and is found to be ∆1(r) = 1 for rc < 1 and

rc+rs < 1. Then, putting all together, the infimum is given by ∆s1(r) = max{1, rs+rc},
for rs < 1 and rc < 1.

For ∆s2(r), we first consider the case with constraint rc ≥ (1− α)+. The minimum

is easily seen to be given by α∗ = (1− rc)+ and β∗ = 0. Then ∆s2(r) = 1 +Lc(1− rc)+.

If rc ≤ (1 − α)+, the second constraint is active. If rs + rc < (1 − β)+, ∆s2(r) has no

solution since this would require rc ≤ 0. If rs + rc ≥ (1− β)+, the minimum is achieved

for α∗ = 0 and β∗ = (1− rs)+, and is given by ∆s2(r) = 1 + (Ls−1)(1− rs)+ for rs > 0

and rc < 1.

The optimal distortion exponent of SSCC is found by maximizing over the rates as

∆sb(Ls, Lc) = max
rc,rs≥0

min{∆s1(r),∆s2(r)}.

The distortion exponent is maximized when rs + rc > 1, rc < 1 and rs < 1. Then,

we have ∆s1(r) = rs + rc, ∆s2(r) = min{1 + Lc(1 − rc)+, 1 + (Ls − 1)(1 − rs)+}. The

maximum is achieved by rc and rs for which the left and right terms in the minimization

in ∆s2(r) are equal, i.e., 1 + Lc(1 − rc) = 1 + (Ls − 1)(1 − rs), and ∆s1(r) = ∆s2(r).

Solving this, we have

r∗s =
(Lc + 1)(Ls − 1)

Ls(Lc + 1)− 1
, r∗c =

LcLs
Ls(Lc + 1)− 1

,

which satisfy rs < 1, rc < 1 and rs + rc > 1. Note that for Ls = 1, we have rs = 0, i.e.,

no binning is optimal, as expected from Lemma 4.

Now we consider the case Ls ≤ 1. In this regime, the gamma function is monotoni-

cally decreasing, and hence, γ̄ = 0 and from Lemma 4 we have R∗s = 0, i.e., no binning

achieves the minimum distortion for SSCC. Next, we derive the distortion exponent

when no binning is considered, for general Ls to account for ED∗nb.

Letting Rs = 0, the outage event A2 is empty. Then, we find the distortion exponent

of EDnb(Rc) as

∆nb1(rc) = inf
α,β≥0

max{rc, (1− β)+}+ Lcα+ Lsβ

s.t. rc < (1− α)+,

and

∆nb2(rc) = inf
α,β≥0

(1− β)+ + α+ Lsβ

s.t. rc ≥ (1− α)+.

By solving the cases for rc < 1 − β and rc ≥ 1 − β, we find that ∆nb1(rc) attains its
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infimum at α∗ = 0 and β∗ = (1− rc)+ as ∆nb1(rc) = 1 + (Ls − 1)(1− rc)+ if Ls < 1. If

Ls ≥ 1, then the minimum is achieved by α∗ = 0 and β∗ = 0, and is given by ∆nb1(rc) =

1. On the other hand, ∆nb2(rc) is minimized by α∗ = (1−rc)+ and β∗ = 1 when Ls ≤ 1,

and β∗ = 0 when Ls > 1. Then we have ∆nb2(rc) = min{Ls, 1} + Lc(1 − rc)+. The

distortion exponent is found as ∆nb(Ls, Lc) = minrc{∆nb1(rc),∆nb2(rc)}. The optimal

distortion exponent without binning is achieved by setting

rc =
Lc

1− Ls + Lc
for Ls ≤ 1, and rc = 1 for Ls > 1.

C.4.3 Joint Decoding Scheme (JDS)

Here, we consider the distortion exponent for JDS. Applying the change of variables,

H0 = ρ−A, Γ0 = ρ−B and Rjd =
rjd
2 log ρ for rh > 0, form (4.11) we have

EDj(Rjd) =

∫
Ocj

pH(h)pΓ(γ)

22(Rjd−ε) + γ
dhdγ+

∫
Oj

pH(h)pΓ(γ)

1 + γ
dhdγ

.
=

∫
Acj

pA(α)pB(β)

ρmax{rjd,(1−β)+} dαdβ +

∫
Aj

pA(α)pB(β)

ρ(1−β)+ dαdβ,

where we define the outage event in the high SNR regime as

Aj ,
{

(α, β) : (rjd − (1− β)+)+ ≥ (1− α)+
}
.

The distortion exponent for each term is found applying Varadhan’s Lemma as

∆j1(rjd) = inf
Acj

max{rjd, (1− β)+}+ SA(α) + SB(β),

and

∆j2(rjd) = inf
Aj

(1− β)+ + SA(α) + SB(β).

First we note that in both ∆j1(rjd) and ∆j2(rjd) we can restrict to 0 ≤ α, β ≤ 1

without loss of optimality since SA(α) = Lcα and SB(β) = Lsβ. Now we solve ∆j1(rjd).

If rjd < 1 − β, we have Aj = {(α, β) : (1 − α)+ ≥ 0, rjd < 1 − β} and it is easily seen

that α∗ = 0. Then if Ls ≥ 1, we have β∗ = 0 and ∆j1(rjd) = 1 for rjd ≤ 1. If Ls < 1,

then β∗ = (1− rjd)+ and ∆j1(rjd) = 1 + (Ls − 1)(1− rjd)+ for rjd ≤ 1. If rjd ≥ 1− β,

we have

∆j1(rjd) = inf
0≤α,β≤1

rjd + Lcα+ Lsβ

s.t. α+ β < 2− rjd, β ≥ 1− rjd. (C.25)
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The minimum is achieved by α∗ = 0 and β∗ = (1 − rjd)+ if rjd ≤ 2 and is given by

∆j1(rjd) = rjd + Ls(1 − rjd)
+ and has no feasible solutions if rjd ≥ 2. Then, the

exponent ∆j1(rjd) is given by the minimum of these solutions, given by

∆j1(rjd) =

1 + (Ls − 1)+(1− rjd) if 0 ≤ rjd < 1,

rjd if 1 ≤ rjd < 2,
(C.26)

where we have used that for Ls ≤ 1 and 0 ≤ rjd ≤ 1, we have rjd+Ls(1−rjd)+ = 1+(1−
Ls)

+(1−rjd)+, and for Ls ≥ 1 and 0 ≤ rjd ≤ 1, we have min{rjd+Ls(1−rjd)+, 1} = 1.

Now, we solve ∆j2(rjd). If rj < 1 − β, the problem has no feasible solution due to

the constraints. If rj ≥ 1− β, we have

∆j2(rjd) = inf
0≤α,β≤1

1 + (Ls − 1)β + Lcα

s.t. α+ β ≥ 2− rjd, β ≥ 1− rjd. (C.27)

The minimum is achieved by α∗ = (2−rjd−β)+, which satisfies α∗ ≤ 1 due to β ≥ 1−rjd.
Then, if β ≥ 2− rjd and Ls ≥ 1, we have β∗ = (2− rjd)+ for rjd ≥ 1 and the minimum

is given by ∆j2(rjd) = 1 + (Ls− 1)(2− rjd)+. If β ≥ 2− rjd and Ls < 1 we have β∗ = 1

and ∆j2(rjd) = Ls for rjd ≥ 1. If β < 2−rjd and Ls ≥ 1+Lc, the minimum is achieved

by β∗ = (1− rjd)+ if rjd ≤ 2 and ∆j2(rjd) = 1 + (Ls − 1−Lc)(1− rjd)+ +Lc(2− rjd).
If Ls < 1 +Lc, the solution is found as ∆j2(rjd) = Ls+Lc(1− rjd) if rjd ≤ 1 for β∗ = 1

and by ∆j2(rjd) = 1 + (Ls − 1)(2− rjd) if rjd ≥ 1 for β = (2− rjd)+ − δ, for arbitrarily

small δ > 0.

Finally, ∆j2(rjd) is found by the minimum of these solutions in each regime. If

0 ≤ rjd ≤ 1, we have

∆j2(rjd) =

Ls + Lc(1− rjd) if Ls < Lc + 1,

1 + Lc + (Ls − 1)(1− rjd) if Ls ≥ Lc + 1.
(C.28)

If 1 ≤ rjd ≤ 2, we have

∆j2(rjd) =

Ls if Ls < 1,

1 + min{Lc, Ls − 1}(2− rjd)+ if Ls ≥ 1,
(C.29)

where for the case Ls < 1 we have that Ls ≤ Ls + Lc(1− rjd), and in the case Ls ≥ 1,

we have that 1 +Lc(2− rjd) ≤ 1 + (Ls− 1)(2− rjd) for Ls ≥ 1 +Lc. Finally, for rjd ≥ 2

we have ∆j2(rjd) = min{1, Ls}.
The distortion exponent can be maximized over rjd. If Ls ≤ 1, the maximum is

found by using a rate 0 ≤ rjd ≤ 1 and equating ∆j1(rjd) = 1 + (Ls − 1)(1 − rjd) and
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∆j2(rjd) = Ls + Lc(1 − rjd). The optimal rate is found as r∗jd = Lc
1+Lc−Ls ≤ 1. If

1 < Ls ≤ Lc + 1, the maximum distortion exponent is found with a rate 1 ≤ rjd ≤ 2

such that ∆j1(rjd) = rjd and ∆j2(rjd) = 1 + (Ls − 1)(2 − rjd) are equal, given by

r∗jd = 2 − 1
Ls

. Finally, if Ls > Lc + 1, the distortion exponent is maximized when

1 ≤ rjd ≤ 2. By equaling ∆j1(rjd) = rjd and ∆j2(rjd) = 1 + Lc(2− rjd), the distortion

exponent is maximized by r∗jd = 1 + Lc
Lc+1 .

C.4.4 Superposed Hybrid Digital-Analog Transmission (SHDA)

The performance of the SHDA scheme in Section 3.3.6 can be optimized over Pd, Pa

and η2. From the distortion exponent perspective, we have observed that it suffices to

allocate all the power to the digital component, which reduces SHDA to HDA. Therefore,

we let Pd = 1, Pa = 0. Applying the change of variables, we have from (3.30)-(3.32),

EDshda(1, η) = EOh [Dout
h (η, 1)] + EOch [Dh(η, 1)]

=

∫
Oh

pH(h)pΓ(γ)

1 + γ
dhdγ +

∫
Och

pH(h)pΓ(γ)

1 + γ + η2(1 + h)
dhdγ

=

∫
Ah(ρ)

pA(α)pB(β)

1 + ρ1−β dαdβ+

∫
Ach(ρ)

pA(α)pB(β)

1 + ρ1−β + η2(1 + ρ1−α)
dαdβ,

where Oh in (3.28) is found, in terms of α and β as

Ah(ρ) ,

{
(α, β) :

ρ1−α

1 + ρ1−α (1 + ρ1−β) ≤ η2

}
.

In the high SNR regime, we let η2 = ρrh , for rh ∈ R ,and the outage event Ah(ρ) is

equivalent to

Ah ,
{

(α, β) : (1− β)+ − (α− 1)+ ≤ rh
}
. (C.30)

Then, we have

EDshda(1, ρrh) (C.31)

.
=

∫
Ah
ρ−(1−β)+

pA(α)pB(β)dαdβ +

∫
Ach
ρ−max{(1−β)+,(1−α)++rh}pA(α)pB(β)dαdβ.

Using Varadhan’s Lemma, the distortion exponent for the first integral in (C.31) is

found as

∆h1(rh) , inf
Ah

(1− β)+ + SA(α) + SB(β),
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and for the second integral as

∆h2(rh) , inf
Ach

max{(1− β)+, (1− α)+ + rh}+ SA(α) + SB(β).

The distortion exponent for HDA can be optimized over the parameter rh as

∆hda(Ls, Lc) = max
rh∈R

min{∆h1(rh),∆h2(rh)}. (C.32)

First, we obtain the achievable distortion exponent when rh < 0. To solve ∆h1(rh),

note that if 0 ≤ α ≤ 1, there are no feasible solutions. Then, for α > 1, we have

∆h1(rh) , inf
α>1,β≥0

(1− β)+ + Lcα+ Lsβ

s.t. α ≥ (1− β)+ + 1− rh. (C.33)

We can constrain the optimization to 0 ≤ β ≤ 1 without loss of optimality, and the

minimum is achieved by α∗ = 2− β − rh. If Ls ≥ 1 + Lc, the minimum is achieved by

β∗ = 0, and is given by ∆h1(rh) = 1 + Lc(2 − rh). On the other hand, if Ls < 1 + Lc,

β∗ = 1, and ∆h1(rh) = Ls + Lc(1 − rh). Putting all together, we have ∆h1(rh) =

min{Ls, 1 + Lc}+ Lc(1− rh).

Now, we solve ∆h2(rh). Without loss of optimality, we can assume 0 ≤ α, β ≤ 1, as

otherwise the feasible grows and α > 1 or β > 1 can only increase the objective function.

Then, the constraint is always satisfied, since 1− β ≥ rh for any 0 ≤ β ≤ 1. We have

∆h2(rh) = max
0≤α,β≤1

{1− β, 1− α+ rh}+ Lsβ + Lcα. (C.34)

If 1 − β ≥ 1 − α + rh, the minimum is achieved by α∗ = β∗ = 0 when Ls ≥ 1 and

∆h2(rh) = 1. If Ls < 1, β∗ = α − rh if α − rh ≤ 1, and α∗ = 0 when Ls + Lc ≥ 1

and we have ∆h2(rh) = 1 − (Ls − 1)rh. When Ls + Lc < 1, we have α∗ = 1 + rh and

∆h2(rh) = Ls + Lc(1 + rh), −1 ≤ rh < 0 and, when α > 1 + rh, we have β∗ = 1 and

∆h2(rh) = Ls + Lc(1 + rh)+. If 1− β < 1− α + rh, we have β∗ = α + δ, which has to

satisfy β∗ ≤ 1, i.e., it is feasible whenever α ≤ 1 + rh. Then, α∗ = 0 if Ls + Lc ≥ 1 and

the minimum is given by ∆h2(rh) = 1− rh(Ls− 1). If Ls +Lc < 1, we have α∗ = 1 + rh

and ∆h2(rh) = Ls +Lc(1 + rh), for rh ≥ −1. Putting all together, we have ∆h2(rh) = 1

when Ls ≥ 1 and ∆h2(rh) = min{1− (Ls − 1)rh, Ls + Lc(1 + rh)} for Ls < 1.

If Ls ≤ 1, we have ∆h1(rh) ≥ ∆h2(rh), and the distortion exponent is maximized

by letting rh → 0 and we get ∆hda(Ls, Lc) = min{Ls + Lc, 1}. If Ls ≥ 1, we have

∆hda(Ls, Lc) = 1 for any rh < 0.

In the following, we derive the distortion exponent achievable by SHDA when rh ≥ 0.

First, we solve ∆h1(rh). We can limit the optimization to 0 ≤ β ≤ 1 without loss of
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optimality. Then, for 0 ≤ α ≤ 1 the minimum is achieved by α∗ = 0, and if Ls ≥ 1, the

minimum is achieved by β∗ = (1 − rh)+ and ∆h1(rh) = 1 + (Ls − 1)(1 − rh)+, and if

Ls < 1, β∗ = 1 and ∆h1(rh) = Ls. If α > 1, the constraint becomes α ≥ 2−β− rh, and

the minimizing α is given by α∗ = 2−β−rh, which is feasible provided that β < 1−rh.

Then, we have

∆h1(rh) = inf
0≤β≤1

1 + (Ls − 1− Lc)β + Lc(2− rh)

s.t. β < 1− rh. (C.35)

If Ls ≥ 1 + Lc, we have β∗ = 0 and ∆h1(rh) = 1 + Lc(2 − rh) for rh ≤ 1, and if

Ls < 1 +Lc, we have β∗ = 1− rh and ∆h1(rh) = 1 +Lc + (Ls − 1)(1− rh). Putting all

together, ∆h1(rh) is found as

∆h1(rh) =

Ls if Ls < 1,

1 + (Ls − 1)(1− rh)+ if Ls ≥ 1.
(C.36)

Next, we solve ∆h2(rh). First, we note that we can constrain to 0 ≤ β ≤ 1, since

the optimization set is empty if β > 1. Similarly, we assume 0 ≤ α ≤ 1, since any α > 1

achieves a larger exponent. Then,

∆h2(rh) = inf
0≤α,β≤1

max{1− β, 1− α+ rh}+ Lsβ + Lcα

s.t. β < 1− rh. (C.37)

If 1− β > 1− α+ rh, we have α∗ = β + rh, which satisfies α∗ ≤ 1 since β < 1− rh.

Then, β∗ = 0 if Ls+Lc ≥ 1 and ∆h2(rh) = 1+Lcrh, and if Ls+Lc < 1, β∗ = 1−rh− ε
for an arbitrarily ε > 0 and the infimum is found as ∆h2(rh) = 1 +Lc + (Ls− 1)(1− rh)

for rh < 1. If 1− β ≤ 1− α+ rh, the infimum is given by β∗ = (α− rh)+. If α ≥ r and

Ls +Lc ≥ 1, the minimum is found as α∗ = rh and ∆h2(rh) = 1 + rhLc, while α∗ = 1 if

Ls+Lc < 1, and ∆h2(rh) = 1+Lc+(Ls−1)(1−rh). If α < rh, we have α∗ = 0 if Lc ≥ 1

and ∆h2(rh) = 1 + rh and if Lc < 1, we have α∗ = rh + ε for an arbitrarily small ε > 0

and ∆h2(rh) = 1 + rhLc. Putting all together, we have ∆h2(rh) = 1 + min{1, Lc}rh for

rh ≤ 1.

We optimize over rh to solve (C.32). For Ls ≤ 1, we have ∆h1(rh) < ∆h2(rh) for any

rh ≥ 0 and ∆hda(Ls, Lc) = L. Then, the achievable distortion exponent is maximized,

by using rh < 0 and rh → 0, for which we obtain ∆hda(Ls, Lc) = min{Ls + Lc, 1}. On

the contrary, when Ls ≥ 1, the distortion exponent is maximized for an rh > 0 such

that ∆h1(rh) = ∆h2(rh), i.e.,

r∗h =
(Ls − 1)

Ls − 1 + min{1, Lc}
. (C.38)

Putting all together we obtain the achievable distortion exponent in (3.44).
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Proofs for Chapter 4

D.1 Proof of Theorem 6

The exponential integral can be bounded as follows [95, p.229, 5.1.20]:

1

2
ln

(
1 +

2

t

)
< etE1(t) < ln

(
1 +

1

t

)
, t > 0. (D.1)

Then, ED∗pi in (4.6) is lower bounded by

ED∗pi ≥
∫
H

1

2ρs
ln

(
1 +

2ρs
2C(H)

)
ph(H)dH. (D.2)

Consider the change of variables λi = ρ−αi , with α1 ≥ ... ≥ αM∗ ≥ 0. The joint

probability density function (pdf) of α , [α1, ..., αM∗ ] is given by [73]:

pA(α) = K−1
Mt,Mr

(log ρ)M∗
M∗∏
i=1

ρ−(M∗−M∗+1)αi

∏
i<j

(ραi−ραj )2

 exp

(
−
M∗∑
i=1

ραi

)
(D.3)

where K−1
Mt,Mr

is a normalizing constant.

We define the high SNR exponent of pA(α) as SA(α), that is, we have pA(α)
.
=

ρ−SA(α), where

SA(α),


∑M∗
i=1(2i− 1 +M∗ −M∗)αi if αM∗≥0,

∞ otherwise.
(D.4)

Following [73], the capacity of the MIMO channel is upper bounded as

C(H) = sup
Cx:Tr{Cx}≤Mt

log det

(
I +

ρ

Mt
HCxH

H

)
≤ log det

(
I + ρHHH

)
,

148
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where the inequality follows from the fact that MtI − Cx � 0 subject to the power

constraint Tr{Cx} ≤ Mt, and the function log det(·) is nondecreasing on the cone of

positive semidefinite Hermitian matrices. Then, from (D.2) we have

ED∗pi ≥
∫
H

1

2ρs
ln

(
1 +

2ρs∏M∗
i=1 (1 + ρλi)

b

)
ph(H)dH

=

∫
α

1

2ρs
ln (1 + f(α)) pA(α)dα

≥
∫
α+

1

2ρs
ln (1 + f(α)) pA(α)dα (D.5)

≥
∫
α+

1

2ρs

f(α)

1 + f(α)
pA(α)dα, (D.6)

where we define f(α) , 2ρs
∏M∗
i=1

(
1 + ρ1−αi

)−b
and

Gρ(α) ,
1

2ρs

f(α)

1 + f(α)
,

and the set α+ , {α ∈ RM∗ : 1 ≥ α1 ≥ ... ≥ αM∗ ≥ 0} in (D.5). Inequality (D.6)

follows from the lower bound ln(1 + t) ≥ t
1+t , for t > −1.

Then, in the high SNR regime we have,

G(α) , lim
ρ→∞

logGρ(α)

log ρ
= lim
ρ→∞

log ρ−x ρx−b
∑M∗
i=1

(1−αi)
+

1+ρx−b
∑M∗
i=1

(1−αi)+

log ρ

=

−x if x > b
∑M∗
i=1(1− αi)+,

−b
∑M∗
i=1(1− αi)+ if x ≤ b

∑M∗
i=1(1− αi)+,

where we have used the exponential equalities 1 + ρ1−αi .= ρ(1−αi)+

, and ρs
.
= ρx.

Therefore, for sufficiently large ρ, we have

ED∗pi ≥
∫
α+

exp

(
logGρ(α)

log ρ
log ρ

)
pA(α)dα

.
=

∫
α+

exp (G(α) log ρ) pA(α)dα.

Defining ∆∗pi(b, x) = − limρ→∞
logED∗pi

log ρ , the distortion exponent of the partially in-

formed encoder is upper bounded by

∆∗pi(b, x) ≤ lim
ρ→∞

1

log ρ
log

∫
α+

exp (G(α) log ρ) pA(α)dα.

From Varadhan’s lemma [94], it follows that the distortion exponent of ED∗pi is upper
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bounded by the solution to the following optimization problem,

∆up(b, x) , inf
α+

[−G(α) + SA(α)]. (D.7)

In order to solve (D.7) we divide the optimization into two subproblems: the case when

x ≤ b
∑M∗
i=1(1− αi), and the case when x > b

∑M∗
i=1(1− αi). The solution is then given

by the minimum of the solutions of these subproblems.

If x ≥ b
∑M∗
i=1(1− αi), the problem in (D.7) reduces to

∆1
up(b, x) = x+inf

α+

M∗∑
i=1

(2i− 1 +M∗ −M∗)αi s.t.

M∗∑
i=1

(1− αi) ≤
x

b
. (D.8)

The part inside the optimization in (D.8) can be identified with the DMT problem in

(4.1) for a multiplexing gain of r = x
b . Next, we give an explicit solution for complete-

ness.

First, if bM∗ ≤ x, the infimum is given by ∆1
up(b, x) = x for α∗ = 0. Then, for

k ≤ x
b ≤ k + 1, for k = 0, ...,M∗ − 1, i.e., x

k+1 ≤ b ≤
x
k , the infimum is achieved by

α∗i =


1 for i = 1, ...,M∗ − k − 1,

k + 1− x
b i = M∗ − k,

0 for i = M∗ − k + 1, ...,M∗.

Substituting, we have, for k = 0, ...,M∗ − 1,

∆1
up(b, x) = x+ Φk −Υk

(x
b
− k
)

= x+ d∗
(x
b

)
,

where Φk and Υk are defined as in (4.3).

Now we solve the second subproblem with x < b
∑M∗
i=1(1− αi). Since 1 ≥ α1 ≥ ... ≥

αM∗ ≥ 0 we can write (D.7) as

∆2
up(b, x) = inf

α+
bM∗ −

M∗∑
i=1

αiφ(i) s.t.

M∗∑
i=1

αi < M∗ −
x

b
, (D.9)

where we define φ(i) , [b− (2i− 1 +M∗ −M∗)]. Note that φ(1) > · · · > φ(M∗).

First, we note that for bM∗ < x there are no feasible solutions due to the constraint

in (D.9).

Now, we consider the case x ≤ M∗(1 + M∗ −M∗). If x
M∗
≤ b < 1 + M∗ −M∗,

all the terms φ(i) multiplying αi’s are negative, and, thus, the infimum is achieved by

α∗ = 0, and is given by ∆2
up(b, x) = bM∗. If 1 + M∗ −M∗ ≤ b < 3 + M∗ −M∗, then

φ(1) multiplying α1 is positive, while the other φ(i) terms are negative. Then α∗i = 0
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for i = 2, ...,M∗. From (D.9) we have α1 ≤ M∗ − x
b . If b ≥ x

M∗−1 , the right hand side

(r.h.s.) of (D.9) is greater than one, and smaller otherwise. Then, we have

α∗1 =

1 if b ≥ x
M∗−1 ,

M∗ − x
b if b < x

M∗−1 .

Note that α∗1 ≥ 0 since b > x
M∗

.

When 2k − 1 + M∗ − M∗ ≤ b < 2k + 1 + M∗ − M∗ for k = 2, ...,M∗ − 1, the

coefficients φ(i), i = 1, ..., k, associated with the first k αi terms are positive, while the

others remain negative. Then,

α∗i = 0, for i = k + 1, ...,M∗. (D.10)

Since φ(i), i = 1, ..., k, are positive and φ(1) > · · · > φ(k), we have α∗i = 1 for

i = 1, ..., k − 1, and the constraint becomes αk < M∗ − (k − 1)− x
b . If b ≥ x

M∗−k , then

the r.h.s. is greater than one, and smaller otherwise. In order for the solution to be

feasible, we need M∗ − (k − 1)− x
b ≥ 0. Then we have

α∗k =

1 if b ≥ x
M∗−k ,

M∗ − (k − 1)− x
b if x

M∗−(k−1) ≤ b <
x

M∗−k .
(D.11)

If b < x
M∗−(k−1) , the solution in (D.11) is not feasible. Instead, we have α∗k = 0,

since φ(k) < φ(k − 1), α∗i = 0 for i = k + 1, ...,M∗, and α∗i = 1, for i = 1, ..., k − 2.

Then, the constraint in (D.9) is given by αk−1 ≤M∗− (k− 2)− x
b . Since b < x

M∗−(k−1) ,

the r.h.s. is always smaller than one, and for the existence of a feasible solution, it is

required to be greater than zero. Then, we have

α∗k−1 = M∗ − (k − 2)− x

b
, if

x

M∗ − (k − 2)
≤ b < x

M∗ − (k − 1)
.

In general, iterating this procedure, for

x

M∗ − (j − 1)
≤ b < x

M∗ − j
, j = 1, ..., k,

we have

αi =


1 for i = 1, ..., j − 1,

M∗ − (j − 1)− x
b for i = j,

0 for i = j + 1, ...,M∗.

(D.12)

Note that for the case j = 1, we have α1 = M∗ − x
b , which is always feasible.
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We now evaluate (D.9) with the optimal α∗ for 2k − 1 + M∗ −M∗ ≤ b < 2k +

1 + M∗ − M∗, k = 2, ...,M∗ − 1. For b ≥ x
M∗−k , we have α1 = · · · = αk = 1 and

αk+1 = · · · = αM∗ = 0 and then

∆2
up(b, x) =

M∗∑
i=1

min{b, 2i− 1 +M∗ −M∗} = ∆MIMO(b).

For x
M∗
≤ b ≤ x

M∗−k , substituting (D.12) into (D.9) we have

∆2
up(b, x) = x+ (M∗ −M∗ − 1 + j)(j − 1) +

(
M∗ − (j − 1)− x

b

)
(2j − 1 +M∗ −M∗),

for
x

M∗ − (j − 1)
≤ b ≤ x

M∗ − j
, j = 1, ..., k.

Note that with the change of index j = M∗ − j′, we have, after some manipulation,

∆2
up(b, x) = x+ (M∗ − j′)(M∗ − j′)−

(x
b
− j′

)
(M∗ +M∗ − 2j′ − 1),

in the regime

x

j′ + 1
≤ b < x

j′
, j′ = M∗ − k, ...,M∗ − 1.

This is equivalent to the value of the DMT curve in (4.2) at multiplexing gain r = x
b .

Then, for x
M∗
≤ b < x

M∗−k we have

∆2
up(b, x) = x+ d∗

(x
b

)
.

If b ≥ M∗ + M∗ − 1, the infimum is achieved by α∗i = 1, for i = 1, ...,M∗ − 1, and

α∗M∗ = 1− x
b if b ≥ x. If b < x, this solution is not feasible, and the solution is given by

(D.12). Therefore, in this regime we also have

∆2
up(b, x) = x+ d∗

(x
b

)
.

Putting all these results together, for x ≤M∗(M∗−M∗+1) and 2k−1+M∗−M∗ ≤
b < 2k + 1 +M∗ −M∗, for k = 1, ...,M∗ − 1, we have

∆2
up(x, b) =



bM∗ for x
M∗
≤ b < M∗ −M∗ + 1,

x+ d∗
(
x
b

)
for M∗ −M∗ + 1 ≤ b < x

M∗−k ,

∆MIMO(b) for x
M∗−k ≤ b < M∗ +M∗ − 1,

x+ d∗
(
x
b

)
for b ≥M∗ +M∗ − 1.
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Now, we solve (D.9) for M∗(M
∗ −M∗ + 1) ≤ x < M∗(M

∗ +M∗ − 1). Let 2(l− 1)−
1 +M∗ −M∗ ≤ x

M∗
< 2l − 1 +M∗ −M∗, for some l = 2, ...,M∗. The first interval of b

in which a feasible solution exists is given by x
M∗
≤ b < 2l− 1 +M∗−M∗+ 1. From the

sign of the coefficients φ(i) in this interval we have α∗i = 0 for i = (l + 1), ...,M∗, and

α∗i = 1 for i = 1, ..., l − 1. Substituting, the constraint becomes αl < M∗ − (l − 1)− x
b .

If b > x
M∗−l the r.h.s. is larger than one, and α∗l = 1. On the contrary, if b ≤ x

M∗−l , it

is given by α∗l = M∗ − (l− 1)− x
b if b > x

M∗−(l−1) , so that the r.h.s. of the constraint is

larger than zero, and the solution is found following the techniques that lead to (D.12).

The problem is now solved as for the case x ≤ M∗(M
∗ −M∗ + 1) in each interval

2k − 1 + M∗ −M∗ ≤ b < 2(k + 1) − 1 + M∗ −M∗ with k = l, ...,M∗ − 1 instead of

k = 1, ...,M∗ − 1 and, thus, we omit the explicit resolution.

Putting all together, if x satisfies 2(l− 1)− 1 +M∗−M∗ ≤ x
M∗

< 2l− 1 +M∗−M∗,
l = 2, ...,M∗, for 2k− 1 +M∗−M∗ ≤ b < 2k+ 1 +M∗−M∗, for k = l, ...,M∗−1, we have

∆2
up(x, b) =


x+ d∗

(
x
b

)
for x

M∗
≤ b < x

M∗−k ,

∆MIMO(b) for x
M∗−k ≤ b < M∗ +M∗ − 1,

x+ d∗
(
x
b

)
for b ≥M∗ +M∗ − 1.

Finally, the case x ≥ M∗(M
∗ + M∗ − 1) can be solved as before. Notice that if

α∗i = 1, i = 1, ...,M∗ − 1 we have the constraint αM∗ ≤ 1 − x
b , that is, we never have

the case α∗M∗ = 1. Then, the optimal α∗i are given as in (D.12), and we have

∆2
up(x, b) = x+ d∗

(x
b

)
for

x

M∗
≤ b.

Now, ∆up(b, x) is given by the minimum of ∆1
up(b, x) and ∆2

up(b, x). First, we

note that ∆2up(b, x) has no feasible solution for bM∗ ≤ x, and we have ∆up(b, x) =

∆1
up(b, x) = x in this region. For bM∗ > x, both solutions ∆1

up(b, x) and ∆2
up(b, x) coin-

cide except in the range x
M∗−l ≤ b ≤ M∗ +M∗ − 1. We note that ∆1

up(b, x) in (D.8) is

linear and increasing in α, and hence, the solution is such that the constraint is satisfied

with equality, i.e., x =
∑M∗
i=1 b(1−αi). That is, ∆2

up(b, x) ≤ ∆1
up(b, x) whenever both so-

lutions exist in the same α region. Then, the minimizing α will be one such that either

∆1
up(b, x) < ∆2

up(b, x), or the one arbitrarily close to the boundary x = b
∑M∗
i=1(1−αi)+,

where ∆1
up(b, x) = ∆2

up(b, x). Consequently, min{∆1
up(b, x),∆2

up(b, x)} = ∆1
up(b, x),

whenever they are defined in the same region. Putting all the results together we com-

plete the proof.
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D.2 Proof of Theorem 7

To derive the distortion exponent of SSCC we first study the exponential behavior of

EΓ[Dd(R,Γ)] in (4.9). We consider the change of variables γ = ρ−β , with pdf pB(β)

given as in (D.3) and SB(β) = β, for β ≥ 0, and R = r log ρ. Then,

EΓ[Dd(R,Γ)] =

∫
1

γρs + 22R
pΓ(γ)dγ =

∫
exp(log(ρx−β + ρ2r)−1)pB(β)dβ.

In the high SNR regime, we have

EΓ[Dd(r log ρ,Γ)]
.
=

∫
R

ρ−max{(x−β)+,2r}pB(β)dβ,

where we have used (1+ρx−β+ρ2r)−1 .
= ρ−max{(x−β)+,2r}. Applying Varadhan’s lemma

we have

EΓ[Dd(R,Γ)]
.
= inf
β∈R+

max{(x− β)+, 2r}+β = max{x, 2r}.

For a family of codes with rate b
2Rc = b

2rc log ρ, (4.9) is exponentially equivalent to

EDs(brc log ρ) = (1− Po(H))EΓ[Dd(brc/2 log ρ,Γ)] + Po(H)EΓ[Dd(0,Γ)]
.
= (1− ρ−d

∗(rc))ρ−max{x,brc} + ρ−d
∗(rc)ρ−x

.
= ρ−max{x,brc} + ρ−(d∗(rc)+x)

.
= ρ−min{max{x,brc},d∗(rc)+x},

where we have used that the outage probability is exponentially equivalent to the prob-

ability of error [73], i.e., Po(H)
.
= ρ−d

∗(rc), and d∗(rc) is the DMT curve in (4.2).

The best distortion exponent achievable by SSCC, ∆s(b, x), is found by maximizing

over rc as follows

∆s(b, x) , max
rc≥0
{min{max{x, brc}, x+ d∗(rc)}}. (D.13)

The maximum achieved when the two terms inside min{·} are equal, i.e., max{brc, x} =

x+d∗(rc). We chose a rate rc such that brc > x and rc < M∗, as otherwise, the solution

is readily given by ∆s(b, x) = x. Note that for bM∗ ≤ x this is never feasible, and thus,

∆s(b, x) = x, and if x ≥ bd∗(M∗), the intersection is always at brc = x. Assuming

k ≤ rc ≤ k + 1, k = 0, ...,M∗ − 1, the optimal rc satisfies at x + brc = d∗(rc), or,

equivalently, brc = x+ Φk − (rc − k)Υk, and we have

r∗c =
Φk + kΥk + x

Υk + b
, ∆s(b, x) = br∗c = b

Φk + kΥk + x

Υk + b
.
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Since solution r∗c is feasible whenever k < r∗c ≤ k + 1, this solution is defined in

b ∈
[

Φk+1 + x

k + 1
,

Φk + x

k

)
, for k = 0, ...,M∗ − 1, (D.14)

where we have used Φk+1 = Φk − Υk. Notice also that, we also need br∗c ≤ x, which

holds whenever ∆s(b, x) ≤ x in (D.14). Under these conditions, we have ∆s(b, x) = x.

Remember that for bM∗ ≤ x we also have ∆s(b, x) = x. Gathering all results completes

the proof of Theorem 7.

D.3 Proof for distortion exponent for JDS

In this section we derive the distortion exponent of JDS, and show that it coincides

with the distortion exponent of SSCC. Applying the change of variables λi = ρ−αi and

γ = ρ−β , and considering a rate Rj = rj log ρ, rj > 0, the outage event in (4.10) can be

written as

Oj =

{
(H, γ) : 1 +

2−ερbrj − 1

γρx + 1
≥

M∗∏
i=1

(1 + ρλi)
b

}

=

{
(α, β) : 1 +

2−ερbrj − 1

ρ(x−β) + 1
≥

M∗∏
i=1

(1 + ρ1−αi)b

}
.

For large ρ, we have

1 + 2−ερbrj−1
ρ(x−β)+1∏M∗

i=1(1 + ρ1−αi)b
.
=

1 + ρbrjρ−(x−β)+

ρb
∑M∗
i=1(1−αi)+

.
= ρ(brj−(x−β)+)+−b

∑M∗
i=1(1−αi)+

.

Therefore, at high SNR, the achievable expected end-to-end distortion for JDS is

found as,

EDj(brj log ρ) =

∫
Ocj
Dd(brj/2 log ρ, ρ−β)pA(α)pB(β)dαdβ

+

∫
Oj
Dd(0, ρ

−β)pA(α)pB(β)dαdβ

.
=

∫
Acj
ρ−max{(x−β)+,brj}ρ−(S(α)+β)dαdβ

+

∫
Aj
ρ−(x−β)+

ρ−(S(α)+β)dαdβ.

.
= ρ−∆1

j (rj) + ρ−∆2
j (rj)

.
= ρ−min{∆1

j (rj),∆
2
j (rj)}

.
= ρ−∆j(rj), (D.15)
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whereDd(R, γ) is as defined in (4.8), and we have usedDd(r log ρ, β)
.
= ρ−max{(x−β)+,2r}.

We have also defined the high SNR equivalent of the outage event as

Aj ,

{
(α, β) : (brj − (x− β)+)+ ≥ b

M∗∑
i=1

(1− αi)+

}
.

We have applied Varadhan’s lemma to each integral to obtain

∆1
j (rj), inf

Acj
max{(x− β)+, brj}+ β + SA(α), (D.16)

and

∆2
j (rj) , inf

Aj
(x− β)+ + β + SA(α). (D.17)

Then, the distortion exponent of JDS is found as

∆j(rj) = min{∆1
j (rj),∆

2
j (rj)}. (D.18)

We first solve (D.16). We can constrain the optimization to α ≥ 0 and β ≥ 0 without

loss of optimality, since for α, β < 0 we have SA(α) = SB(β) = +∞. Then, ∆1
j (rj)

is minimized by α∗ = 0 since this minimizes SA(α) and enlarges Acj . We can rewrite

(D.16)

∆1
j (rj) = inf

β≥0
max{(x− β)+, brj}+ β s.t. (brj − (x− β)+)+ < bM∗.

If brj<(x− β)+, the minimum is achieved by any 0≤β<x− rjb, and thus ∆1
j (rj) = x

for x > brj . If brj ≥ (x− β)+, then

∆1
j (rj) = inf

β≥0
brj + β s.t. brj − bM∗ < (x− β)+ ≤ brj . (D.19)

If β > x, the problem is minimized by β∗ = x + ε, ε > 0, and ∆j(rj) = brj + x + ε,

for rj ≤ M∗. For 0 ≤ β ≤ x, we have β∗ = (x − rjb)+, and ∆1
j (rj) = max{brj , x} if

brj ≤ bM∗ + x. Putting all these together, we obtain

∆1
j (rj) = max{brj , x} if brj ≤ x+ bM∗. (D.20)

If brj > x+ bM∗, Acj is empty, and there is always outage.

Next we solve the second optimization problem in (D.17). With β = x, ∆2
j (rj) is

minimized and the range of α is enlarged. Then, the problem to solve reduces to

∆2
j (rj) = inf x+ S(α) s.t. rj ≥

M∗∑
i=1

(1− αi)+,
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which is the DMT problem in (D.8), and ∆2j(rj , b) = x+ d∗(rj). Bringing all together,

∆j(b, x) = max
rj≥0
{min{max{x, brj}, x+ d∗(rj)}}. (D.21)

Since d∗(rj) = 0 for rj > M∗, the constraint in (D.21) can be reduced to 0 ≤ rj ≤ M∗

without loss of optimality since ∆j(b, x) = x for any rj ≥ M∗. Then, (D.21) coincides

with (D.13), and thus, SSCC and JDS achieve the same distortion exponent.

D.4 Proof Of Distortion Exponent for HDA-WZ

In this Appendix we derive the outage region Oh in (4.14) and the distortion in (4.15).

Then, using these we obtain the distortion exponent achievable by HDA-WZ.

D.4.1 Outage region for HDA-WZ

From joint typicality arguments similarly to [34], the decoding of W
m

2M∗ is successful

with high probability if

I(W
m

2M∗ ;Sm) <
m

2
Rh < I(W

m
2M∗Un− m

2M∗ ; YnTm). (D.22)

For the r.h.s. of (D.22) we have

I(W
m

2M∗ ;Sm) =

m
2M∗∑
i=1

I(Wi; Si) =
m

2M∗
I(W; S) = mI(W ;S) <

m

2
Rh, (D.23)

due to the i.i.d. distribution of the source, Qi and Xi. Note that the l.h.s. of (D.22)

always holds since Rh is chosen such that Rh
2 = I(W ;S) + ε.

The r.h.s. of the decoding condition (D.22) is given by

I(W
m

2M∗Un− m
2M∗ ; YnTm)

(a)
=

m
2M∗∑
i=1

I(Wi; YW,iTi) +

n∑
i= m

2M∗+1

I(Ui; YU,i)

=
m

2M∗
I(W; YWT) +

(
n− m

2M∗

)
I(U; YU ), (D.24)

where (a) follows from the i.i.d. distribution of the implied variables.

Substituting (D.23) and (D.24) into (D.22) and dividing both sides by m/2M∗, the

outage condition in (4.14) follows.

Next, we evaluate the outage region in (4.14) for Gaussian codewords. We have

I(W; YWT) = H(YWT) − H(YWWT) + H(W). Let G , [W,YW ,T]H . Since G

is a complex multivariate Gaussian random vector, its differential entropy is given by
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H(G) = log((2πe)3M∗ det(CG)), where CG = E[GGH ] is given by

CG =

 I + σ2
QI

√
ασ2

QHH γ
√
ρsI√

ασ2
QH I + ασ2

QHHH 0

γ
√
ρsI 0 ξI

 ,
with α , ρ/Mt and ξ , 1 + ρsγ. By using properties of the determinant of a block

matrix and some algebra, we have

det(CG) = det
(
I + ασ2

QHHH + ξσ2
QI
)

=

M∗∏
i=1

(
1 + ξσ2

Q +
ρ

M∗
λi

)
.

Similarly, we have

H(YWT) = log

(
(2πe)2M∗ξM∗ det

(
I +

ρ

M∗
HHH

))
,

H(W) = log((2πe)M∗(1 + σ2
Q)M∗),

I(YU ; U) = log

(
det

(
I +

ρ

M∗
HH†

))
.

Substituting in (4.13) we have the outage region (4.14) .

D.4.2 Expected distortion achieved by HDA-WZ

We use a MMSE estimator to reconstruct each source block Si, i = 1, ..., m
2M∗

, with the

available information, which can be modeled by the linear model as follows:Wi

Yi

Ti

 =

 I

0

γI

Xi +

 Qi√
αHQi + Ni

Zi

 .
Let B ,

[
I 0 γI

]H
and Si ,

[
Qi αHQi + Ni Zi

]H
. Then, the distortion for

each source block is found to be given by Tr{D} = 1
M∗

∑M∗
i=1 Tr[I + BCSBH ]−1, where

D is the distortion matrix in the reconstruction of each block, and

CS , E[SiS
H
i ] =

 I
√
αHH 0

√
αH ασ2

QHHH + I 0

0 0 I

 .
Using the block inverse properties,the singular value decomposition of H we obtain the

expected distortion expression in (4.15).

D.4.3 Distortion exponent achieved by HDA-WZ

In this section we derive the distortion exponent for HDA-WZ. The outage region in
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(4.14) is given by

Oh=

{
(H, γ) :

(
1 +

1

σ2
Q

)M∗
≥
(

((1 + ρsγ)(1 + σ2
Q))M∗

∏M∗
i=1(1 + ρ

M∗
λi)

bM∗∏M∗
i=1(1 + ρ

M∗
λi + (1 + ρsγ)σ2

Q)

)}
.

Similar to the analysis for the other schemes, we consider the change of variables

λi = ρ−αi , and γ = ρ−β , and a rate Rh = rh log ρ, for rh ≥ 0. Then, we start by finding

the equivalent outage set in the high SNR regime. We have,

M∗∏
i=1

(
1 +

ρ

M∗
λi

)bM∗
.
= ρbM∗

∑M∗
i=1(1−αi)+

,

and

M∗∏
i=1

(
1 +

ρ

M∗
λi + (1 + ρsγ)σ2

Q

)
.
=

M∗∏
i=1

(
1 + ρ1−αi + (1 + ρx−β)ρ−rh

)
.
= ρ

∑M∗
i=1 max{(1−αi)+,(x−β)+−rh},

where we use σ2
Q = (2Rh−ε− 1)−1 = (2−ερrh − 1)−1 .

= ρ−rh . From the outage condition

in (D.25), we have(
1 + 1

σ2
Q

)M∗∏M∗
i=1(1 + ρ

M∗
λi + (1 + ρsγ)σ2

Q)

((1 + ρsγ)(1 + σ2
Q))M∗

∏M∗
i=1(1 + ρ

M∗
λi)bM∗

.
=
ρM∗rhρ

∑M∗
i=1 max{(1−α)+,(x−β)+−rh}

ρM∗(x−β)+ρbM∗
∑M∗
i=1(1−α)+

.
=ρ

∑M∗
i=1(rh−(x−β)++(1−αi))+−bM∗

∑M∗
1 (1−αi)+

.

Therefore, in the high SNR regime, the set Oh is equivalent to the set given by

Ah ,

{
(α, β)+ :

M∗∑
i=1

(rh − (x− β)+ + (1− αi))+ > bM∗

M∗∑
i=1

(1− αi)

}
.

On the other hand, in the high SNR regime, the distortion achieved by HDA-WZ is

equivalent to

Dh(σ2
Q,H, γ) =

1

M∗

M∗∑
i=1

(
1 + ρsγ +

1

σ2
Q

(
1 +

ρ

M∗
λi

))−1

.
=

M∗∑
i=1

(
1 + ρx−β + ρrh+(1−αi)

)−1

.
= ρ−mini=1,...,M∗{max{(x−β)+,rh+1−αi}}

.
= ρ−max{(x−β)+,rh+1−α1},

where the last equality follows since α1 ≥ ... ≥ αM∗ ≥ 0. Then, in the high SNR regime,
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the expected distortion for HDA-WZ is given as

EDh(rh log ρ) =

∫
Och

Dh(σ2
Q,H, γ)ph(H)pΓ(γ)dHdγ

+

∫
Oh

Dd(0, γ)ph(H)pΓ(γ)dHdγ

.
=

∫
Acj
ρ−max{(x−β)+,rh+(1−α1)}pA(α)pB(β)dαdβ

+

∫
Aj
ρ−(x−β)+

pA(α)pB(β)dαdβ.

Similarly to the proof of Theorem 9, applying Varadhan’s lemma, the exponent of

each integral is found as

∆1
h(rh) = inf

Ach
max{(x− β)+, rh + 1− α1}+ SA(α) + β,

and

∆2
h(rh) = inf

Ah
(x− β)+ + SA(α) + β, (D.25)

First we solve ∆1
h(rh). The infimum for this problem is achieved by α∗ = 0 and

β∗ = 0, and is given by

∆1
h(rh) = max{x, rh + 1}, for rh ≤M∗b− 1 + x.

Now we solve ∆2
h(rh) in (D.25). By letting β∗ = x, the range of α is enlarged while the

objective function is minimized. Thus, the problem to solve reduces to

∆2
h(rh) = inf x+ S(α) s.t. rh >

bM∗ − 1

M∗

M∗∑
i=1

(1− αi)+. (D.26)

Again, this problem is a scaled version of the DMT curve in (D.8). Therefore, we have

∆2
h(rh) = x+ d∗

((
bM∗ − 1

M∗

)−1

rh

)
.

The distortion exponent is given by optimizing over rh as

∆h(b, x) = max
rh

min{∆1
h(rh),∆2

h(rh)}.

The maximum distortion exponent is obtained by letting ∆1
h(rh) = ∆2

h(rh). We as-

sume rh + 1 > x since otherwise ∆h(b, x) = x, and then, we have rh + 1 = x +
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d∗
(

(b− 1
M∗

)−1rh

)
. Let r′h = rh(b − 1

M∗
)−1. Using (4.2), for k < r′h ≤ k + 1,

k = 0, ...,M∗ − 1, the problem is equivalent to r′h

(
b− 1

M∗

)
+ 1 = x+ Φk − (r′h − k)Υk,

where Φk and Υk are given as in (4.3). The r′h satisfying the equality if given by

r′∗h =
Φk + kΦk − 1 + x

b− 1
M∗

+ Φk
,

and the corresponding distortion exponent is found as

∆h(b, x) = 1 +
(bM∗ − 1)(Φk + kΥk − 1 + x)

bM∗ − 1 +M∗Υk
,

for

b ∈
[

Φk+1 − 1 + x

k + 1
+

1

M∗
,

Φk − 1 + x

k
+

1

M∗

)
, for k = 0, ...,M∗ − 1.

Note that we have r∗h + 1 > x whenever ∆h(b, x) > x. Otherwise, r∗h is not feasible

and ∆h(b, x) = x. Note also that if x ≥ bM∗, the distortion exponent is given by

∆h(b, x) = x.

D.5 Distortion exponent achieved by LS-JDS

D.5.1 Successively refinable codebooks

Consider a successively refinable codebook [38] at rate tRk = I(S;Wl|W l−1
1 )+ε for each

codebook layer, where t > 0. Then, we have

I(S;Wl|W l−1
1 )

(a)
= I(S;W l

1)− I(S;W l−1
1 )

(b)
= I(S;Wk)− I(S;Wk−1), (D.27)

where (a) is due to the chain rule, and (b) holds form the Markov chain S−Wl−W l−1
1 .

We have

l∑
i=1

(tRi − ε) =

l∑
i=1

I(S;Wi|W i−1
1 )

(a)
=

l∑
i=1

I(S;Wi)− I(S;Wi−1)

= I(S;Wl)

=
1

2
log

(
1 +

1∑L
i=l σ

2
i

)
, l = 1, ..., L,

where (a) follows from (D.27) and W0 = ∅ for the case l = 1. Substituting t = b
2L , i.e.,
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allocating equal channel accesses per layer, equation (4.16) follows.

D.5.2 Distortion exponent achievable by of LS-JDS

In this section we obtain the distortion exponent for LS-JDS. Let us define R̄l1 ,∑l
i=1Ri. First, we consider the outage event. For the successive refinement codebook

we have that the l.h.s. of (4.17) is given by

I(S;Wl|W l−1
1 , T )

(a)
= I(S;Wl|T )− I(S;Wl−1|T )
(b)
= H(Wl|T )−H(Ql)−H(Wl−1|T ) +H(Ql−1)

=
1

2
log

(∑L
i=l−1 σ

2
i∑L

i=l σ
2
i

1 + (1 + γρs)
∑L
j=l σ

2
j

1 + (1 + γρs)
∑L
j=l−1 σ

2
j

)
,

where Ql ,
∑L
i=lQl, (a) is due to the Markov chain T − S −WL − ...−W1, and (b) is

due to the independence of Q̄i with S and T , and H(Wl|T ) = 1
2 log

(∑L
i=l σ

2
i + 1

1+γρs

)
.

We also have

I(S;W1|T ) =
1

2
log

(
1 +

1

(1 + γρs)
∑L
i=1 σ

2
i

)
.

Substituing (4.16) with R0 = 0, we have

I(S;Wl|W l−1
1 , T ) =

1

2
log

(
2
∑l
i=1

b
LRi + γρs

2
∑l−1
i=1

b
LRi + γρs

)
.

Then, the outage condition in (4.17) is given by

log

(
2
∑l
i=1

b
LRi + γρs

2
∑l−1
i=1

b
LRi + γρs

)
≤ b

L
log

M∗∏
i=1

(
1 +

ρ

M∗
λi

)
. (D.28)

Therefore, in the high SNR regime, we have, for l = 1, ..., L

2
∑l
i=1( bLRi−ε) + γρs

2
∑l−1
i=1( bLRi−ε) + γρs

.
=
ρ
∑l
i=1

b
L ri + ρx−β

ρ
∑l−1
i=1

b
L ri + ρx−β

(D.29)

.
=
ρ
∑l
i=1

b
L ri−(x−β) + 1

ρ
∑l−1
i=1

b
L ri−(x−β) + 1

.
=
ρ(

∑l
i=1

b
L ri−(x−β))+

ρ(
∑l−1
i=1

b
L ri−(x−β))+

,

and

b

L
log

M∗∏
i=1

(
1 +

ρ

M∗
λi

)
.
= ρ

b
L

∑M∗
i=1(1−αi)+

.
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The outage set (4.17) in the high SNR is equivalent to

Alsl′ ,

{
(α, β) :

b

L

M∗∑
i=1

[(1− αi)+

<

(
l∑
i=1

b

L
ri − (x− β)

)+

−

(
l−1∑
i=1

b

L
ri − (x− β)

)+
 . (D.30)

Now, we study the high SNR behavior of the expected distortion. It is not hard to

see that (4.18) is given by

EDls(R)=

L∑
l=0

EOlsl+1

[
Dd

(
b

2L
R̄l1, γ

)]
− EOlsl

[
Dd

(
b

2L
R̄l1, γ

)]
, (D.31)

where Ols0 , ∅ and OlsL+1 , RM∗+1. For each summing term in (D.31), we have

EOls
l′

[
Dd

(
b

2L
R̄l1, γ

)]
.
=

∫
Als
l′

ρ−max{ bL
∑l
i=1 rl,(x−β)+}ρ−SA(α)ρ−βdαdβ,

where the outage set in the high SNR regime is given by (D.30).

Applying Varadhan’s lemma to (D.32), the exponential behavior for l = 0, ..., L− 1

and l′ = l, l + 1, is found as the solution to

∆ls(l, l′) , inf
Als
l′

max{b/Lr̄l1, (x− β)+}+ SA(α) + β,

where we define r̄l1 ,
∑l
i=1 ri. Note that since r1 ≤ r2 ≤ ... we have Alsl ⊆ Alsl+1 and

therefore ∆ls(l, l) ≥ ∆ls(l, l + 1). Then, we have from (D.31)

EDls(R)
.
=

L∑
l=0

ρ−∆ls(l,l+1) − ρ−∆ls(l,l) .
=

L∑
l=0

ρ−∆ls(l,l+1).

We define ∆ls
l (r) , ∆ls(l, l + 1), where r , [r1, ..., rL]. The distortion exponent of

LS-JDS is given as follows:

∆∗ls(b, x) = max
r

min ∆ls
l (r).

For l=0, i.e., no codeword is successfully decoded, we have

∆ls
0 (r) = inf(x− β)+ + β + SA(α) s.t.

b

L

M∗∑
i=1

(1− αi)+ <

(
b

L
r1 − (x− β)

)+

.
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The infimum is achieved by β = x and using the DMT in (4.1), we have

∆ls
0 (r) = x+ d∗ (r1) .

The distortion exponent for l layers decoded is found as

∆ls
l (r) = inf max

{
b

L
r̄l1, (x− β)+

}
+ β + SA(α) (D.32)

s.t.
b

L

M∗∑
i=1

(1− αi)+
<

(
b

L
r̄l+1
1 − (x− β)

)+

−
(
b

L
r̄l1 − (x− β)

)+

.

If b
L r̄

l
1 ≥ x, the infimum of (D.32) is obtained for β∗ = 0 and

∆ls
l (r) = inf

b

L
r̄l1 + SA(α) s.t.

M∗∑
i1

(ξl − αi)+
< rk+1. (D.33)

Using the DMT in (4.1), (D.33) is minimized as

∆ls
l (r) =

b

L
r̄l1 + d∗ (rl+1) .

If b
L r̄

l
1 ≤ x, we have that the minimum of (D.32) is achieved by β∗ =

(
x− b

L r̄
l
1

)+
if

b
L r̄

l
1 > (x− β) and is given by

∆ls
l (r) = x+ d∗ (rl+1) .

If b
L r̄

l
1 ≤ (x− β) < b

L r̄
l+1
1 , problem (D.32) is equivalent to

∆ls
l (r) = inf(x− β)+ + β + SA(α) (D.34)

s.t.
b

L

M∗∑
i=1

(1− αi)+ <

(
b

L
rl+1
1 − (x− β)

)+

,

b

L
r̄l1 ≤ (x− β) <

b

L
r̄l+1
1 .

The infimum of (D.34) is achieved by the largest β, since the range of α increases. Then,

β∗ = (x− b
L r̄

l
1)+, and we have,

∆ls
l (r) = x+ d∗ (rl+1) .

Finally, if b
L r̄

l+1
1 ≤ (x − β), there are no feasible solutions for (D.32). Therefore,
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putting all together we have

∆ls
l (r) = inf max

{
b

L
r̄l1, x

}
+ d∗(rl+1).

Similarly, at layer L, the infimum is achieved by α∗ = 0 and β∗ = 0 and is given by

∆ls
L (r) = max

{
b

L
r̄L1 , x

}
, for rL ≤M∗.

Note that the condition on rL always holds.

D.5.3 Solution of the distortion exponent

Assume that for a given layer l̂ we have r̄l̂−1
1

b
L ≤ x ≤ r̄l̂1

b
L . Then, ∆ls

l (r) = x+ d(rl+1)

for l = 0, ..., l̂−1. Using the KKT conditions, the maximim distortion exponent is given

when all the distortion exponents are equal.

From ∆ls
0 (r) = ... = ∆ls

l̂−1
(r) we have r1 = ... = rl̂ and thus, r̄l̂1 = l̂r1. Then, the

exponents are given by

∆ls
0 (r) = x+ d∗(r1)

∆ls
l̂

(r) = b
l̂

L
r1 + d∗(rl̂+1)

· · ·

∆ls
L−1(r) = b

l̂

L
r1 + b

1

L
r̄L−1

l̂+1
+ d∗(rL)

∆ls
L (r) = b

l̂

L
r1 + b

1

L
r̄L
l̂+1

.

Equaling all these exponents, we have

b
1

L
r̄L = d∗(rL)

d(rL) + b
1

L
rL−1 = d∗(rL−1)

· · ·

b
1

L
rl+1 + d∗(rl+2) = d∗(rl+1)

b
l

L
r1 + d∗(rl+1) = x+ d∗(r1).

Next, we adapt Lemma 3 in [15] to our setup. Let q be a line with equation y =

−α(t −M) for some α > 0 and M > 0 and let qi = 1, ..., L be the set of lines defined

recursively from L to 1 as y = (b/L)t + di+1, where b > 0, dL+1 = 0 and di is the y

component of the intersection of qi with q. Then, sequentially solving the intersection
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points for i = l̂ + 1, ..., L we have:

di − di+1 = M
b

L

(
α

α+ b/L

)L−i+1

.

Summing all the terms for i = l̂ + 1, ..., L we obtain

di = Mα

[
1−

(
α

α+ b/L

)L−i+1
]
.

In the following we consider a continuum of layers, i.e., L → ∞. We let l̂ = κL be

the numbers of layers needed so that bl̂/Lr1 = bκr1 = x, that is, from l = 1 to l = κL.

When M∗ = 1, the DMT curve is composed of a single line with α = M∗ and M = 1.

In that case we have that, with layers from κL+ 1 to L the distortion increases up to

d(rLκ+1) = Mα

[
1−

(
α

α+ b/L

)L(1−κ)
]
.

In the limit of infinite layers, we obtain

dLκ+1 , lim
L→∞

d(rLκ+1) = Mα
(

1− e−
b(1−κ)
α

)
.

We still need to determine the distortion achieved due to the climb with layers from

l = 1 to l = κL by determining r1. Value, r1 is found as the solution to ∆ls
0 (r) = ∆ls

l (r),

i.e.,

bκr1 + d∗(rl+1) = x− α(r1 −M), (D.35)

Since x = bκr1, then r1 = x/bκ and (D.35) is equal to

d∗(rl+1) = −α
( x
bκ
−M

)
,

which solves for

κ∗ =
M∗

b
W

(
e

b
M∗ x

M∗

)
,

where W(z) is the function W of Lambert, which gives the principal solution for w in

z = wew. The distortion exponent in the MISO/SIMO case is then found as

∆∗ls(b, x) = x+M∗
(

1− e−
b(1−κ∗)
M∗

)
.

For MIMO channels, the DMT curve is formed by M∗ linear intervals k = 1, ...,M∗
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between M∗ − k and M∗ − k + 1. From the value of the DMT at M ∗ −k to the value

at M∗ − k + 1, there is a gap of M∗ −M∗ + 2k − 1 in the y abscise. The increase in

each curve can be characterized by y = −α(t−M) where for the k-th interval we have

α = αk and M = Mk as in (4.19). Note that at t = M∗ − i+ 1 we have y = 0, that is,

each curve is shifted and each interval starts at y = 0.

We consider a continuum of layers, i.e., L → ∞ and we let l = Lκ be the number

of lines required to have bκr1 = x. Then, from the remaining lines from l + 1 to L, let

L(1−κ)κi be the number of lines with slope b/L required to climb all the interval i. So

that the whole interval is climbed with L(1− κ)κi lines we need

dL−L(1−κ)κk = M∗ −M∗ + 2k − 1,

where

dL−L(1−κ)κk = Mα

[
1−

(
α

α+ b/L

)L(1−κ)κk+1
]
.

In the limit we have

lim
L→∞

dL−L(1−κ)κk = Mα
[
1− e−

b(1−κ)κk
α

]
.

Then, each required proportion is found as

κk =
M∗ −M∗ + 2k − 1

b(1− κ)
ln

(
M∗ − k + 1

M∗ − k

)
.

This gives the proportion of lines required to climb up the k-th segment of the DMT

curve. In the MIMO case, to be able to go up exactly to the k-th segment with lines

from l+1 to L we need to have
∑k−1
j=1 κj < 1 ≤

∑k
j=1 κj . This is equivalent to the

requirement ck−1< b(1− κ)≤ ck using ci as defined in the theorem. To climb up each

line segment we need κk(1−κ)L lines (layers) for k = 1, ...,M∗−1 and for the last segment

climbed we have (1−
∑k−1
j=1 κj)L lines remaining, which gives an extra ascent of

Mα

(
1− e−

b(1−κ)(1−
∑k−1
j=1

κj)

α

)
.

Then, we have that the distortion exponent has climbed up to

dLκ+1 =

k−1∑
i=1

(M∗ −M∗ + 2i− 1)

+ (M∗ − k + 1)(M∗ −M∗ + 2k − 1)

(
1− e−

b(1−κ)(1−
∑k−1
j=1

κj)

M∗−M∗+2k−1

)
.
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With the remaining lines, i.e., from l = 1 to l = κL, the extra climb is given by solving

∆ls
0 (r) = ∆ls

κL(r), i.e.,

x+ d∗(r1) = bκr1 + dLκ+1,

The DMT curve d∗(r1) is given at segment k by

d∗(r1) = −α(r1 −M) +

k−1∑
i=1

(M∗ −M∗ + 2i− 1).

Since we have bκr1 = x, then this equation simplifies to

d∗
( x
bκ

)
= dLκ+1.

Therefore, using ck−1 , b(1− κ)
∑k−1
j=1 κj , we solve κ from

−α
( x
bκ
−M

)
= Mα

(
1− e−

b(1−κ)−ck−1
α

)
which is given by

κ∗ =
α

b
W

(
e
b−ck−1

α x

Mα

)
.

The range of validity for each k is given by ck−1 < b(1− κ) ≤ ck. Since for a given

c, the solution to c = b(1− κ∗) is found as

b =
xeck−1−c

M
+ c,

when c = ck−1, we have

b >
x

M
+ ck−1 = ck−1 +

x

M∗ − k + 1
.

When c = ck, since ck−1 − ck = α ln(M/(M∗ − k)) we have

b ≤ xeck−1−ck

M
+ ck = ck +

x

M∗ − k
.

Putting all together, we obtain the condition on the theorem and the distortion exponent.

D.6 Distortion exponent achievable by BS-JDS

Here, we derive the distortion exponent for BS-JDS. We consider the usual change of
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variables, λi = ρ−αi , and γ = ρ−β . Let rl be the multiplexing gain of the l-th layer and

r , [r1, ..., rL] such that Ri = ri log ρ, and define r̄l1 ,
∑l
i=1 ri.

First, we derive the outage set Omll at high SNR regime of for each layer, which we

call Ll, and is found as

Ll ,

{
(α, β) : b

M∗∑
i=1

[(ξl−1 − αi)+ − (ξl − αi)+
]

<

(
l∑
i=1

bri − (x− β)

)+

−

(
l−1∑
i=1

bri − (x− β)

)+
 .

For the power allocation ρl = ρξl−1 − ρξl , we have that the l.h.s. of Omll is then given

as follows

I(Xl; Y|Xl−1
1 ) = I(XL

l ; Y|Xl−1
1 )− I(XL

l+1; Y|Xl−1
1 )

= log
det
(
I + ρξl−1

M∗
HHH

)
det
(
I + ρξl

M∗
HHH

)
= log

M∗∏
i=1

1 + ρξl−1

M∗
λi

1 + ρξl
M∗
λi

.
= ρ

∑M∗
i=1(ξl−1−αi)+−(ξl−αi)+

. (D.36)

The r.h.s. of the condition in Omll can be calculated as in (D.29). Then, from (D.36)

and (D.29), Ll follows. Since Omll are mutually exclusive, in the high SNR we have

EDml(R, ξ) =

L∑
l=0

∫
Omll+1

Dd

(
l∑
i=0

b/2Ri, γ

)
ph(H)pΓ(γ)dHdγ

.
=

L∑
l=0

∫
Ll+1

ρ−(max{
∑l
i=0 bri,(x−β)+}+β+SA(α))dαdβ

.
=

L∑
l=0

ρ−∆l(r,ξ)

.
= ρ−∆L

ml(r,ξ), (D.37)

where applying Varadhan’s lemma, the exponent for each integral term is given by

∆ml
l (r, ξ) = inf

Ll+1

max
{
br̄l0, (x− β)+

}
+ β + SA(α). (D.38)
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Then, the distortion exponent is found as

∆L
ml(b, x) = max

r,ξ
min

l=0,...,L

{
∆ml
l (r, ξ)

}
. (D.39)

Similarly to the DMT, we consider the successive decoding diversity gain, defined in

[15], as the solution to the probability of outage in the successive decoding at each layer,

given by

dds(rl, ξl−1, ξl) , inf
α+

SA(α) s.t. rl >

M∗∑
i=1

[(ξl−1 − αi)+ − (ξl − αi)+]. (D.40)

Without loss in generality, consider the multiplexing gain at layer, rl, to be given

by rl = k(ξl−1 − ξl) + δl where k ∈ [0, 1, ...,M∗ − 1] and 0 ≤ δl < ξl−1 − ξl. Then, the

infimum for (D.40) is found as

dds(rl, ξl−1, ξl) = Φkξl−1 −Υkδl, (D.41)

for

αi =


ξl−1, 1 ≤ i < M∗ − k,

ξl−1 − δl, i = M∗ − k,

0, M∗ − k < i ≤M∗.

Now, we solve (D.38) using (D.41) for each layer in function of the power allocation

ξl−1 and ξl and the rate rl.

When no layer is successfully decoded, i.e., l = 0, we have

∆ml
0 (r, ξ) = inf(x− β)+ + β + SA(α)

s.t. b

M∗∑
i=1

[
(ξ0 − αi)+ − (ξ1 − αi)+

]
< (br1 − (x− β))+.

The infimum is achieved by β∗ = x and using (D.40), we have

∆ml
0 (r, ξ) = x+ dds (r1, ξ0, ξ1) .

At layer l, the distortion exponent is given by the solution to

∆ml
l (r, ξ) = inf max{br̄l1, (x− β)+}+ β + SA(α)

s.t. b

M∗∑
i=1

[
(ξl − αi)+ − (ξl+1 − αi)+

]
< (br̄l+1

1 − x+ β)+ − (br̄l1 − x+ β)+.
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If br̄l1 ≥ x, the infimum is obtained for β∗ = 0 and

∆ml
l (r, ξ) = inf max{br̄l1, x}+ SA(α) s.t.

M∗∑
i1

[
(ξl − αi)+ − (ξl+1 − αi)+

]
< rk+1.

using (D.40) it solves as

∆ml
l (r, ξ) = max{x, br̄l1}+ dds (rl+1, ξl, ξl+1) .

If br̄l1 ≤ x, the infimum is given by β∗ = (x− br̄l1)+ and again, we have a version of

(D.40) with the distortion exponent

∆ml
l (r, ξ) = x+ dds (rl+1, ξl, ξl+1) .

At layer L, the distortion exponent is the solution to the optimization problem

∆ml
L (r, ξ) = inf max

{
br̄L1 , (x− β)+

}
+ β + SA(α)

s.t.b

M∗∑
i=1

[(ξL−1 − αi)+ − (ξL − αi)+
] ≥

(
br̄L1 − (x− β)

)+ − (br̄L−1
1 − (x− β)

)+
.

The infimum is achieved by α∗=0 and β∗=0 and given by

∆ml
L (r, ξ) = max

{
br̄L1 , x

}
, for rL ≤M∗(ξL−1 − ξL).

Note that the condition on rL always holds.

Gathering all results, the exponent distortion problem in (D.39) is found as the

minimum of each layer exponent ∆ml
l (r, ξ), which can be formulated as

∆L
ml(b, x) = max

r,ξ
t

s.t. t ≤ x+ dsd (r1, ξ0, ξ1) ,

t ≤ max{br̄l1, x}+ dsd (rl+1, ξl, ξl+1) ,

for l = 1 . . . L− 1,

t ≤ max{br̄L1 , x}. (D.42)

If x ≥ br̄L1 , then max{x, br̄l1} = x for all l and the minimum exponent is given by

∆ml
L (r, ξ) = x, which implies ∆L

mj(b, x) = x. If x ≤ br1, then max{x, br̄l1} = br̄l1 for all

l. In general, if br̄q1 < x ≤ br̄q+1
1 , q = 0, ..., L and r̄0

1 , 0, r̄L+1
1 ,∞, then (D.42) can be

formulated, using rl = k(ξl−1 − ξl) + δl, δ , [δ1, · · · , δL] and ξ, as the following linear
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optimization program:

∆L
mj(b, x) = min

1≤q≤L,
0≤k≤M∗−1.

min
δ,ξ
−t

s.t. t ≤ x+ Φkξ0 −Υkδ1,

t ≤ x+ Φkξl −Υkδl+1, for l = 1, . . . , q,

t ≤ b
l∑
i=1

[k(ξi−1 − ξi) + δi] + Φkξl −Υkδl+1, for l = q, . . . , L− 1,

t ≤ b
L∑
i=1

[k(ξi−1 − ξi) + δi],

0 ≤ δl < ξl−1 − ξl, for l = 1, . . . , L,

0 ≤ ξL ≤ ... ≤ ξ1 ≤ ξ0 = 1,
l′∑
l=1

[bk(ξl−1 − ξl) + δl] < x. (D.43)

The linear program (D.43) can be efficiently solved using numerical methods. In

Figure 4.4, the numerical solution is shown. However, in the following we provide an

analytical result by fixing the multiplexing gains r. We fix the multiplexing gains rl to

r̂l by fixing δl , (ξl−1 − ξl) − ε1, such that r̂l = [(k + 1)(ξl−1 − ξl) − ε1], ε1 > 0 for

k = 0, ...,M∗ − 1 in the bandwidth regime

b ∈
[

Φk+1 + x

k + 1
,

Φk + x

k

)
. (D.44)

Note that by fixing r̂l, the solution might be suboptimal. In fact, single layer JDS

transmission in Section 4.5.2, is excluded from the set of feasible solutions.

Assume br1≥x. Then, each distortion exponent is found as

∆ml
0 (r, ξ) = x+ Φkξl −Υkδl+1,

∆ml
l (r, ξ) = br̄l1 + Φkξl −Υkδl+1, for l = 1, ..., L− 1,

∆ml
L (r, ξ) = br̄L1 . (D.45)

Similarly to the other schemes, for which the distortion exponent is maximized by

equaling the exponents, we look for the power allocation ξ, such that all distortion

exponent terms ∆ml
l (r̂, ξ) in (D.39) are equal.

Equaling all distortion exponents ∆ml
l (r̂, ξ) for l = 2, ..., L − 1, i.e., ∆ml

l−1(r̂, ξ) =

∆ml
l (r̂, ξ), we have

dsd (r̂l, ξl−1, ξl) = brl + dsd (r̂l+1, ξl, ξl+1) . (D.46)
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Since r̂l = [(k + 1)(ξl−1 − ξl)− ε1], we have

dsd (r̂l, ξl−1, ξl) = Φkξl−1 −Υk(ξl−1 − ξl − ε1).

Substituting in (D.46) we obtain that the power allocations for l ≥ 2 need to satisfy,

(ξl − ξl+1) = ηk(ξl−1 − ξl) + π(ε1),

where ηk is defined in equation (4.20) and O(ε1)→ 0 for ε1 → 0.

Then, for l = 2, ..., L − 1 we have the following recursion for each power allocation

in terms of (ξ1 − ξ2):

ξl − ξl+1 = ηl−1
k (ξ1 − ξ2) + π(ε1), (D.47)

and each power allocations ξl can be found as

1− ξl = (1− ξ1) +

l−1∑
i=1

(ξi − ξi+1)

= (1− ξ1) +

l−1∑
i=1

ηi−1
k (ξ1 − ξ2) + π(ε1)

= (1− ξ1) + (ξ1 − ξ2)
1− ηl−1

k

1− ηk
+ π(ε1).

From ∆ml
L (r̂, ξ)=br̄L1 = b

∑L
i=1(k + 1)(ξi−1 − ξi), we have

∆ml
L (r̂, ξ) = b(k + 1)(ξ0 − ξ1) + b(k + 1)(ξ2 − ξ1)

L∑
i=1

ηi−1
k + π(ε1)

= b(k + 1)

[
(ξ0 − ξ1) + (ξ2 − ξ1)

1− ηL−1
k

1− ηk

]
+π(ε1). (D.48)

Putting all together, from (D.45) we obtain the following determined linear system

∆ml
0 (r̂, ξ) = x+ Φkξ0 −Υk(ξ0 − ξ1 − ε1),

∆ml
1 (r̂, ξ) = b(k + 1)(ξ0 − ξ1) + Φkξ1 −Υk(ξ1 − ξ2 + ε1),

∆ml
L (r̂, ξ) = b(k + 1)[(ξ0 − ξ1) + (ξ2 − ξ1)Γk]+π(ε1). (D.49)

By solving ∆L
ml(b, x) = ∆ml

0 (r̂, ξ) = ∆ml
1 (r̂, ξ) = ∆ml

L (r̂, ξ), the solution to the linear

systems and letting ε1 → 0 is given in (4.21), (4.22) and (4.23). So that this solution is

feasible, the power allocation sequence has to satisfy 1 ≥ ξ1 ≥ ...ξL ≥ 0, i.e., ξl−ξl+1 ≥ 0.

From (D.47) we need ηk ≥ 0 and ξ1 − ξ2 ≥ 0. We have ηk ≥ 0 if b ≥ Φk+1

k+1 , which holds
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in the regime given by (D.44). Then, ξ1 − ξ2 ≥ 0 holds if Υk + b(k + 1) − Φk − x ≥ 0

and (Υk + b(1 + k))(Υk + b(1 + k)Γk) − b(k + 1)ΦkΓk ≥ 0. It can be shown that

(Υk+b(1+k))(Υk+b(1+k)Γk)−b(k+1)ΦkΓk is monotonically increasing in b ≥ 0 and

to be positive for k = 0, ...,M∗−1. Therefore, we need to check Υk+b(k+1)−Φk−x ≥ 0,

which holds since this condition is equivalent to

b ≥ Φk+1 + x

k + 1
.

Note that in this regime, we have ξ1 ≥ 0. In addition, ξl = ξ1 + (ξ1 − ξ2)Γk ≥ 0.

Therefore, for each k the power allocation is feasible in the regime given by (D.44). It

can also be checked that br1 > x is satisfied. This completes the proof.

D.6.1 Convergence for L→∞.

In the continuum infinity of layers, i.e., by letting L → ∞, this scheme converges to

∆∞ml(b, x) = max{x, b(k + 1)} when 0 ≤ ηk < 1, i.e.,

b ∈
[

Φk+1 + x

k + 1
,

Φk
k + 1

)
,

and it converges to

∆∞ml(b, x) = Φk + x

(
b(k + 1)− Φk
b(k + 1)− Φk+1

)
,

when ηk ≥ 1, that is, for

b ∈
[

Φk
k + 1

,
Φk + x

k

)
.
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Proofs for Chapter 5

E.1 Proof of Lemma 20

In the rate expression and joint pmf in Theorem 15, we set Xn = (Xn
1 , X

n
2 ), Y n =

(Y n1 , Y
n
2 , Z

n), V = ∅, and generate Xn
R and Xn

1 independent of the rest of the random

variables with distributions p∗(xR) and p∗(x1), which maximize the mutual information

terms in (5.5), respectively. Under this set of distributions we have

I(X;Y ŶR|XRU) = I(X1X2;Y1Y2ŶRZ|XR, U)
(a)
= I(X1X2;Y2ŶR|XRUZ)
(b)
= I(X2;Y2|Z) + I(X1; ŶR|UZ)

= R1 + I(X1; ŶR|UZ),

I(U ;YR|XRV ) = I(U ;YR|XR)
(c)
= I(U ;YR),

I(XXR;Y ) = I(X1X2XR;Y1Y2Z)
(d)
= I(X2XR;Y1Y2|Z)
(e)
= I(XR;Y1) + I(X2;Y2|Z) = R0 +R1,

I(ŶR;YR|XXRUY ) = I(ŶR;YR|XRX1X2UY1Y2Z)
(f)
= I(ŶR;YR|XRX1X2UY2Z)
(g)
= I(ŶR;YR|X1UZ),

I(ŶR;YR|Y XRU) = I(ŶR;YR|Y1Y2ZXRU)
(h)
= I(ŶR;YR|UZ),

I(XR;Y |V ) = I(XR;Y1Y2Z) = I(XR;Y1) = R0,

where (a) is due to the Markov chain (X1X2)−XR−Y1; (b), (c), (e), (f), (g), (h) are due

to the independence of (U,X1) and XR, and (d) is due to the Markov chain (Y1Y2) −
(X2XRZ)−X1.

175
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Then, (5.8) reduces to the following rate

R = sup
P

min{I(U ;YR) +R1 + I(X1; ŶR|UZ), R1 +R0 − I(ŶR;YR|X1UZ)},

s.t. R0 ≥ I(ŶR;YR|UZ). (E.1)

By denoting by the joint distributions in P such the the minimum in R is achieved for

the first argument, i.e.,

R0 − I(ŶR;YR|X1UZ) ≥ I(U ;YR) + I(X1; ŶR|UZ), (E.2)

and arranging using the chain rule for the mutual information, we have that the rate

achievable by pDCF is lower bounded by

R ≥sup
P

R1 + I(U ;YR) + I(X1; ŶR|UZ)

s.t. R0 ≥ I(U ;YR) + I(X1YR; ŶR|UZ), (E.3)

R0 ≥ I(ŶR;YR|UZ). (E.4)

From (E.3), we have

R0 ≥ I(U ;YR) + I(X1YR; ŶR|UZ)
(a)
= I(U ;YR) + I(ŶR;YR|UZ)

≥ I(ŶR;YR|UZ), (E.5)

where (a) is due to the Markov chain ŶR − (UYR)− (X1Z). Hence, (E.3) implies (E.4),

i.e., the latter condition is redundant, and R ≥ C. Therefore the capacity expression C
in (5.7) is achievable by pDCF. This concludes the proof.

E.2 Proof of Lemma 21

Consider any sequence of (2nR, n, νn) codes such that limn→∞ νn → 0. We need to show

that R ≤ Rup.
Let us define Ui , (Y i−1

R1 Xn
1i+1Z

n\i) and ŶRi , (Y n1i+1). For such ŶRi and Ui, the

following Markov chain holds

ŶRi − (Ui, YRi)− (X1i, X2i, Zi, Y1i, Y2i, XRi). (E.6)

From Fano’s inequality, we have

H(W |Y n1 Y n2 Zn) ≤ nεn, (E.7)
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such that εn → 0 as n→∞.

First, we derive the following set of inequalities related to the capacity of the source-

destination channel.

nR = H(W )
(a)
= I(W ;Y n1 Y

n
2 |Zn) +H(W |Y n1 Y n2 Zn)

(b)

≤ I(Xn
1 X

n
2 ;Y n1 Y

n
2 |Zn) + nεn, (E.8)

where (a) follows from the independence of Zn and W and (b) follows from Fano’s

inequality in (E.7).

We also have the following inequalities:

I(Xn
2 ;Y n2 |Zn) =

n∑
i=1

H(Y2i|ZnY i−1
21 )−H(Y2i|ZnY i−1

21 Xn
2 )

(a)

≤
n∑
i=1

H(Y2i|Zi)−H(Y2i|ZiX2i)

=

n∑
i=1

I(X2i;Y2i|Zi)

(b)
= nI(X2Q′ ;Y2Q′ |Q′)
(c)

≤ nI(X2Q′ ;Y2Q′)
(d)

≤ nR1, (E.9)

where (a) follows since conditioning reduces entropy, (b) follows by defining Q′ as a uni-

formly distributed random variable over {1, ..., n} and (X2Q′ , Y2Q′) as a pair of random

variables satisfying Pr{X2i = x2, Y2i = y2} = Pr{X2Q′ = x2, Y2Q′ = y2|Q = i} for

i = 1, ..., n, (c) follows from the Markov chain relation Q′−X2Q′ −Y2Q′ and (d) follows

from the definition of R1 in (5.5).

Then, we can bound the achievable rate as,

nR = I(W ;Y n1 Y
n
2 Z

n) +H(W |Y n1 Y n2 Zn)
(a)

≤ I(W ;Y n1 Y
n
2 Z

n) + nεn
(b)
= I(W ;Y n2 |Zn) + I(W ;Y n1 |Y n2 Zn) + nεn
(c)

≤ I(Xn
2 ;Y n2 |Zn) + I(W ;Y n1 |Y n2 Zn) + nεn

(d)

≤ nR1 +H(Y n1 |Y n2 Zn)−H(Y n1 |WZn) + nεn
(e)

≤ nR1 +H(Y n1 |Zn)−H(Y n1 |WXn
1 Z

n) + nεn
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(f)
= nR1 + I(Xn

1 ;Y n1 |Zn) + nεn
(g)

≤ nR1 +H(Xn
1 )−H(Xn

1 |Y n1 Zn) + nεn

= nR1 +

n∑
i=1

H(X1i|Xn
1i+1)−H(Xn

1 |Y n1 Zn) + nεn

(h)

≤ nR1 +

n∑
i=1

[
I(Y i−1

R1 Zn\i;YRi) +H(X1i|Xn
1i+1)

]
−H(Xn

1 |Y n1 Zn) + nεn

= nR1 +

n∑
i=1

[
I(Y i−1

R1 Zn\iXn
1i+1;YRi)− I(Xn

1i+1;YRi|Y i−1
R1 Zn\i)

+H(X1i|Y i−1
R1 Zn\iXn

1i+1) + I(X1i;Y
i−1
R1 Zn\i|Xn

1i+1)

]
−H(Xn

1 |Y n1 Zn) + nεn

(i)
= nR1 +

n∑
i=1

[
I(Y i−1

R1 Zn\iXn
1i+1;YRi) +H(X1i|Y i−1

R1 Zn\iXn
1i+1)

]
−H(Xn

1 |Y n1 Zn) + nεn

= nR1 +

n∑
i=1

[
I(Ui;YRi) +H(X1i|Ui)

]
−H(Xn

1 |Y n1 Zn) + nεn

(j)

≤ nR1 +

n∑
i=1

[
I(Ui;YRi) +H(X1i|Ui)−H(X1i|UiZiŶRi)

]
+ nεn

(k)
= nR1 +

n∑
i=1

[
I(Ui;YRi) + I(X1i; ŶRi|UiZi)

]
+ nεn.

where (a) is due to Fano’s inequality; (b) is due to the chain rule and the independence

of Zn from W ; (c) is due to the data processing inequality, (d) is due to the Markov

chain relation Y n2 − (W,Zn) − Y n1 and (E.9), (e) is due to the fact that conditioning

reduces entropy, and that Xn
1 is a deterministic function of W ; (f) is due to the Markov

chain relation Y n1 −Xn
1 −W ; (g) is due to the independence of Zn and Xn

1 ; (i) follows

because

n∑
i=1

I(X1i;Y
i−1
R1 Zn\i|Xn

1i+1)
(l)
=

n∑
i=1

I(X1i;Y
i−1
R1 |X

n
1i+1Z

n\i)

(m)
=

n∑
i=1

I(Xn
1i+1;YRi|Y i−1

R1 Zn\i), (E.10)

where (l) is due to the independence of Zn and Xn
1 ; and (m) is the conditional version

of Csiszár’s equality [25]. Inequality (j) is due to the following bound,

H(Xn
1 |Y n1 Zn) =

n∑
i=1

H(X1i|Xn
1i+1Z

nY n1 )

≥
n∑
i=1

H(X1i|Y i−1
R1 Xn

1i+1Z
nY n1 )
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(n)
=

n∑
i=1

H(X1i|Y i−1
R1 Xn

1i+1Z
nY n1i+1)

=

n∑
i=1

H(X1i|UiZiŶRi), (E.11)

where (n) is follows from the Markov chain relation X1i − (Y i−1
R1 Xn

1i+1Z
nY n1i+1) − Y i11,

and noticing that XRi = fr,i(Y
i−1
R1 ). Finally, (k) is due to the fact that Zi independent

of (X1i, Ui).

We can also obtain the following sequence of inequalities

nR0 + nR1

(a)

≥ I(Xn
R;Y n1 ) + I(Xn

2 ;Y n2 |Zn)
(b)

≥ H(Y n2 |Zn)−H(Y n2 |Xn
2 Z

n) +H(Y n1 |Y n2 Zn)−H(Y n1 |Xn
R)

= H(Y n1 Y
n
2 |Zn)−H(Y n2 |Xn

2 Z
n)−H(Y n1 |Xn

R)
(c)
= H(Y n1 Y

n
2 |Zn)−H(Y n2 |Xn

1 X
n
2 Y

n
RZ

n)−H(Y n1 |Xn
RX

n
1 X

n
2 Y

n
RY

n
2 Z

n)
(d)
= H(Y n1 Y

n
2 |Zn)−H(Y n1 Y

n
2 |Xn

1 X
n
2 Y

n
RZ

n)

= I(Y n1 Y
n
2 ;Xn

1 X
n
2 Y

n
R |Zn)

= I(Xn
1 X

n
2 ;Y n1 Y

n
2 |Zn) + I(Y n1 Y

n
2 ;Y nR |Xn

1 X
n
2 Z

n)
(e)

≥ nR+ I(Y n1 Y
n
2 ;Y nR |Xn

1 X
n
2 Z

n)− nεn
(f)
= nR+ I(Y n1 ;Y nR |Xn

1 Z
n)− nεn

= nR+
∑
i=1

I(Y n1 ;YRi|Xn
1 Y

i−1
R1 Zn)− nεn

≥ nR+
∑
i=1

I(Y n1i+1;YRi|Xn
1 Y

i−1
R1 Zn)− nεn

(g)

≥ nR+
∑
i=1

I(Y n1i+1;YRi|Xn
1iY

i−1
R1 Zn)− nεn

= nR+
∑
i=1

I(ŶRi;YRi|X1iUiZi)− nεn,

where (a) follows from the definitions of R0 and R1 in (5.5); (b) is due to the fact that

conditioning reduces entropy; (c) is due to the Markov chains Y n2 − (Xn
2 Z

n)− (Xn
1 Y

n
R )

and Y n1 − Xn
R − (Xn

1 X
n
2 Y

n
RY

n
2 Z

n); (d) is follows since Xn
R is a deterministic function

of Y nR ; (e) is due to the expression in (E.8); (f) is due to the Markov chain (Y nRY
n
1 ) −

(Xn
1 Z

n)− (Xn
2 Y

n
2 ) and; (g) is due to the Markov chain (Y n1i+1)− (Xn

1iY
i−1
R1 Zn)−Xi−1

11 .

A single letter expression can be obtained by using the usual time-sharing random

variable arguments. Let Q be a time sharing random variable uniformly distributed over

{1, ..., n}, independent of all the other random variables. Also, define a set of random
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variables (X1Q, YRQ, UQ, ŶRQ, ZQ) satisfying

Pr{X1Q = x1, YRQ = yR, UQ = u, ŶRQ = ŷR, ZQ = z|Q = i}

= Pr{X1i = x1, YRi = yR, Ui = u, ŶRi = ŷD, Zi = z} for i = 1, ..., n.

Define U = (UQ, Q), ŶR = ŶRQ, X1 = X1Q, YRQ = YR and Z = ZQ. We note that the

pmf of the tuple (X1, YR, U, ŶR, Z) belongs to P in (5.6) as follows:

p(u, x1, yR, z, ŷR) = p(q, uQ, x1Q, yRQ, zQ, ŷRQ)

= p(q, uQ, x1Q)p(zQyRQŷRQ|q, uQx1Q)

= p(q, uQ, x1Q)p(zQ|q, uQ, x1Q)p(yRQ, ŷRQ|q, uQ, x1Q, zQ)
(a)
= p(q, uQ, x1Q)p(z)p(yRQ|q, uQ, x1Q, zQ)p(ŷRQ|q, uQ, x1Q, zQ, yRQ)
(b)
= p(q, uQ, x1Q)p(z)p(yR|x1, z)p(ŷRQ|q, uQ, x1Q, zQ, yRQ)
(c)
= p(q, uQ, x1Q)p(z)p(yR|x1, z)p(ŷRQ|q, uQ, yRQ)

= p(u, x1)p(z)p(yR|x1, z)p(ŷR|u, yR),

where (a) follows since the channel state Zn is i.i.d. and thus p(zQ|q, uQ, x1Q) =

p(zQ|q) = p(z), (b) follows since p(yRQ|q, uQ, x1Q, zQ) = p(yRQ|q, x1Q, zQ) = p(yR|x1, z),

(c) follows from the Markov chain in (E.6).

Then, we get the single letter expression,

R ≤ R1 +
1

n

n∑
i=1

[I(Ui;YRi) + I(X1i; ŶRi|UiZi)] + εn

= R1 + I(UQ;YRQ|Q) + I(X1Q; ŶRQ|UQZQQ) + εn

≤ R1 + I(UQQ;YRQ) + I(X1Q; ŶRQQ|UQZQ) + εn

= R1 + I(U ;YR) + I(X1; ŶR|UZ) + εn,

and

R0 +R1 ≥ R+
1

n

∑
i=1

I(ŶRi;YRi|X1iUiZi)− nεn

= R+ I(ŶRQ;YRQ|X1QUQZQQ)− nεn
= R+ I(ŶR;YR|X1UZ)− nεn.

The cardinality of the bounds on the alphabets of U and ŶR can be found using the

usual techniques [25]. This completes the proof.
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E.3 Proof of Lemma 22

Now, we will show that the expression of Rup in (5.9) is equivalent to the expression C
in (5.7). First we will show that C ≤ Rup as follows. Consider the subset of pmfs in P
such that

R0 +R1 − I(ŶR;YR|X1UZ) ≥ R1 + I(U ;YR) + I(X1; ŶR|UZ) (E.12)

holds. Then, similarly to (E.5) in Appendix E this condition is necessitates

R0 ≥ I(U ;YR) + I(YR; ŶR|UZ). (E.13)

Hence, we have C ≤ Rup.
Then, it remains to show that C ≥ Rup. As R1 can be extracted from the supremum,

it is enough to show that, for each (X1, U, Z, YR, ŶR) tuple with a joint pmf pe ∈ P
satisfying

R(pe)≤ I(U ;YR) + I(X1; ŶR|UZ),

where R(pe) , R0 − I(ŶR;YR|X1UZ), (E.14)

there exist random variables (X∗1 , U
∗, Z, Y ∗R, Ŷ

∗
R) with joint pmf p∗e ∈ P that satisfy

R(pe) = I(U∗;YR) + I(X∗1 ; Ŷ ∗R|U∗Z) and

R(pe) ≤ R0 − I(Ŷ ∗R;YR|X∗1U∗Z). (E.15)

This argument is proven next.

Let B denote a Bernoulli random variable with parameter λ ∈ [0, 1], i.e., B = 1

with probability λ, and B = 0 with probability 1− λ. We define the triplets of random

variables:

(U
′
, X
′

1, Ŷ
′

R) =

(U,X1, ŶR) if B = 1,

(X1, X1, ∅) if B = 0,
(E.16)

and

(U
′′
, X
′′

1 , Ŷ
′′

R ) =

(X1, X1, ∅) if B = 1,

(∅, ∅, ∅) if B = 0.
(E.17)

We first consider the case R(pe) > I(X1;YR). Let U∗ = (U
′
, B), X∗1 = X

′

1, Ŷ ∗R =
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(Ŷ
′

R, B). For λ = 1,

I(U∗;YR) + I(X∗1 ; Ŷ ∗R|U∗Z) = I(U ;YR) + I(X1; ŶR|UZ) > R(pe),

and for λ = 0,

I(U∗;YR) + I(X∗1 ; Ŷ ∗R|U∗Z) = I(X1;YR) < R(pe).

As I(U∗;YR) + I(X∗1 ; Ŷ ∗R|U∗Z) is a continuous function of λ, by the intermediate value

theorem, there exists a λ ∈ [0, 1] such that I(U∗;YR) + I(X∗1 ; Ŷ ∗R|U∗Z) = R(pe). We

denote the corresponding joint distribution by p∗e.

We have

I(Ŷ ∗R;YR|X∗1U∗Z) = I(Ŷ
′

R;YR|X
′

1U
′
ZB)

= λI(ŶR;YR|X1UZ)

≤ I(ŶR;YR|X1UZ), (E.18)

which implies that p∗e satisfies (E.15) since

R(pe) = R0 − I(ŶR;YR|X1UZ)

≤ R0 − I(Ŷ ∗R;YR|X∗1U∗Z). (E.19)

Next we consider the case R(pe) ≤ I(XR;Y1). We define U∗ = (U
′′
, B), X∗1 = X

′′

1 and

Ŷ ∗R = (Ŷ
′′

R , B). Then, for λ = 1,

I(U∗;YR) + I(X∗1 ; Ŷ ∗R|U∗Z) = I(X1;YR) ≥ R(pe),

and for λ = 0,

I(U∗;YR) + I(X∗1 ; Ŷ ∗R|U∗Z) = 0 < R(pe). (E.20)

Once again, as I(U∗;YR)+I(X∗1 ; Ŷ ∗R|U∗Z) is a continuous function of λ, by the inter-

mediate value theorem, there exists a λ ∈ [0, 1] such that I(U∗;YR) + I(X∗1 ; Ŷ ∗R|U∗Z) =

R(pe). Again, we denote this joint distribution by p∗e. On the other hand, we have

I(Ŷ ∗R;YR|X∗1U∗Z) = 0, which implies that

R(pe) = R0 − I(ŶR;YR|X1UZ)

≤ R0

= R0 − I(Ŷ ∗R;YR|X∗1U∗Z). (E.21)

That is, p∗e also satisfies (E.15).
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We have shown that for any joint pmf pe ∈ P satisfying (E.14), there exist another

joint pmf, p∗e, that satisfies (E.15). For a distribution satisfying (E.15) we can write

R0 > I(U∗;YR) + I(X∗1 ; Ŷ ∗R|U∗Z) + I(Ŷ ∗R;YR|X∗1U∗Z)

= I(U∗;YR) + I(YRX
∗
1 ; Ŷ ∗R|U∗Z)

(a)
= I(U∗;YR) + I(Ŷ ∗R;YR|U∗Z)

where (a) is due to Markov chain X∗1 − (YRZU
∗)− Ŷ ∗R. This concludes the proof.

E.4 Proof of Lemma 23

Before deriving the maximum achievable rate by CF in Lemma 23, we provide some

definitions that will be used in the proof.

Let X and Y be a pair of discrete random variables, where X = {1, 2, ..., n} and

Y = {1, 2, ...,m}, for n,m <∞. Let pY ∈ ∆m denote the distribution of Y , where ∆k

denotes the (k− 1)-dimensional simplex of probability k-vectors. We define TXY as the

n×m stochastic matrix with entries TXY (j, i) = Pr{X = j|Y = i}. Note that the joint

distribution p(x, y) is characterized by TXY and pY .

Next, we state the conditional entropy bound from [96], which lower bounds the

conditional entropy between two variables. Note the relabeling of the variables to fit

our model.

Definition 4 (Conditional Entropy Bound). Let pY ∈ ∆m be the distribution of Y and

TXY denote the channel matrix relating X and Y . Then, for q ∈ ∆m and 0 ≤ s ≤ H(Y ),

define the function

FTXY (q, s) , inf
p(w|y): X−Y−W,
H(Y |W )=s, pY =q.

H(X|W ). (E.22)

That is, FTXY (q, s) is the infimum of H(X|W ) given a specified distribution q and

the value of H(Y |W ). Many properties of FTXY (q, s) are derived in [96], such as its

convexity on (q, s) [96, Theorem 2.3] and its non-decreasing monotonicity in s [96,

Theorem 2.5].

Consider a sequence of N random variables Y = (Y1, ..., YN ) and denote by qi the

distribution of Yi, for i = 1, ..., N , by q(N) the joint distribution of Y and by q =
1
N

∑N
i=1 qi the average distribution. Note that Y1, ..., YN can have arbitrary correlation.

Define the sequence X = (X1, ..., XN ), in which Xi, i = 1, ..., N , is jointly distributed

with each Yi through the stochastic matrix TXY and denote by T
(N)
XY the Kronecker

product of N copies of the stochastic matrix TXY .

Then, the theorem given in [96, Theorem 2.4] can be straightforwardly generalized
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to non i.i.d. sequences as given in the following lemma.

Lemma 35. For N = 1, 2, ..., and 0 ≤ Ns ≤ H(Y), we have

F
T

(N)
XY

(q(N), Ns) ≥ NFTXY (q, s), (E.23)

where equality holds for i.i.d. Yi components following q.

Proof. Let W,X,Y be a Markov chain, such that H(Y|W ) = Ns. Then, using the

standard identity we have

H(Y|W ) =

N∑
k=1

H(Yk|Yk−1
1 ,W ), (E.24)

H(X|W ) =

N∑
k=1

H(Xk|Xk−1
1 ,W ). (E.25)

Letting sk = H(Yk|Yk−1
1 ,W ), we have

1

N

N∑
k=1

sk = s. (E.26)

Also, from the Markov chain Xk − (Yk−1
1 ,W )−Xk−1

1 , we have

H(Xk|Xk−1
1 ,W ) ≥ H(Xk|Yk−1

1 ,Xk−1
1 ,W ) (E.27)

= H(Xk|Yk−1
1 ,W ). (E.28)

Applying the conditional entropy bound in (E.22) we have

H(Xk|Yk−1
1 ,W ) ≥ FTXY (qk, sk). (E.29)

Combining (E.25), (E.27) and (E.29) we have

H(X|W ) ≥
N∑
k=1

FTXY (qk, sk) ≥ NFTXY (q, s),

where the last inequality follows from the convexity of FT (q, s) in q and s and (E.26).

If we let W,Y, X be N independent copies of the random variables W,X, Y , that

achieve FTXY (q, s), we have H(Y|W ) = Ns and H(X|W ) = F
T

(N)
XY

(qN ) = NFTXY (q, s).

Hence, F
T

(N)
XY

(qN ) ≤ NFTXY (q, s) and the equality holds for i.i.d. components of Y.

Now, we look into the binary symmetric channel Y = X ⊕ N where N ∼ Ber(δ).

Due to the binary modulo-sum operation, we have X = Y ⊕N , and we can characterize
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the channel TXY of this model as

TXY =

[
1− δ δ

δ 1− δ

]
. (E.30)

When Y and X are related through channel TXY in (E.30), FTXY (q, s) is character-

ized as follows [96].

Lemma 36. Let Y ∼ Ber(q), i.e., q = [q, 1− q], and TXY be given as in (E.30). Then

the conditional entropy bound is

FTXY (q, s) = h2(δ ? h−1
2 (s)), for 0 ≤ s ≤ h2(q).

In the following, we use the properties of FTXY (q, s) to derive the maximum rate

achievable by CF in the parallel binary symmetric MRC-D. From (5.16), we have

I(Y 1
R, Y

2
R; ŶR|Z) = I(X1

1 ⊕N1 ⊕ Z,X2
1 ⊕N2; ŶR|Z)

= I(X1
1 ⊕N1, X

2
1 ⊕N2; ŶR|Z).

Let us define Ȳ 1
R , X1

1 ⊕ N1 and ȲR , (Ȳ 1
R, Y

2
R), and the channel input X ,

(X1
1 , X

2
1 ). Note that the distribution of ȲR, given by q(2), determines the distribution

of X via T
(2)
XY , the Kronecker product of TXY in (E.30). Then, we can rewrite the

achievable rate for CF in (5.16) as follows

RCF = max
p(x)p(z)p(ȳR|x)p(ŷR|ȳR,z)

I(X, ŶR|Z)

s.t. R0 ≥ I(ȲR; ŶR|Z) (E.31)

Next, we derive a closed form expression for RCF . First, we note that if R0 ≥ 2, we

have H(ȲR) ≤ R0 and RCF = 2(1− h(δ)), i.e., CF meets the cut-set bound.

For fixed q(2), if H(ȲR)≤ R0 ≤ 2, the constraint in (E.31) is satisfied by any ŶR,

and can be ignored. Then, due to the Markov chain X − ȲR − ŶRZ, and the data

processing inequality, the achievable rate is upper bounded by

RCF ≤ I(X, ȲR) = H(ȲR)− 2h(δ) ≤ R0 − 2h(δ). (E.32)

For R0 ≤ H(ȲR) ≤ 2, the achievable rate by CF is upper bounded as follows.

RCF
(a)
= max

p(x)p(z)p(ȳR|x)p(ŷR|ȳR,z)
H(X)−H(X|ZŶR)

s.t. H(ȲR|ZŶR) ≥ H(ȲR)−R0

(b)

≤ max
p(x)p(ȳR|x)p(w|ȳR)

H(X)−H(X|W )
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s.t. H(ȲR|W ) ≥ H(ȲR)−R0

= max
p(x)p(ȳR|x)

[H(X)− min
p(w|ȳR)

H(X|W )]

s.t. H(ȲR|W ) ≥ H(ȲR)−R0

(c)
= max

p(x)p(ȳR|x),0≤s≤H(ȲR)
[H(X)− F

T
(2)
XY

(q(2), s)]

s.t. s ≥ H(ȲR)−R0

(d)
= max

p(x)p(ȳR|x)
[H(X)− F

T
(2)
XY

(q(2), H(ȲR)−R0)]

(e)

≤ max
p(x)p(ȳR|x)

[H(X)− 2FTXY (q, (H(ȲR)−R0)/2)],

(f)
= max

p(x)p(ȳR|x)
[H(X)− 2h2(δ ? h−1

2 (H(ȲR)−R0)/2))]

s.t. 0 ≤ (H(ȲR)−R0)/2 ≤ h2(q)}
(g)

≤ max
p(x)p(ȳR|x)

[H(X)− 2h2(δ ? h−1
2 (H(ȲR)−R0)/2))]

s.t. R0 ≤ H(ȲR) ≤ 2 +R0

where (a) follows from the independence of Z from X and ȲR, (b) follows since op-

timizing over W can only increase the value compared to optimizing over (Z, ŶR), (c)

follows from the definition of the conditional entropy bound in (E.22), (d) follows from

the nondecreasing monotonicity of F
T

(2)
XY

(q(2), s) in s, and (e) follows from Lemma 35,

and q , [q, 1 − q] = 1
2 (q1 + q2) is the average distribution of Y. Equality (f) follows

from the definition of FTXY (q, s) for the binary symmetric channel, and (g) follows since

we are increasing the optimization domain since h2(q) ≤ 1.

Now, we lower bound H(ȲR). Since conditioning reduces entropy, we have H(ȲR) ≥
H(ȲR|N1N2) = H(X), and then we can lower bound H(ȲR) as follows:

max{H(X), R0} ≤ H(ȲR) ≤ 2. (E.33)

Then, we have

RCF
(a)
= max

p(x)
[H(X)− 2h2(δ ? h−1

2 (H(ȲR)−R0)/2))]

s.t. max{H(X), R0} ≤ H(ȲR) ≤ 2
(b)

≤ max
p(x)

[H(X)− 2h2(δ ? h−1
2 ((max{H(X), R0} −R0)/2))]

s.t. max{H(X), R0} ≤ H(ȲR) ≤ 2
(c)
= max

0≤α≤1
[2α− 2h2(δ ? h−1

2 ((max{2α,R0} −R0)/2))]

s.t. max{R0, 2α} ≤ 2,
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where (a) follows since there is no loss in generality by introducing (E.33) since it is

satisfied by any (X, ȲR) following p(x, ȳR), (b) follows from (E.33) and FTXY (q, s) being

non-decreasing in s, and (c) follows from defining H(X) , 2α, for 0 ≤ α ≤ 1.

Then, for 2α ≤ R0, we have

RCF ≤ max
0≤α≤R0/2

[2α− 2h2(δ)] = R0 − 2h2(δ), (E.34)

and for 2α > R0, we have

RCF ≤ max
R0/2<α≤1

[2α− 2h2(δ ? h−1
2 (α−R0/2))]. (E.35)

Now, we solve (E.35). Let us define f(u) , h2(δ ? h−1
2 (u)) for 0 ≤ u ≤ 1. Then, we

have the following lemma from [97].

Lemma 37 ([97]). Function f(u) is convex for 0 ≤ u ≤ 1.

Then, we define g(α) , α−h2(δ?h−1
2 (α−R0/2)), such thatRCF ≤ maxR0/2<α≤1 2g(α).

We have that g(α) is concave in α, since is a shifted version by α, which is linear with

the composition of the concave function −f(u) and the affine function α−R0/2.

Proposition 2. g(α) is monotonically increasing for R0/2 ≤ α ≤ 1 +R0/2.

Proof. Using the chain rule for composite functions, we have

d2g(α)

dα2
= −f ′′(α−R0/2), (E.36)

where f ′′(u) , d2f/du2(u).

Since g(α) is convex and is defined over a convex region, it follows that its unique

maximum is achieved either for f ′′(α−R0/2) = 0, or at the boundaries of the region. It

is shown in [97, Lemma 2] that f ′′(u) > 0 for 0 < u < 1. That means that the maximum

is achieved either at u = 0 or at u = 1, or equivalently, for α = R0/2 or α = 1 + R0/2.

Since g(R0/2) = R0/2− h2(δ) and g(1 +R0/2) = R0/2, i.e., g(R0/2) < g(1 +R0/2), it

follows that g(α) is monotonically increasing in α for R0/2 ≤ α ≤ 1 +R0/2.

From Proposition 2 if follows that for R0/2 ≤ α ≤ 1, g(α) achieves its maximum at

α = 1. Then, for 2α > R0, we have

RCF ≤ 2(1− h2(δ ? h−1
2 (1−R0/2))). (E.37)

Thus, from (E.34) and (E.37), we have that for R0 ≤ H(ȲR)

RCF ≤ 2 max{R0/2− h2(δ), 1− h2(δ ? h−1
2 (1−R0/2))}

= 2(1− h2(δ ? h−1
2 (1−R0/2))), (E.38)
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where the equality follows from Proposition 2 by noting that the first element in the

maximum coincides with g(R0/2) = R0/2− h2(δ), and the second one coincides g(1).

Finally, RCF is upper bounded by the maximum over the joint distributions sat-

isfying H(ȲR) ≤ R0 given in (E.32) and the upper bound for the joint distributions

satisfying R0 ≤ H(ȲR) given in (E.38). Since (E.32) coincides with g(R0/2), RCF is

upper bounded when R0 ≤ H(ȲR) as in (E.38).

Next, we show that the upper bound on the rate in (E.38) is achievable by considering

the following variables

X1
1 ∼ Ber(1/2), X2

1 ∼ Ber(1/2), ŶR = (Ŷ 1
R, Ŷ

2
R),

Ŷ 1
R = Y 1

R ⊕Q1, Q1 ∼ Ber(h−1
2 (1−R0/2)),

Ŷ 2
R = Y 2

R ⊕Q2, Q2 ∼ Ber(h−1
2 (1−R0/2)).

Let Qi ∼ Ber(ν) for i = 1, 2. Then from the constraint in (5.16) we have

I(Y 1
R, Y

2
R; ŶR|Z) = H(ŶR|Z)−H(ŶR|Y 1

RY
2
RZ)

= H(X1
1 ⊕N1 ⊕Q1, X

2
1 ⊕N2 ⊕Q2)−H(Q1, Q2)

(a)
= 2− 2h2(ν),

where (a) follows since Xi
1 ∼ Ber(1/2), i = 1, 2 and from the independence of Q1 and

Q2. We have 2h2(ν) ≥ 2−R0, and thus, ν ≥ h−1
2 (1−R0/2).

Then, the achievable rate in (5.16) is given by

I(X; ŶR|Z) = H(ŶR|Z)−H(ŶR|XZ)

= H(X1
1 ⊕N1 ⊕Q1, X

2
1 ⊕N2 ⊕Q2)−H(N1 ⊕Q1, N2 ⊕Q2)

= 2− 2h(δ ? ν)

≤ 2− 2h2(δ ? h−1
2 (1−R0/2)),

where the last inequality follows from the bound on ν. This completes the proof.

E.5 Proof of Lemma 24

From (5.7), the achievable rate for the proposed pDCF scheme is given by

RpDCF = sup I(X1
1 ;Y 1

R) + I(X2
1 ; ŶR|Z)

s.t. R0 ≥ I(X1
1 ;Y 1

R) + I(Y 2
R; ŶR|Z).
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First, we note that the constraint is always satisfied for the choice of variables:

I(X1
1 ;Y 1

R) + I(Y 2
R; ŶR|Z) = H(Y 1

R)−H(N1) +H(X2
1 ⊕N2 ⊕Q)−H(Q)

= 1− h2(δ) + 1− h2(h−1
2 (2− h(δ)−R0))

= R0, (E.39)

where H(Y 1
R) = 1 since X1

1 ∼ Ber(1/2) and H(X2
1 ⊕N2 ⊕Q) = 1 since X2

1 ∼ Ber(1/2).

Then, similarly the achievable rate is given by

RpDCF = I(X1
1 ;Y 1

R) + I(X2
1 ; ŶR|Z)

= H(Y 1
R)−H(N1) +H(X2

1 ⊕N2 ⊕Q)−H(V ⊕Q)

= 1− h2(δ) + 1− h2(δ ? h−1
2 (2− h(δ)−R0)),

which completes the proof.

E.6 Proof of Lemma 27

By evaluating (5.7) with the considered Gaussian random variables, we get

R =
1

2
log

(
1 +

αP

ᾱP + 1

)(
1 +

ᾱP

(1− ρ2) + σ2
q

)
s.t. R0 ≥

1

2
log

(
1 +

αP

ᾱP + 1

)(
1 +

ᾱP + (1− ρ2)

σ2
q

)
.

We can rewrite the constraint on R0 as,

σ2
q ≥ f(α) ,

(P + 1)(ᾱP + 1− ρ2)

22R0(ᾱP + 1)− (P + 1)
. (E.40)

Since R is increasing in σ2
q , it is clear that the optimal σ2

q is obtained by σ2
q = f(α),

where α is chosen such that f(α) ≥ 0. It is easy to check that f(α) ≥ 0 for

α ∈
[
0,min

{
(1− 2−2R0)

(
1 +

1

P

)
, 1

}]
. (E.41)

Now, we substitute σ2
q = f(α) in (E.40), and write the achievable rate as a function of

α as

R(α) =
1

2
logG(α), (E.42)
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where

G(α) ,

(
1 +

αP

ᾱP + 1

)(
1 +

ᾱP

(1− ρ2) + f(α)

)
=

22R0(1 + P )(1− ρ2 + ᾱP )

(1− ρ2)22R0(1 + ᾱP ) + ᾱP (1 + P )
. (E.43)

We take the derivative of G(α) with respect to α:

G′(α) ,
22R0P (1 + P )

(
1− ρ2

) (
P + 1− 22R0ρ2

)
[P (1 + P )ᾱ+ 22R0(1 + ᾱP ) (1− ρ2)]

2 .

We note that if ρ2 ≥ 2−R0(P + 1), then G′(α) < 0, and hence, G(α) is monotonically

decreasing. Achievable rate R is maximized by setting α∗ = 0. When ρ2 < 2−R0(P +1),

we have G′(α) > 0, and hence α∗ = min
{

(1− 2−R0)
(
1 + 1

P

)
, 1
}

= 1, since we have

(1− 2−R0)
(
1 + 1

P

)
≥ (1 + 1−ρ2

P ) > 1.

E.7 Proof of Lemma 28

In order to characterize the capacity of the binary symmetric MRC-D, we find the

optimal distribution of (U,X1, ŶR) in Theorem 14 for Z ∼ Ber(1/2). First, we note that

U is independent of YR since

I(U ;YR) ≤ I(X1;YR) = 0, (E.44)

where the inequality follows from the Markov chain U−X1−YR, and the equality follows

since for Z ∼ Ber(1/2) the channel output of the binary channel YR = X1 ⊕N ⊕ Z is

independent of the channel input X1 [24]. Then, the capacity region in (5.7) is given by

C = sup {I(X1; ŶR|UZ) : R0 ≥ I(YR; ŶR|UZ)},

over p(u, x1)p(z)p(yR|x1, z)p(ŷR|yR, u). (E.45)

Let us define Ȳ , X1 ⊕N . The capacity is equivalent to

C = sup {I(X1; ŶR|UZ) : H(Ȳ |Ŷ UZ) ≥ H(Ȳ |U)−R0},

over p(u, x1)p(z)p(ȳ|x1)p(ŷR|ȳ, u, z), (E.46)

where we have used the fact that Ȳ is independent from Z.

For any joint distribution for which 0 ≤ H(Ȳ |U) ≤ R0, the constraint in (E.46)

is also satisfied. In that case, we can find the following upper bound on the capacity.

It follows from the Markov chain X1 − Ȳ − ŶR given U,Z, and the data processing
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inequality, that

C ≤ max
p(u,x1)

{I(X1; Ȳ |ZU) : H(Ȳ |U) ≤ R0} (E.47)

= max
p(u,x1)

{H(Ȳ |U)− h2(δ) : H(Ȳ |U) ≤ R0}

≤ R0 − h2(δ).

We next consider the joint distributions for which R0 ≤ H(Ȳ |U). Let p(u) = Pr[U =

u] for u = 1, .., |U|, and we can write

I(X1; ŶR|UZ) = H(X1|U)−
∑
u

p(u)H(X1|ŶRZu), (E.48)

and

I(YR; ŶR|UZ)
(a)
= I(Ȳ ; ŶR|UZ)

(b)
= H(Ȳ |U)−

∑
u

p(u)H(Ȳ |ŶRZu),

where (a) follows from the definition of Ȳ , and (b) follows from the independence of Z

from Ȳ and U .

For each u, the channel input X1 corresponds to a binary random variable Xu ∼
Ber(νu), where νu , Pr[X1 = 1|U = u] = p(1|u) for u = 1, ..., |U|. The channel output

for each Xu is given by Ȳu = Xu ⊕N . We denote by qu , Pr[Yu = 1] = Pr[YR = 1|U =

u]. Similarly, we define Ŷu as ŶR for each u value. Note that for each u, Xu − Ȳu − Ŷu
form a Markov chain. Then, we have H(X1|u) = h2(νu) and H(Ȳ |u) = h2(δ ? νu). We

define su , H(Ȳ |ŶRZu), such that 0 ≤ su ≤ H(Ȳu). Substituting (E.48) and (E.49) in

(E.46) we have

C = max
p(u,x1)p(ŷR|yR,u)

[H(X1|U)−
∑
u

p(u)H(X1|ŶRZu)]

s.t. R0 ≥ H(Ȳ |U)−
∑
u

p(u)H(Ȳ |ŶRZu)

(a)
= max

p(u,x1),
[H(X1|U)−

∑
u

p(u)FTXY (qu, su)]

s.t. R0 ≥ H(Ȳ |U)−
∑
u

p(u)su, 0 ≤ su ≤ H(Ȳu)

(b)
= max

p(u,x1)
[H(X1|U)−

∑
u

p(u)h2(δ ? h−1
2 (su))]

s.t. R0 ≥ H(Ȳ |U)−
∑
u

p(u)su, 0 ≤ su ≤ H(Ȳu),

(c)

≤ max
p(u,x1)

H(X1|U)− h2

(
δ ? h−1

2

(∑
u

p(u)su

))
s.t.

∑
u

p(u)su ≥ H(Ȳ |U)−R0,
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where (a) follows from the definition of FTXY (q, s) for channel Ȳu = Xu ⊕N , which for

each u has a matrix TXY as in (E.30), (b) follows from the expression of FTXY (q, s) for

the binary channel TXY in Lemma 36, (c) follows from noting that −h2(δ ? h−1
2 (su))

is concave on su from Lemma 37 and applying Jensen’s inequality. We also drop the

conditions on su, which can only increase C.
Then, similarly to the proof of Lemma 23, we haveH(Ȳ |U) ≥ H(Ȳ |UV ) = H(X1|U),

and we can upper bound the capacity as follows

C ≤ max
p(x1,u)

[
H(X1|U)− h2

(
δ ? h−1

2

(∑
u

p(u)su

))]
s.t.

∑
u

p(u)su ≥ max{H(X1|U), R0} −R0

≤ max
0≤α≤1

α− h2(δ ? h−1
2 (max{α,R0} −R0)), (E.49)

where we have defined α , H(X1|U).

The optimization problem can be solved similarly to the proof in Appendix E as

follows. If 0 ≤ α ≤ R0, we have s̄ ≥ 0 and

C ≤ max
0≤α≤R0

α− h2(δ) = R0 − h2(δ). (E.50)

For R0 ≤ α ≤ 1, we have

C ≤ max
R0≤α≤1

α− h2(δ ? h−1
2 (α−R0)). (E.51)

Then, it follows from a scaled version of Proposition 2 that the upper bound is

maximized for α = 1. Then, by noticing that (E.50) corresponds to the value of the

bound in (E.51) for α = R0, it follows that

C ≤ 1− h2(δ ? h−1
2 (1−R0)). (E.52)

This bound is achievable by CF. This completes the proof.

E.8 Proof of the Cut-Set Bound Optimality Condi-

tions

Cases 1 and 2 are straightforward since under these assumptions, the ORC-D studied

here becomes a particular case of the channel models in [91] and [77], respectively.

To prove case 3 we use the following arguments. For any channel input distribution
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to the ORC-D, we have

I(X1;YR|Z) = H(X1|Z)−H(X1|YR, Z)

≥ H(X1)−H(X1|YR) (E.53)

= I(X1;YR),

where we have used the independence of X1 and Z and the fact that conditioning reduces

entropy. Then, the condition maxp(x1) I(X1;YR) ≥ R0, implies maxp(x1) I(X1;YR|Z) ≥
R0; and hence, the cut-set bound is given by RCS = R1 + R0, which is achievable by

DF scheme.

In case 4, the cut-set bound is given byR1+min{R0, I(X̄1; ȲR|Z)} = R1+I(X̄1; ȲR|Z)

since R0 ≥ H(ȲR|Z). CF achieves the capacity by letting X1 be distributed with p̄(x1),

and choosing ŶR = ȲR. This choice is always possible as the CF constraint

R0 ≥ I(ŶR; ȲR|Z) = H(ȲR|Z)−H(ȲR|Z, ŶR) = H(ȲR|Z),

always holds. Then, the achievable rate for CF is RCF = R1 + I(X̄1; ŶR|Z) = R1 +

I(X̄1; ȲR|Z), which is the capacity.
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[15] D. Gündüz and E. Erkip, “Joint source–channel codes for MIMO block-fading chan-

nels,” IEEE Trans. on Information Theory, vol. 54, pp. 116–134, Jan. 2008.

[16] G. Caire and K. Narayanan, “On the distortion SNR exponent of hybrid digital–

analog space–time coding,” IEEE Trans. on Information Theory, vol. 53, pp. 2867–

2878, Aug. 2007.

[17] U. Mittal and N. Phamdo, “Hybrid digital–analog (HDA) joint source–channel

codes for broadcasting and robust communications,” IEEE Trans. on Information

Theory, vol. 48, May 2002.

[18] Y. Polyanskiy, H. Poor, and S. Verdu, “Channel coding rate in the finite blocklength

regime,” IEEE Trans. on Information Theory, vol. 56, pp. 2307 –2359, May 2010.

[19] V. Kostina and S. Verdu, “Fixed-length lossy compression in the finite blocklength

regime,” IEEE Trans. on Information Theory, vol. 58, pp. 3309 –3338, Jun. 2012.

[20] A. Fuldseth and T. Ramstad, “Bandwidth compression for continuous amplitude

channels based on vector approximation to a continuous subset of the source signal

space,” in IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing (ICASSP),

vol. 4, pp. 3093–3096 vol.4, Apr. 1997.

[21] V. Vaishampayan and S. I. R. Costa, “Curves on a sphere, shift-map dynamics,

and error control for continuous alphabet sources,” IEEE Trans. on Information

Theory, vol. 49, pp. 1658–1672, Jul. 2003.

[22] F. Hekland, P. Floor, and T. Ramstad, “Shannon-Kotelnikov mappings in joint

source-channel coding,” IEEE Trans. on Communications, vol. 57, pp. 94–105,

Jan. 2009.
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