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Abstract

Signals in communication networks exhibit significant correlation, which can stem from
the physical nature of the underlying sources, or can be created within the system. Cur-
rent layered network architectures, in which, based on Shannon’s separation theorem,
data is compressed and transmitted over independent bit-pipes, are in general not able
to exploit such correlation efficiently. Moreover, this strictly layered architecture was
developed for wired networks and ignore the broadcast and highly dynamic nature of
the wireless medium, creating a bottleneck in the wireless network design. Technologies
that exploit correlated information and go beyond the layered network architecture can
become a key feature of future wireless networks, as information theory promises sig-
nificant gains. In this thesis, we study from an information theoretic perspective, three
distinct, yet fundamental, problems involving the availability of correlated information
in wireless networks and develop novel communication techniques to exploit it efficiently.

We first look at two joint source-channel coding problems involving the lossy trans-
mission of Gaussian sources in a multi-terminal and a time-varying setting in which
correlated side information is present in the network. In these two problems, the opti-
mality of Shannon’s separation breaks down and separate source and channel coding is
shown to perform poorly compared to the proposed joint source-channel coding designs,
which are shown to achieve the optimal performance in some setups. Then, we charac-
terize the capacity of a class of orthogonal relay channels in the presence of channel side
information at the destination, and show that joint decoding and compression of the re-
ceived signal at the relay is required to optimally exploit the available side information.

Our results in these three different scenarios emphasize the benefits of exploiting
correlated side information at the destination when designing a communication system,
even though the nature of the side information and the performance measure in the

three scenarios are quite different.
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Notation

Throughout this dissertation, we will use the following notation. We denote random
variables with upper-case letters, e.g., X, their realizations with lower-case letters, e.g.,
x, and the sets with calligraphic letters A, with cardinality |.4|. We denote by px (z) the
distribution of the random variable X taking realizations = over the set X'. We might
use p(x) to refer to px(z) when there is no ambiguity.

For sequences, we denote sequences of n random variables as X™ £ (X1,...,Xn), and
denote the i-th term as X;. We denote partial sequences of X" as Xij 2 (X, Xit1, X;)
for i < j, X"y 20, and X"\ £ (X1, .0, X;_1, Xis1, o0 Xp).-

We denote random matrix column vectors by X with realizations x. Similarly, for
random matrix we use X and denote its realizations by X. Yet using the same notation,
the difference between random vector variable and random matrix realization will be
clear from the context. Sequences of random variables and random matrix are defined
as for the scalar case. We denote the transpose of a matrix A as AT, the conjugate
transpose as A the trace as Tr{A} and the determinant as |A| or det(A).

We denote Ex[] as the expectation with respect to X, and E 4[] as the expectation
over the set A. We denote by R;}" the set of positive real numbers, and by R, the set
of strictly positive real numbers in R™, respectively. We define (z)* = max{0,z} and
log™ (z) = max{log(x), 0}.

Given two functions f(z) and g(x), we use f(x) = g(z) to denote the exponential

log f(z) _
log g(z)
We use N (p, C) to denote a real multivariate Gaussian random variable with mean

1, while 2 and g are defined similarly.

equality lim,_,

@ and covariance matrix C and use CN (u, C) to denote circular symmetric complex
multivariate Gaussian random variables with mean p and covariance C.
In general, in optimization problems, we will denote the optimal variable with a star,

e.g., ™ if the optimization is over z.

10



Chapter 1

Introduction

Wireless communication has become the ubiquitous means of information transfer, rang-
ing across machine-to-machine (M2M), Wi-Fi and cellular networks. An unprecedented
mobile network traffic growth is foreseen within the next decade; whereby billions of
connected devices will exchange massive amounts of data from applications, cloud ser-
vices and multimedia content providers. In just a decade, the amout of data handled
by wireless networks is expected to increase by more than a factor of 100: surging from
under 3 exabites in 2010 to over 190 exabites in 2018, on pace to exceed 500 exabites
by 2020 [1]. In addition to the traffic volume, in the next decade the number of de-
vices and the data rates will continue to grow exponentially, reaching the tens of even
hundreds or billions of devices and aggregate rates of 1000x with respect to the current
4G mobile networks. This traffic demand cannot be supported within the capacity of
current wireless networks, and novel techniques and system architectures are required
to accommodate the increasing traffic load.

Both industry and academia are intensively engaged in developing disruptive solu-
tions to provide the network with sufficient capabilities to satisfy the expected demands.
Although many challenges and requirements are still to be addressed, the key technolo-
gies envisioned to overcome the foreseen capacity crunch are the following: i) extreme
network densification, that is, to significantly increase the number of access points per
unit area; ii) increased bandwidth using new spectrum bands, such as millimeter wave
bands or WiFi’s unlicensed bands at 5GHz; and iii) increased spectral efficiency, by em-
ploying advanced communication schemes and nodes with multiple antennas [2]. Fully
exploiting the potential of these technologies will require a complete understanding of
the fundamental challenges and opportunities, and a revision of the current system
design paradigm.

Information theory has been instructive in the design of communications networks

since its origin in 1948, when Shannon settled the fundamental principles of reliable

11



Chapter 1. Introduction 12

digital communication and data recording in his groundbreaking paper [3], and showed
the optimality of decoupling the communication problem in point-to-point links into
two separate simpler problems: data compression and channel communication.

Following the insights of information theory, network system design has traditionally
followed the division of data transmission between nodes into independent layers: in
the Application Layer, data is compressed into bits, which are transmitted over non-
interfering bit-pipes by the Physical Layer, within a certain error probability. This
separate operation framework presents significant advantages, such as simplifying the
network design and providing a common transmission structure for all types of data and
communication channels independently of their nature, which lead to the development
of highly complex wired networks such as the Internet.

However, this approach has created a bottleneck in the design of wireless technolo-
gies. Communication over wireless networks differs significantly from wired communi-
cation: unlike wired channels, where the channel is time-invariant, wireless channels are
highly dynamic and unreliable due to the particular propagation physics of the wire-
less medium and the potential user mobility. More importantly, the bit-pipe approach
ignores the broadcast nature of the wireless medium, which generates interference in
environments with many users competing for the limited network resources.

Additionally, both sources and channels in communication networks exhibit signifi-
cant statistical correlations. Signal correlation can stem from the physical nature of the
underlying sources. For example, in M2M and sensor networks signals from nearby de-
vices, such as temperature measurements, or traffic logs at different routers in a network,
show common statistical properties. Besides, signal correlation might also be created
within the network. For instance, as densification increases in cellular networks, signals
received at nearby nodes become highly correlated. In general, current layered system
architectures ignore signal correlations and do not effectively exploit them. Neverthe-
less, communication technologies that exploit correlated information can become a key
feature of future high performance networks, as information theory promises significant
gains. In the same way information theory has been fundamental in the development
of high performance wired networks, as well as many of the fundamental ideas of exist-
ing wireless networks, information theory will undoubtedly lay the foundations of the
wireless networks of tomorrow, and this thesis is one step forward in identifying poten-
tial novel techniques for next generation wireless networks using information theoretic

principles.

1.1 Motivation

From the perspective of information theory, the transmission of digital or analog data

between terminals in the network is a joint source-channel coding problem, in which the
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encoding and decoding strategies have to be jointly designed based on the source and
channel properties. While, in general, the design of the optimal transmission schemes is a
challenging problem, Shannon’s well-known separation theorem [3] reduces the commu-
nication problem, in point-to-point time-invariant settings, to the following two separate,

simpler and independent problems without losing the end-to-end optimality:

e Source coding problem, which focuses on the design of compression and de-
compression schemes for the source, independent of the channel statistics, that
allows to reconstruct the source at the destination within a certain quality.

e Channel coding problem, which studies the design of coding and decoding
schemes that allow the transmission of data bits with vanishing error probability
over noisy channels, independently of the source statistics.

This decoupled approach, in which source and channels statistical properties are
dealt with independently as source and channel coding problems, was extended to multi-
terminal scenarios soon after information theory was born. The source coding problem
was extended to a wide range of setups such as source coding with side information
[4, 5], distributed compression in multi-user scenarios [6, 7], or multiple descriptions
coding [8,9]. From the channel point of view, the effects of multi-user interference, as
well as the benefits of coordination and availability of feedback, were considered in the
basic network units, such as the broadcast channel (BC), the multiple access channel
(MAC), the relay channel, as well as the interference channel (IC) [10].

Inspired by Shannnon’s result, separation theorem became the cornerstone of today’s
communication system design and lead to the popular layered approach. However, the
optimality of separation does not necessarily generalize to all networks. Information
theory indicates that this approach can be strictly suboptimal in the wireless context.

Indeed, the optimality of separation breaks down in:

1. multi-terminal networks. The separation theorem is valid for point-to-point
communication channels and does not extend directly to networks, as first shown
by Shannon in [11]. See [12], [13] and [14] for examples proving the suboptimality
of separate source and channel coding in multi-user systems.

2. the presence of channel fading and applications with delay limitations. Sep-
aration theorem is limited to ergodic sources and channels. If slow fading or
delay restrictions are present, ergodicity is lost; and separation fails. See [15],
[16] and [17] for examples in which source-channel separation is not optimal in
the wireless setting.

3. in complexity-limited systems. The separation theorem is proven assuming
asymptotically long source and channel codes and it is based on the assumption of
infinite complexity and delay. Therefore, it does not apply to practical systems.
Recently the finite block-length regime has been studied in [18] and [19], while
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zero-delay transmission schemes have been considered in [20-23].

While assumptions 1, 2 and 3 are reasonable for wired networks, they are, in general,
unrealistic for wireless networks. Therefore, novel communication schemes that go be-
yond separate source and channel coding and jointly exploit the correlated information
present in the network are required in multi-terminal networks, fading channels and

delay constrained systems.

1.1.1 Beyond separate source and channel coding

Separation theorem plays an important role in this thesis. In this section, we present the
formalization of Shannon’s point-to-point communication setup and the optimal solution
given by the separation theorem. While in general separate source and channel coding is
seen as the unique optimal communication strategy, from a joint source-channel coding
(JSCC) perspective, there are many alternative transmission schemes achieving the
optimal performance, each with its benefits and drawbacks. Although all these schemes
are just alternatives in the point-to-point setup, when the optimality of separation breaks

down, these schemes may become more attractive, and sometimes significantly superior.

The point-to-point communication problem

The original point-to-point communication problem studied by Shannon in his seminal
paper [3] consists of five fundamental parts: a stochastic informative source to be trans-
mitted, a transmitter, a memoryless channel, a receiver and a destination. Informally,
the communication problem can be stated as follows: given a certain channel and trans-
mitter resources (e.g., power), which is the highest quality at which the source can be
transmitted over the channel and reconstructed at the destination? The task is to char-
acterize the optimal reconstruction distortion (under some given distortion measure),
given the source and the channel properties, and design the transmitter and receiver

strategies that achieve it.

Source Encoder xm Channel Yy» Decoder Destination
S m T > S’m

! p(ylz) g

Figure 1.1: The point-to-point communication problem.

More formally, the communication problem is formulated as follows! (see Figure 1.1).
A source sequence of m i.i.d. symbols {S;}™, from an alphabet S with distribution p(s)

has to be transmitted over a discrete memoryless channel (DMC), characterized by the

1While more general models can be considered, we restrict our attention to independent identically
distributed (i.i.d.) sources, discrete memoryless channels and single letter distortion measures for ease
of exposition.
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conditional distribution p(y|z), using n channel accesses. The channel input, given by
X™, and the channel output, given by Y™, are from alphabets |X| and ||, respectively.
The transmitter maps the source block S™ to a channel input X" using the encoding
mapping f(™7) |S|™ — |X|™. Tt is assumed that the channel input satisfies an input
cost constraint given by E[1 3" ¢(X;)] < P, where ¢(-) : |[X¥| = R" and P is the
transmitter budget (for example, available power).

At the receiver, the channel output is used to reconstruct the source sequence as
S™ with entries in S using the receiver mapping g™ : |Y|* — |S|™. The distortion
between the source sequence and the reconstruction is calculated using a distortion
measure d™ (8™, S™) £ Ly d(Ss, S;). The bandwidth ratio of the system is defined
as the average channel accesses per source sample as follows:

=

channel dimensions per source sample.

Sl=

In the communication problem, we want to characterize the lowest achievable average
distortion. We say that, given p(s), p(y|x), ¢(-), P and d(-,-), average distortion D is
achievable if there exists a sequence of encoding and decoding functions { f("™) g(mm)}

satisfying the channel constraint such that

m

> d(Si, 55)

i=1

E <D, (1.1)

for sufficiently large m, n satisfying the bandwidth ratio relation.
The characterization of this problem is in general very complicated. However, Shan-
non’s separation theorem simplifies the problem by dividing it into two simpler parts:

the source coding part and the channel coding part, which we describe next.

Source coding problem

In the source coding problem, the channel is substituted by an errorless bit-pipe of rate
R. The minimum rate required to reconstruct the source sequence at average distortion

D is characterized by the rate-distortion function, given by

min I(5;9),
p(3]s):E[d(S;9)]<D

lI>

R(D)

where I(X;Y) £ —E [log %} is defined as the mutual information between random
variables X and Y.

Conversely, for rates below R(D), distortion D is not achievable; that is, no matter
which encoding and decoding method is used, the target distortion cannot be achieved.

The optimal distortion is achievable by the following random coding scheme. Gen-
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erate a quantization codebook consisting of 2™ length-m codewords Sm(i), 1 =
1,...,2™" with i.i.d. components following the optimal rate-distortion minimizing dis-
tribution p(8|s). Given a source sequence S™, the source encoder looks for an index i
such that (S™, 5 (i)) are jointly typical? and provides it to the destination through the
errorless bit-pipe, where the source sequence is reconstructed as Sm(l)

In particular, for i.i.d. Gaussian® sources, S ~ N (0,02) and a quadratic distortion

measure d(S, S) = (S — 5)2, the rate-distortion function is found as
1 o?
D)= -log" [ —= 1.2
rD) = 510w (). (1.2

and the quantization codewords with i.i.d. components following p(§|s) can be generated
by a test channel as S =5+ Q, where Q ~ N(0, aé) is independent of S and aé £
o’D/(c? — D).

Channel coding problem

In the channel coding part, the source sequence is substituted by a message set w €
[1, ..., 2"F¢] with uniform distribution. The objective is to characterize the largest rate
R 2 %logM such that the probability of error of recovering m at the destination can

be made arbitrarily small for sufficiently large n. The probability of error is defined as
1M
A n —
P2 — u;l Pr{g(Y") # w|W = w}.

The maximum rate R, for which P, can be made arbitrarily small is characterized

by the channel capacity for given cost function ¢(-), and budget P, defined as

C(P) & max I(X;Y).
p(z):Elc(X)]<P
Conversely, for any transmission rate above the channel capacity, the probability of error
cannot be made arbitrarily small.

The capacity of a DMC can be achieved by using random coding as follows. We fix
the input distribution p(x) which maximizes C'(P) and satisfies the input cost constraint.
We generate a channel codebook of 2"%¢ length-n codewords X"(i), i = 1,..,2"f
with distribution p(x). Given a message w, the encoder transmits X" (w). At the
destination, the receiver looks for the index w such that (X" (), Y™) are jointly typical.

For sufficiently large n, the correct w is successfully decoded as long as the code rate is

2We refer the reader to [24] for definitions and properties of typicality and joint typicality and details
of the achievable scheme.

3 Although the typicality arguments do not directly apply to Gaussian distributions due to its con-
tinuous alphabet, they can be extended using conventional discretization arguments [25].
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below the channel capacity, i.e., R, < C(P).
For channels with additive white Gaussian noise (AWGN), the channel output is
given by

Y =X + N,

where N ~ AN(0,0%). The input is constrained by an average power constraint, i.e.,
¢(X) = X2. The capacity is found as

1 P
C(P) = =log (1 + 2) , (1.3)
2 %
and is achievable by i.i.d. channel codewords with Gaussian entries, X ~ A(0, P).
The ratio between the average transmit power and the channel noise power, P/o%;, is

commonly referred to as the signal-to-noise (SNR) ratio.

Separation theorem

Shannon’s separation theorem states that the optimal performance in the point-to-point
communication system in Figure 1.1 is achievable by concatenating an optimal source
code at rate that achieves the distortion-rate function, with an optimal channel code
at a rate arbitrarily close to the channel capacity. Hence, reliable communication is
feasible if bR(D) < C(P), and conversely, if for b, P given, D is achievable, then

bR(D) < C(P). (1.4)

In the Gaussian setup, with an i.i.d. source sequence {S;}™, ~ N(0,0?%), and an
AWGN channel Y™ = X"+ N", where N; ~ N(0,0%), condition (1.4) implies that the

achievable distortion, with quadratic distortion measure, satisfies

o2

D= Gy pay (15)

where the equality is met by the concatenation of the optimal source code achieving

(1.2) and the optimal channel code achieving (1.3).

Alternatives to separation

Separate source and channel coding transmission is the most common, and almost the
only practically used, approach to achieve the optimal performance in a point-to-point
setup. Nevertheless, there are alternative transmission schemes that achieve the optimal

performance as well. While in separation the source encoding and the channel encoding
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are done independently, most of these alternative schemes are JSCC schemes, in the
sense that, the channel encoding is not independent of the source statistics.

In the following, we consider some of these schemes. Each of them has benefits and
limitations with respect to separation in performance features such as complexity, delay
or robustness. Although these schemes are not universally optimal for all sources and

channels, they are optimal in the Gaussian setup:

e Uncoded transmission: In this simple zero-delay scheme, the encoder trans-
mits sample by sample a scaled version of the source sample, to satisfy the cost
constraint. At the receiver, the source is reconstructed by applying an optimal es-
timator using the channel output. For example, in the Gaussian setup for matched
bandwidth ratio, i.e., b = 1, the channel input is generated as X; = \/WSZ-7
i =1,...,n. At the destination, the channel output is given by Y; = \/WSiJrNi
and the source sequence is reconstructed using a minimum mean square error
(MMSE)* estimator, i.e., S, = E[S;|Y:], i = 1, ...,n. Surprisingly, this very simple
scheme achieves the optimal distortion D,, = 02/(1+ P/03%;) in (1.5) for b = 1 [26].
However, the optimality of uncoded transmission is very sensitive to the matching
between the source/ channel distributions, input cost constraint, the distortion
measure and the source and channel bandwidths [27]. In addition, due to the
absence of coding, uncoded transmission is not capable of fully exploiting the
degrees-of-freedom available in the system in general, and its optimality breaks
down when multiple degrees-of-freedom are available, e.g., in the case of multiple-
input multiple-output (MIMO) channels, bandwidth mismatch (i.e., b # 1) [15,16],
or when correlated side information is available at the destination [28]. Despite
these limitations, given the prevalence of Gaussian source and channel assump-
tions in the literature and its simplicity, it has received significant attention from
the research community in recent years. In addition, while uncoded transmission
in the point-to-point setting is just an alternative to optimal separate source and
channel coding, and its main advantages are simplicity and zero delay; surpris-
ingly, it is shown to achieve the optimal performance in various other scenarios,
such as Gaussian MAC with correlated Gaussian sources [13,29], or broadcasting
a common source to multiple receivers over Gaussian channels, for which uncoded
transmission is the only known optimal transmission scheme. Uncoded transmis-
sion has also been shown to outperform the best random JSCC in some setups
in the finite blocklength regime [30]. More general versions of zero-delay trans-
mission can be considered. On the one hand, zero-delay schemes that consider

non-linear mappings have been shown to outperform linear transmission in certain

40Observing vector A ~ N(0,C,), the MMSE in estimating the Gaussian vector X ~ N(0,Cy)
is achieved with a conditional mean estimator, X = E[X|A], and is given by Dymse = (Cx +
CH C;1Cyuqa)™1, where Cyuq 2 E[AX] [25].
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scenarios [20-23]. On the other hand, linear schemes that are not zero-delay have
been show to outperform zero-delay linear transmission in MAC setups [31].

e Hybrid digital-analog (HDA) transmission: Many limitations of uncoded
transmission can be overcome by combining it with digital coding schemes in the
form of hybrid digital-analog transmission (HDA). In HDA, the encoder generates
a symbol-by-symbol mapping of the observed source (analog) and its digital com-
pression codeword (digital). For example, for the point-to-point Gaussian setup,
a continuum of optimal schemes, including uncoded transmission and separation
as special cases, can be created by superposing an uncoded layer and a dirty pa-
per coded digital layer, and optimally allocating the available power among the
two. At the receiver, the digital layer is decoded and the source sequence is re-
constructed using both the decoded layer and the channel output, which contains
the uncoded layer [32]. This scheme combines the robustness of uncoded trans-
mission with the flexibility of coded communication. In many scenarios, such as
transmission with bandwidth mismatch [17], or broadcasting with correlated side
information [33], HDA transmission is shown to improve the performance of both
pure separation and uncoded transmission, and has been shown to outperform
separation in cases of mismatched SNR [34] or delay constraint [15,16]. HDA
coding has been also considered for more general setups and multi-user scenarios
[35-37].

e Multi-layer transmission: Schemes utilizing more layers than HDA schemes
can be considered. In general, multi-layer schemes rely on the transmission of
multiple layers that carry successive refinement layers of the source [38]. At the
receiver, as many layers as possible are decoded depending on the channel quality.
The better the channel quality, the more layers can be decoded and the smaller the
distortion at the receiver. Multi-layer transmission schemes have been proposed
to combat channel fading in the presence of time-varying channels, and have been
shown to achieve the optimal performance in some high SNR scenarios [15,39].

In this thesis, we exploit ideas from these JSCC schemes in order to efficiently ex-

ploit the correlated information available in the network, and develop high performance

transmission schemes, particularly when the optimality of separation breaks down.

1.2 Objectives

Future networks are expected to be highly heterogeneous, combining several radio tech-
nologies and supporting a wide range of applications. This variety will place differ-
ent performance requirements, which will have to be satisfied by tailoring the network

configuration to the needs. This also places new challenges to exploit the correlation
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information available throughout the network.

In this thesis we study, from an information theoretic perspective, three distinct,
yet fundamental, problems involving the availability of correlated information at the
network terminals, and develop novel joint source-channel coding communication tech-

niques to exploit it efficiently:

1. The Helper Problem: Consider a sensor network that gathers temperature
measurements at different points in the network. At the moment of forwarding
the collected data from one sensor to the fusion center, another nearby sensor
sharing correlated measurements helps in the transmission of the sending sen-
sor to improve the quality at which the data is recovered at the fusion center.
We model this scenario as the one-helper joint source-channel coding problem,
whereby two correlated sources are available at two separate terminals which
transmit their observations to the destination over a Gaussian MAC. Of the
two sources, the source of interest needs to be reconstructed at the destination
with the minimum distortion possible. The second source is correlated with the
source of interest, and acts as a helper source. From the source coding perspec-
tive, i.e., assuming finite bit-rate pipes from the transmitters to the destination,
this problem reduces to the well-known one-helper source coding problem studied
in [40]. However, in the presence of a noisy MAC, this is a multi-terminal JSCC
problem for which the separation theorem fails. As opposed to separate source
and channel coding transmission, schemes based on uncoded transmission and
HDA are capable of generating correlated channel inputs at the transmitters in
a distributed fashion, by exploiting the correlated source information. In this
scenario we will study the potential gains through the generation of constructive
interferences.

2. Source-channel coding with time-varying channel and side informa-
tion: Consider streaming a high-definition video to a smartphone. Streaming
transmission has stringent latency constraints compared to other high-rate ap-
plications such as file transfers, or non-critical data collection such as weather
measurements. The video is compressed to minimize the amount of data to be
downloaded, while the compressed bits are coded against channel uncertainty, all
carried out under delay limitations. The more the data is compressed, the less
the resolution, nonetheless, the stronger the data can be protected and the higher
the probability of reception. Additionally, the decoder might have correlated side
information about the video, either coming from previous transmissions or avail-
able through relay services. Due to the high variability of the wireless channel
and network topology, the side-information available at the destination can vary

significantly at different points of the network. We model this uncertainty as a
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time-varying correlated side information available at the destination. This is a
JSCC problem for which traditional source-channel coding schemes have been
observed to suffer from severe outages in the absence of time-varying side in-
formation [15,41]. In the absence of correlated side information, many schemes
have been proposed in the literature for this problem, although the characteriza-
tion of the optimal performance still remains an open problem. See for example
[15,16,42,43]. Contrary to single-layer coding schemes, multi-layer schemes that
code the signal into different quality layers have been proposed to combat fading.
Multi-layer transmission allows adaptation to the current quality of the channel
without knowing its realizations. The available correlated side information at the
destination provides additional diversity to the system as noisy uncoded versions
of the source signal, which can be used to further combat fading. We will study
new coding strategies that jointly adapt to the variations of the channel and the
side information.

3. A class of orthogonal relay channel with state: Consider a cognitive net-
work with a relay, in which the transmit signal of the secondary user interferes
simultaneously with the received primary user signals at both the relay and the
destination. After decoding the secondary user message, the destination obtains
information about the interference affecting the source-relay channel, which can
be exploited to decode the primary transmitter’s message. This setup falls within
a class of orthogonal relay channels in the presence of channel side information
at the destination. We model the side information in this setting as follows: the
source and the relay, and the source and the destination are connected through
orthogonal channels that depend on a common state sequence, which is fully
known at the destination, and unknown at the source and the relay. Note that
this is essentially a channel coding problem in which source compression tech-
niques are required to optimally exploit the side information: fully decoding the
source message at the relay renders the side information at the destination use-
less, whereas compressing the signal received at the relay and forwarding it to the
destination will allow the destination to exploit its side information and improve
the rate of communications. From a joint source-channel coding perspective, the
relay received signal acts a a source sequence which has to be partially trans-
mitted to the destination. We will study the potential of combining source and
channel codes in multi-user scenarios to exploit the channel state information
available at different points of the network.

The nature of the side information in the three scenarios above is quite different.

Individual chapters are dedicated to each of them, in which we characterize fundamental

performance bounds and propose JSCC schemes that exploit the available correlated
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side information. Particular emphasis will be put into identifying optimal transmission

strategies for the three problems.

1.3 Outline and Contributions

The technical content of this thesis is organized in four chapters. The second chapter
is devoted to the Gaussian helper problem, the third and fourth to the transmission
with delay constraints under time-varying channel and side-information, while the fifth
chapter is dedicated to the orthogonal relay channel model with side information at the
destination. In each of the chapters, a literature review and a formal problem state-
ment are provided. Then, performance bounds and achievable schemes are considered,
together with some optimality results and discussions. Each chapter finishes with a
conclusion. In the following, we outline the content and results of each chapter and the

publications related to each topic.

Chapter 2

In Chapter 2, we study the one-helper JSCC problem, in which a main source is to
be reconstructed with minimum distortion with the help of a correlated helper source.
Focusing on the case of Gaussian sources and a time-invariant Gaussian MAC, we de-
rive a lower bound on the achievable distortion. Then, we consider separate source and
channel coding as well as analog transmission, in which each transmitter sends a scaled
version of the available source sequence. It is shown that in some regimes analog trans-
mission outperforms separate source and channel coding, and that, in certain cases, it
is sufficient to achieve the lowest distortion values among the considered schemes. We
also present a hybrid digital-analog scheme, in which each user generates an analog
signal in addition to the digital codewords using dirty paper coding, and transmits a
superposition of the two. A second hybrid scheme is considered in which each trans-
mitter quantizes the source sequence, and transmits a superposition of the quantized
source codeword and an analog component. While different in nature, both schemes
are numerically shown to achieve the same performance, and shown to achieve lower
distortions than pure digital and analog transmission, in general.

The results in this chapter have been partially published in:

e [. Estella, D. Glindiiz, “Hybrid Digital-Analog Transmission for the Gaussian One-

helper Problem” | in Proceedings of IEEE Global Communications Conference,
(Globecom), 6-10 December 2010, Miami, Florida, USA.
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Chapter 3

In Chapter 3, the JSCC problem of transmitting a Gaussian source over a time-varying
single input single output (SISO) Gaussian channel with minimum average end-to-end
distortion is considered in the presence of time-varying correlated side information at
the receiver. A block fading model is considered for both the channel and the side infor-
mation, whose states are assumed to be known only at the receiver. As opposed to the
previous chapter, the side information is provided through an orthogonal link to the des-
tination. While separation is optimal with time-invariant channel and side information
[28], the delay constraint breaks its optimality in the time-varying setup. However, we
show the optimality of separate source and channel coding when the channel is static
while the side information state follows a discrete or a continuous and quasiconcave
distribution. When both the channel and the side information states are time-varying,
separate source and channel coding is suboptimal in general.

A partially informed encoder lower bound is studied by providing the channel state
information to the encoder. Several achievable transmission schemes are proposed based
on uncoded transmission, separate source and channel coding, joint decoding as well as
hybrid digital-analog transmission. Uncoded transmission is shown to be optimal for
a class of continuous and quasiconcave side information state distributions, while the
channel gain can have an arbitrary distribution. To the best of our knowledge, this is
the first example in which the uncoded transmission achieves the optimal performance
thanks to the time-varying nature of the states, while it is suboptimal in the static
version of the same problem.

Then, we study this problem in the asymptotic SNR regime, in which the channel
SNR and the side information quality increase asymptotically. This asymptotic notion
is double: when the channel SNR increases in the network, in general the quality of
the available side information, e.g., from previous transmissions and relay services, is
assumed to increase accordingly. The study of the high SNR regime allows for deeper
insights on this problem. In particular, we are interested in characterizing the opti-
mal distortion exponent, which quantifies the exponential decay rate of the expected
distortion in the high SNR regime. In this chapter, the optimal distortion exponent
is characterized for Nakagami distributed channel and side information distributions
and it is shown to be achieved by hybrid digital-analog transmission or joint decoding
in certain cases, illustrating the suboptimality of pure digital or analog transmission
in general. Although the analysis is asymptotic, our results are relevant for practical
systems as well, since we observe through numerical simulations that they capture the
behavior of the expected distortion at reasonable SNR levels as well.

The results in this chapter have been partially presented at:

e [. Estella, D.Giindiiz, “Joint Source-Channel Coding with Time-Varying Channel
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and Side-Information”, submitted to Transactions on Information Theory.

e [. Estella, D.Giindiiz, “Distortion Exponent with Side-Information Diversity”, in
Proceedings 2013 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), 3-5 December 2013, Austin, Tezxas.

o [. Estella, D.Giindiiz, “Systematic Lossy Source Transmission over Gaussian Time-
Varying Channels”, in Proceedings IEEE International Symposium on Informa-
tion Theory (ISIT), 7-12 July 2013, Istanbul, Turkey.

e [. Estella, D. Giindiiz, “Expected Distortion with Fading Channel and Side Infor-
mation quality”, in Proceeding of IEEE International Conference on Communi-
cations (ICC), 5 June 2011, Kyoto, Japan.

Chapter 4

In Chapter 4, the block-fading time-varying channel and side information setup of the
previous chapter is generalized to include a MIMO fading channel and non-matched
source and channel bandwidth, that is, the many source samples are transmitted per
channel access (or conversely, more than one channel use is employed per source sample).
The side information fading gain is assumed to have a Rayleigh distribution. In particu-
lar, the high SNR performance is studied by deriving the distortion exponent of various
transmission schemes. Following similar techniques from the previous chapter, we derive
upper bounds on the distortion exponent. Then we consider transmission schemes based
on separate source and channel coding, uncoded transmission, joint decoding as well as
hybrid digital-analog transmission. Multi-layer schemes, which transmit successive re-
finement layers of the source, are also proposed, based on progressive transmission or
superposed transmission with joint decoding. While the optimal transmission strategy
remains open for finite SNR values, we characterize the optimal distortion exponent for
the single-input multiple-output (SIMO) and multiple-input single-output (MISO) by
showing that the distortion exponent achieved by the multi-layer superpositon encoding
with joint decoding meets the upper bound. In the MIMO scenario, the optimal distor-
tion exponent is characterized in the low bandwidth expansion regime, and it is shown
that the multi-layer superposition encoding performs very close to the upper bound in
the high bandwidth expansion regime as well.
The results in this chapter have been partially published in:
e [. Estella, D.Gluindiiz, “Distortion Exponent in Fading MIMO Channels with Time-
Varying Side Information”, submitted to Transactions on Information Theory.
e [. Estella, D. Giindiiz, “Distortion Exponent in Fading MIMO Channels with
Time-varying Side Information”, in Proceedings IEEE International Symposium
on Information Theory (ISIT), 31-5 August 2011, Saint Petersburg, Russia.

e [. Estella, D. Gilindiiz, “Wireless Source Transmission with Time-varying Side
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Information”, in Proceedings of 9th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 9-13 May 2011,
Princeton, New Jersey, USA.

Chapter 5

In Chapter 5, we consider a channel coding problem. We study the class of orthogonal
relay channels in which the orthogonal channels connecting the source terminal to the
relay and the destination depend on a state sequence. It is assumed that the state
sequence is fully known at the destination while it is not known at the source or the
relay. We study the performance of partial decode-and-forward (pDF), in which the
relay decodes part of the source message from the received signal, reencodes it and
forwards it to the destination; compress-and-forward (CF), in which the relay forwards
a compressed version of the channel output to the destination, and partial decode-
compress-and-forward (pDCF), that combines the two previous schemes. The capacity
of this class of relay channels is characterized, and shown to be achieved by the pDCF
scheme. Then the capacity of certain binary and Gaussian state-dependent orthogonal
relay channels are studied in detail, and it is shown that the CF and pDF schemes are
suboptimal in general. To the best of our knowledge, this is the first single relay channel
model for which the capacity is achieved by pDCF, while pDF and CF schemes are both
suboptimal. Furthermore, it is shown that the capacity of the considered orthogonal
state-dependent relay channels is in general below the cut-set bound. The conditions
under which pDF or CF suffices to meet the cut-set bound, and hence, achieve the
capacity, are also derived.

The results in this chapter have been partially published in:

e [. Estella, D.Glindliz, “Capacity of a Class of Relay Channels with State”, sub-
mitted to Transactions on Information Theory.

e [. Estella, D.Giindiiz, “Capacity of a Class of Relay Channels with State”, in Pro-
ceedings 2012 IEEE Information Theory Workshop (ITW), 3-7 September 2012,
Laussane, Switzerland.

Finally, in Chapter 6 we provide some discussions and conclusions arising from the

research results in this thesis. We also indicate some future research directions in which

the use of JSCC transmission can be beneficial.

Other Publications

In addition to the topics covered in this dissertation, other research areas have been
addressed during the period of the Ph.D. studies. The resulting publications are listed
below.
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I. Estella, A. Pascual-Iserte, M. Payar$, “OFDM and FBMC performance com-
parison for multistream MIMO systems”, in Proceedings 2010 Future Network
and Mobile Summit, 16 - 18 June 2010, Florence, Italy.

I. Estella, D.Giindiiz, “Linear Transmission of Correlated Gaussian Sources over
MIMO Channels”, in Proceedings The Tenth International Symposium on Wire-
less Communication Systems (ISWCS), 27-30 August 2013, Ilmenau, Germany.
I. Estella, D.Giindiiz, “Distortion exponent with side-information diversity”, in
Proceedings 2013 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), 3-5 December 2013, Austin, Texas, USA.

I. Estella, M. Varasteh, D.Glindiiz, “Zero-delay joint source-channel coding”, in
Proceedings 2014 IEEE Iran Workshop on Communication and Information The-
ory (IWCIT), 7-8 May 2014, Tehran, Iran.



Chapter 2

One-Helper Joint

Source-Channel Coding

In this chapter, we consider the Gaussian one-helper problem introduced in Section
1.2, in which two correlated Gaussian sources, S; and S, are available at two separate
terminals, which transmit their observations to the destination over a Gaussian MAC
(see Fig. 2.1). Of the two sources, S; is the source of interest which needs to be decoded
at the destination with minimum distortion. The second source S5 is correlated with
S1 and acts as a helper source. From the source coding perspective, i.e., assuming
finite rate bit pipes from the transmitters to the destination, this problem is a special
case of the Berger-Tung problem [44], in which two sources are encoded separately, and
decoded jointly, to satisfy two distortion criteria, and reduces to the well-known one-
helper source coding problem studied in [40]. However, in the presence of a noisy MAC,

this is a multi-terminal JSCC problem for which the separation theorem fails.

X3
Sy Encoder 2 zn

Y'n

Decoder — ST

X7

S ——  Encoder 1

Figure 2.1: Gaussian one-helper problem.

A natural candidate for the JSCC of Gaussian sources over Gaussian channels is
analog (uncoded) symbol-by-symbol lineal transmission, or simply SLU, as described in
Section 1.1.1. Besides being optimal in the point-to-point Gaussian setup, even in the
MAC setting when the destination is interested in both sources, it is shown in [13] that

SLU achieves the optimal distortion pair when the SNR is below a certain threshold,

27
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which depends on the correlation among the sources. SLU for the one-helper problem
is considered in [45] and [46], and it is shown to improve upon separation based digital
transmission in some cases, depending on the available power at the users and the source
correlation. This proves the suboptimality of SSCC in the Gaussian one-helper scenario.

In several multi-user scenarios, HDA transmission schemes as described in Section
1.1.1 improve the performance in terms of the achievable distortion or robustness to
SNR variations (see [17] and [47] for examples). Here, we study an HDA scheme,
which we call superposition vector-quantizer (S-VQ), also considered in [13] and [35]
for a Gaussian MAC scenario. We consider this transmission scheme in the one-helper
scenario. At each encoder, the available source is quantized, and each transmitter sends
a superposition of the quantization codeword and an analog layer. The quantization
codewords are then jointly decoded at the destination and the main source sequence is
reconstructed.

Then, we consider an alternative HDA transmission scheme based on the HDA
scheme proposed in [48] for the point-to-point Gaussian setup. In this scheme, the
transmitter generates an analog signal and a digital signal using a dirty paper coding
scheme [49] considering the interference caused by the analog layer, and, after allocat-
ing the available power, transmits a superposition of both signals. Here, we propose a
similar HDA transmission scheme, which we call the interference-aware HDA (I-HDA),
in the one-helper setting: both users divide their power among the analog and digi-
tal signals, and transmit a superposition of the two layers. The pure digital and the
pure SLU schemes become two special cases of this HDA transmission strategy, ob-
tained when both users allocate all their power to digital or to analog transmission,
respectively, ignoring the interfering signal. We show in [50] that an HDA scheme that
ignores the interference caused by the analog layer reduces to either pure SLU and dig-
ital transmission depending on the available power or the source correlation. The extra
degrees-of-freedom obtained by the dirty paper encoding leads to a better performance.
We numerically show that I-HDA achieves the same performance as the S-VQ scheme.

The main contributions of the chapter are the following:

e We derive a lower bound on the achievable distortion using cut-set arguments
and by bounding the maximum correlation between the channel inputs of both
encoders.

e We derive the minimum distortion achieved by separate source and channel coding.

e We show that when using the optimal symbol-by-symbol linear uncoded trans-
mission, the helper does not use full power in general.

e We propose two different HDA schemes, S-VQ and I-HDA, and numerically show
that they outperform the pure separate and analog transmission schemes, in gen-

eral.
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The rest of the chapter is organized as follows. In Section 2.1 we introduce the
system model. In Section 2.2 a lower bound is presented. In Section 2.3 we introduce
two hybrid digital-analog transmission strategies after reviewing pure digital and analog
transmission schemes. Then, in Section 2.4 we provide numerical results, and finally we

provide some conclusions in Section 2.5.

2.1 System Model

We consider the transmission of a length-n sequence of i.i.d. zero mean bivariate Gaus-

sian source pair {S1;, 92;}7_; with a covariance matrix

2 2 2
o pr/0% o
Sl Sl S2
Ksis: = | 5 ) 7 (2.1)
P\ 95,95, 75,

where p € [—1,1] is the correlation coefficient, and 0 < a%i < oo is the variance of
the i-th source for i = 1,2. Without loss of generality, we assume 0?91 = 0%2 =1 and
p € [0,1] as one of the the transmitters can always multiply its source by —1 if p < 0.
Transmitter ¢ observes the i-th source sequence and encodes it with function f* :
R™ — R", such that X* = f7*(S") for i = 1,2. The corresponding channel input vectors

X = [Xi1, ..., Xin] are subjected to individual average power constraints

E[| X7 ZEW Wi<p, =12 (2:2)

The additive memoryless MAC is given by

Ye =X+ Xop+ 72, k=1,...,n, (23)

where Zj is the i.i.d. zero-mean Gaussian noise term with variance N, i.e., Zp ~
N (0, N). The decoder consists of a decoding function g™ : R™ — R", which reconstructs
an estimate of the sequence of interest SI', i.e., S7' = g"(Y™).

For a given system 2 2 (p, P, P,, N) we say that an average distortion D is achiev-
able if there exists a sequence of encoding and decoding functions { f7*, f3', g™} satisfying

the power constraints in (2.2) and a mean square-error distortion of

lim fZE (S1 — S1)?] < D. (2.4)
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2.2 Lower Bound

Before deriving the lower bound on the distortion, we provide some definitions that will
be used in the derivation. The rate-distortion function of reconstructing S ~ N (0, o?)

at distortion D is given, as in (1.2), by

— - 7 — Lyt (O
Rs, (D) = PW‘Sle[I(TSI‘?iW)?]gDI(Sl’ W)= 3 log (D) . (2.5)

For a bivariate Gaussian pair (ST, S%) with variances 0% = 03 = 02 and correlation

coefficient p, the conditional rate-distortion function Rg,|s,(D1) when S3 is available at

both the encoder and the decoder, and ST is reconstructed with distortion D; is given by

2 2
RojsaD)=, minKsiwIs) = o (U)o

In the Gaussian helper problem, the encoders can generate physically correlated
channel inputs by using the source sequences available at each transmitter. Naturally,
the maximum correlation between the channel inputs is bounded by the correlation of
the source sequence, as shown in [13] for the MAC setup where both sources have to be
reconstructed at the destination. Using this fact together with cut-set arguments, we

obtain the following necessary conditions on the achievable distortion.

Lemma 1. A necessary condition for the achievability of distoriton D in the Gaussian

helper problem is the existence of some 0 < p, < p such that

1 P+ Py +2p,/ P P
RSI(D)<log<1+ 1+ 2+ 2p 1 2)’
2 N
1 P(1-p3)
RSI‘SZ(D)SglOg (1+N .
Proof. The proof is given in Appendix B. O

Substituting the rate-distortion function expression for the bivariate Gaussian sources,

the necessary condition in Lemma 1 can be expressed as the following lower bound.

N (1—-p*)N }
P+ Py +2p,VPIP, + N (1= p2)PL + N |

Di(Q) = O<miré max{
<pa<p

2.3 Achievable Schemes

In this section, we first propose “pure” schemes based on separate source and channel

coding and uncoded transmission. Then, we consider two HDA schemes.
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2.3.1 Pure Coding Schemes
Pure Digital Scheme

Pure digital transmission is based on separate source and channel coding. The sources
are first compressed using one-helper source compression as in [40], then the compressed
bits are transmitted over the MAC using independent channel inputs. The compression
rates, and hence, the achieved distortion depends on the rates that are supported by the
MAC. The distortion-rate function for the one-helper source coding problem is given as
follows [40]

D(R17 RQ) = (1 - p2 + p22_2R2)2_2R17 (27)

where R; is the transmission rate of transmitter 7.

It is easy to see that the distortion is minimized when the users operate on the corner
point of the MAC capacity region that maximizes Ry, the rate from the main source to
the decoder. Hence, the minimum achievable distortion with pure digital transmission

is found to be

N(PL+ P(1—p®) +N)
(Pr+P,+N)(PL+N)’

Dy(©) = (2.8)

Pure Analog Scheme

In pure symbol-by-symbol linear uncoded transmission (SLU), the encoders transmit

scaled versions of the sources directly over the channel, i.e.,

X =/B:iPSr, i=1,2, (2.9)

where §; € [0,1] is the scaling factor that allows to reduce the power assigned to each
transmitter. Using an MMSE estimator at the receiver, the achievable distortion for
this scheme is given by

BaPya(l = p*) + N

Du(Q, 81, B2) = 5P L b L B I N (2.10)

The next lemma characterizes the optimal distortion achievable by SLU by finding
the optimal scaling factors at both transmitters.

Lemma 2. For a given (), the optimal distortion achieved by SLU transmission is given
by

Py(1—p*)+N
Q) = Pipap /N Jor (PLP) €P

N a2
%7 for (P, P2) ¢ P,

D*

u
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where

N
Pé{(Pl,PﬁiPlZO,PzZO,\/ﬁSl /;)2}, (2.11)

and the optimal scaling factors are

17 Zf(PluPQ)GP

2 772 )
rra—e O (PLP) ¢P.

Bi=1 and B; = (2.12)

Proof. Since D, (), 81, B2) in (2.10) is monotonically decreasing in (1, it is minimized
by 8 = 1. We also have that D,(Q,1,82) is convex in 0 < B < 1, and therefore,
the minimizing £ is found as in (2.12) by using the standard Karush-Kuhn-Tucker
conditions [51]. O

Lemma 2 indicates that the main source will always transmit at full power. On the
other hand, all the helper power will be used if (Py, P;) € P, while if (P, P,) ¢ P,
the transmit power of the helper is reduced inversely proportional to the main source
power. Increasing the helper power beyond the specified level in this regime increases

the distortion.

2.3.2 Hybrid Digital-Analog (HDA) Schemes

In this section, we consider hybrid digital analog (HDA) schemes that transmit the
superposition of a digital layer with an uncoded layer. First, we consider the most
general HDA scheme known in the literature, proposed in [35] for the transmission of
two source sequences (S7,5%) over a discrete memoryless MAC channel p(y|ziz2), in
which the destination is interested in reconstructing both ST and S% at an average
distortion (D1, D3).

In this scheme, each source sequence S} is mapped to one of the 2n8i digital code-
words W]'(m;). Then, each pair (S}, W' (m;)) is mapped symbol-by-symbol to the
channel input sequence X', that is transmitted over the interference channel. Upon re-
ceiving Y™, the decoder jointly recovers the digital components (W{*(mq), W3 (mz)) by
joint typicality, and reconstructs S']” by mapping symbol-by-symbol the analog channel
output Y™ and the codewords corresponding to the two decoded digital messages. The
general conditions for successful decoding of the messages and the achievable distortion
pairs (D1, Ds) for the transmission of (S7', S%) over a discrete memoryless MAC channel

p(ylx122) are given in the next theorem.

Theorem 1. [35] A distortion pair (D1, D2) is achievable for communication of (S1, S2)
over a MAC channel p(y|x1,x2) if
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Figure 2.2: S-VQ encoder and decoder.

I(W1;81|Q) < T(W; YW2|Q)
I(Wa; S2|Q) < I(Wa; YIW1|Q)
I(W1; 81|Q) + I(Wa; 55|Q) < I(WiWa; Y|Q) + I(W1; W2 |Q)

for some joint distribution p(s152)p(q)p(wiz1|s1q)p(wexa|s2q) and reconstruction func-
tions §;(w1,we,y,q), such that E[d;(S;; SM)] <D, fori=1,2.

In the one helper problem, the receiver is only interested in recovering ST. Hence,
Theorem 1 can be adapted to the one helper setup by dropping the distortion condition
on Ds. Next, we study the achievable distortion for the Gaussian one-helper problem

under different structures of the digital codewords W7 and Ws.

Superposed Vector Quantizer (S-VQ)

Here, we consider a structure for the digital components of the HDA scheme following
the scheme proposed in [13] for the MAC scenario. In this scheme, each transmitter
quantizes the source with an optimal vector quantizer. Then, the quantized codeword
is scaled and used directly as channel input superposed with an uncoded layer. The
decoder jointly recovers the quantized codewords, and reconstructs the source using
these codewords together with the channel output. See Fig. 2.2 for an illustration of
the S-VQ encoder and decoder.

The distortion achievable by this scheme follows from Theorem 1. We let Q = 0 for
i =1,2. We consider rates R; > 0, and, while potentially suboptimal, Gaussian random
variables given by W; = S; + Q;, where Q; ~ N(0,272f%) independent of S; and we
generate the channel input with the symbol-by-symbol mapping X; = «;5; + 6;W;.

Parameters «;, ; are chosen such that the power constraint is satisfied, i.e.,

(i + Bi)*(1 — 2728 2272 < P i =1,2. (2.13)

The region given by (2.13) of feasible («a;, ;) pairs describes an ellipsoid. We consider
the pairs which satisfy (2.13) with equality. It can be shown that it suffices to consider
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a; > 0. We define the region of feasible pairs at each transmitter as

r; £ {(ai,ﬁi) eR?:a; € [O, —Bi+y/Pi — 532231'] , Bi€ [*V P;228:, \/PZQZRi} }

Let the covariance matrix of Y, W1 and W5 be given by

ki1 k2 ks
kii ki3
Cwiw,y = k1o koo ko3 and Cy,y = , (2~14)
kiz k33
ki3 Koz k33
where
ki = (142728 j=1,2, kis = p,
k1z = cq + Prkin + plag + B2), ko3 = a4 Pakaz + pla1 + B1),

k33=P1+P2+2P(a1+51)(042+52)+N

Using joint typicality decoding, W{* and W3 are decoded with high probability if
(R1,R2) € R, where R is given by

1 k11kaakas

ki |Cu.
RA{(Rl,Rz) Ri+ Ry < lg i Cw,ev |

j .
T~ 0 J = 1a2 ) }
|Cw,way | .2
Once W{* and W3 are recovered at the receiver, an MMSE estimator is used to
reconstruct ST with the available data qu E[S;|W1i, Wa;, Yi]. We have qu h,,S;+
N/, where hyg = [1,p, (01 + B1) + p(az + B2)] and N7 ~ (0, Cyq), where

1
R < -lo
ICwyway |’ 2 %8

C.,
0 B272R
17p +2 25’2 (1 _ 2)(0[2+/62)+ﬂ2272R2
B127280 (1= p?)(aa+B2)+ 522722 (1 — p?)(az+B2)2+ 47272 4327224 N

Given (a1, ag, R1, Ra), the achievable distortion is found as

Diyq(Q, a1, 09, R, Ry) = (1+h[lC )™t (2.15)

vq

Minimized over the feasible parameters, the distortion achievable by S-VQ is given by

DX (Q)= min Dy, (Q a1, 00, Ri, R 2.16
vq( ) (erf}l%l;)leR q( g, 2 1 2) ( )
(avi,8:) €T
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Figure 2.3: I-HDA encoder for transmitter 3.

Interference Aware HDA Scheme (I-HDA)

Next, we propose an HDA scheme, based on the continuum of optimal HDA schemes
for the point-to-point channel from [48]. This HDA scheme generalizes the pure digital
transmission strategy, based on separate source and channel coding, as well as analog
schemes, and takes into account the interference caused by the analog transmission in
channel by using dirty paper coding (DPC) [49]. We denote this scheme by interference
aware HDA scheme (I-HDA). As noted below, the achievable distortion of this scheme
can be derived from Theorem 1. However, in order to reduce the complexity of the
transmission scheme, here we propose the successive decoding of the digital components.
In the next section, we numerically show that successive decoding is sufficient to achieve
the same performance as S-VQ in the one-helper setup, which jointly decodes the digital
components.

In I-HDA, each encoder transmits a superposition of digital and analog signals, i.e.,
XP =X+ X0 =12

where X f " and X;"" are the length-n channel input vectors corresponding to digital and
analog signals, respectively. The analog part of the transmitted signal, X;"" is a scaled
uncoded version of the source sequence, S. We have X" = \/P,;S", i = 1,2, where
factor o; € [0, 1], and P,; £ o,;P; is the portion of the power at transmitter ¢ dedicated
to analog transmission. The digital portion Xid ™ transmits a quantized version of the
source sequence, and is generated using a digital scheme based on dirty paper encoding,
which considers the analog layers in the channel as interference known at the encoder.
See Fig. 2.3 and Fig. 2.4 for an illustration of the encoder and decoder.

At the source encoder of user 7, S}* is quantized with an optimal vector quantizer.
The quantization codebook can be modeled with a “test channel”, W, =S, + Q; where
Qi ~ N(0,0‘gi) is independent of source S;. The nl(Si W) quantized codewords are

randomly and uniformly assigned into 27%: bins. For each source outcome, the source
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Figure 2.4: I-HDA decoder.

encoder determines the bin that the quantized source vector belongs to, and forwards
the bin index w; € [1,..., 2" to the digital channel encoder.

The channel codebook at each transmitter is generated using codeword as in the
DPC for the Gaussian point-to-point setup as follows. We define the auxiliary random

variable U; and Us as
U = %iv/PaiSi + X2, i=1,2, (2.17)

where 7; € R, and X are zero mean Gaussian distributed variables with variance
Py 2 (1 — )Py, ie., X3 ~ N(0, Py;). Note that relating (2.17) to the DPC scenario,
S; acts as an interference and ~;1/P,; has the role of the Costa parameter [49]. Then,
at Transmitter 1 we generate 2"/(V1:YU2) length-n ii.d. codewords U}, with Uik
k = 1,..,n following the distribution of (2.17), and at transmitter 2, we similarly

2nI(U2;Y)

generate length-n i.i.d. codewords U3'.

Next, sequences U* are uniformly distributed into 2787 bins, i = 1,2. For each

n
79

sequence u!", we let j;(ul) be the index of the bin containing u!". Then, at encoder i,
given a source realization S}*, and a message from the source encoder wj;, in the bin
w; we search for a sequence U]" such that (U, SI") are jointly typical, and declare an
error if no or more than one such U;* can be found. Such a sequence is found with
high probability, for large enough n, if the number of sequences in bin w; is larger than
2n1(UisSi) - Next, we transmit Xfl’n = U — v;/P,; S as the channel input, and each
encoder transmits a superposition of the analog signal and the digital codeword.

This scheme is a particular case of the general HDA scheme and the achievable distor-
tion can be obtained by evaluating Theorem 1 with the digital codewords W; = (Wi, U;)
for i = 1,2, where W; and U; are defined as above, and the symbol-by-symbol mappings
X; = Ui + (=vivV/Pui + VP,;)S;. However, in the following we will consider succes-
sive decoding of the digital messages instead of the joint decoding of (Wl, Wa, U, Us),
to reduce the complexity of the receiver!. We also note that unlike S-VQ, here the

1 As noted in [13] and [35], messages w1 and ws are correlated to the source sequences ST and S%,
respectively, and common typical random coding techniques have to be modified accordingly. The same
tools developed in [35] to prove Theorem 1 can be used to derive the sufficient conditions for successful
encoding and successive decoding provided in this section.
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quantization codewords, i.e., W;, is not mapped to the channel input.

At the receiver, we first apply successive decoding of the auxiliary random variables
Ul and UJ. Unlike in the usual superposition schemes, the channel codewords Xf n
and Xg ™ are not recovered at the decoder; and hence, cannot be removed from the
channel output. However, since U]* and U3 are correlated, the decoder first decodes U3
and uses it as side information to decode U7". First, the decoder looks for the unique
sequence U} such that (U3, Y™) is jointly typical. We declare an error if more than one
or no such sequence exist. The estimate ws is equal to the index of the bin containing
the sequence (72” It will be decoded correctly with high probability if,

1. Pp(Pr+ P +2p/PuPi+N)

RSSI(UQ;Y)_I(UQ;SQ):*IOg 5
2 |Cu.y|

where

A Py + Py +2pVPo1 Pa2 + N Paa + Paave + Y20V Pa1 Pa2
Uy = :
’ Pya + Pazva + 2V Pa1 Paz Py + Paoy3

Once UJ is recovered, the decoder tries to decode Uj* using U3 and Y™. The
decoder looks for UJ* such that (U7, Uf,Y™) are jointly typical. For sufficiently large

n, the decoding is successful if

R§ < I(Uy; UaY) — I(Uy; S1)
= I(Uy;Y|U) — I(Uy; 51|U2)

11 Py |Cu,y|
~log — 2
2 |Cu, v,y

where the first equality follows from the Markov Chain U; — S; — Us, and the second

one from
Cuu,y =
Pa1+Pu1vi Y1Y2PV Pa1 Py Py +Povi+v1pVPa1 Pao
Y1720V Pa1 Pa2 Pio+Povis Pao+Paovya+7v20v Pa1 Pa2

Py +Poamni+7vpVPuiPa2  Pia+Paovo+v2pVPiiPaa  Pir+ Po+2p/ Py Pio+ N

Factors 71 and 72 have to be chosen such that Rf > 0 and R§ > 0. This condition is
satisfied by imposing vo5, < 72 < 25, where 2, and o are the two unique solutions

to equation R§ = 0 given by

Pao + pV'Pa1 Pao £ \/PaQ (1+ P+ P2+ 2pV/Py1 Py2)
Pao (1 + Pg1 + Paz + Par (1 — p?))

Yer,2L = Pa2
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For each feasible 75, any feasible v, satisfies v1;, < 71 < 15, where 17, and 14 are

the two unique solutions to equation R{ = 0 given by

, _p Paop/Par Paa(1 — 72) + Pa1 (Paz + Pa273(1 — p?)) £V
M T D (P (1 + Pa)73 (1= p2) + Paz (1+ Pay + Paa(1 —2)2 (1= p2)))’

where

® £ Py (Paz + Pa2vs (1 - p%)) (sz (1 + Py + Paa(1 — 72)? + 2/ Pa1 Paap(1 — 72))
+ Poov3 (1+ Py + Py (1—p%))) -

In addition to the recovered bin indices w; and we, the decoded codewords Uj* and
UZ are correlated with the source sequence ST and can be used as side information as
in Wyner-Ziv source coding with correlated side information available at the decoder
[4]. The source decoder at the receiver first decodes the quantized version of the helper
source W3 jointly typical with (Y™ U7, U3). Assuming it has access to the correct
indices from the channel decoder, it can be decoded correctly with high probability, for

large enough n, if,

1 Cu,u.
RS > I(Wo; So|lYULUs) = 5 log |C51gz:|‘/;/22| )
1U2 q2

where

1oV Par

Cur by = Cu,u,v Yo/ Paz
e VPa2 + pVPa1

Y10V Par ¥2VPa2  VPaz + pVPar 1+ 05

Once the side information from the helper is decoded, the source decoder tries to
decode the quantized version of the main source W{* by looking for the sequence W7* such
that (W, Wi, Y™, U, Uy) are jointly typical. A unique W7 is correctly decoded if,

1 C
RS > (Wi S1|YULUs W) = L log 1CUYwawi |

2 7 IChuywslo}’
where /P
Cu,t.yws YooV Pa2
Cuovaywow, = VPa1 + pV/ Pa2

p
Y1vVPar v2pVPiz VPu+pVPa2 p 1+02
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The channel coding rates R§ and R§ are determined for each Q and (aq, o, v1, 72).
To minimize the quantization error generated by the digital vector quantizers, their
rates are chosen to be R} = R for i =1,2.

Finally, an MMSE estimator is used to reconstruct the source sequence S} using
all the available information at the decoder, S'lh = [Uys, Usy, Y3, Wi, Wos|H i =1, ..., m,
that is S; = E[S7|S’,] The available information can be modeled as Sf = h,S;; + N?

where hy, = [11v/Pa1, 72V Pa2ps vV Pa1 + pvV/Paz, p, 117, and N is the signal components
uncorrelated with S;, distributed as Nzh ~ N(0, Cp,) where the Cy, is given by

Cp =
P 0 Py 0 0
0 Pap+Paavs (1—p?) Pag+Paay2 (1 - p?) VPaiy2 (1=p%) 0
Py Pp+Paye (1—=p%) 14+Pu+Pp+Pe(l1-p?) VPa(l-p*) 0
0 VPay(l-p7) VPa2 (1-p?) l—p’+o0g 0
0 0 0 0 o2

For a given (, fixed power allocation parameters (aq, as), and fixed feasible (71, 72)

the distortion achievable by the I-HDA scheme is given by
Dh(Q,Oq,OZQ,'}/l,’)/Q) = (1+h£IC}:1hh)71 (218)

In general, the I-HDA scheme provides additional degrees-of-freedom through the
two digital power allocation parameters a; and as and the DPC parameters v; and ~s.

For any given 2 we can optimize these parameters to minimize the distortion. We have

D;(Q) = min  Dp(Q,a1,a2,71,%2)- (2.19)

0<ai,a2<1

Y1iL<M<MH

YorL <V2<V2H
We note here that in general the optimal DPC parameters ; and 7 do not coincide
with the DPC Costa parameter from the point-to-point channel [49]. This was also

noted in [48] for the point-to-point setup.

2.4 Numerical Results

In this section, we numerically evaluate the performance of the schemes proposed in
Section 2.3, and we compare them with the lower bound from Section 2.2.

In Fig. 2.5(a) we let the power at the helper be fixed at P, = 1, and N = 1,
and we plot the achievable distortion D with respect to the SNR, given by P;/N. Tt
can be seen that SLU achieves the lowest distortion among the considered schemes,
and the performance of I-HDA and S-VQ, denoted by D} (£2) and D}, (Q2), respectively,
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Figure 2.5: Upper and lower bounds on the distortion with respect to SNR and corre-
lation for the Gaussian one-helper problem.

reduce to D () in this regime of operation. On the other hand, separate source and
channel coding achieves the worst performance among the considered schemes. In Fig.
2.5(b), we let P, = 5. Contrary to the previous case, while uncoded transmission
still achieves the best distortion for low SNR values, its performance deteriorates as
SNR. increases, and the pure digital scheme has a better performance in this regime.
I-HDA and S-VQ schemes reduce to the pure uncoded performance at low SNR values,
while they outperform both digital and pure uncoded transmission schemes at higher
SNR values. We note that both I-HDA and S-V(Q achieve the same distortion in general,
although I-HDA uses successive decoding, and are operationally different in their digital
components. In S-VQ, the sources are quantized and are directly mapped to de channel

input, and hence, the correlation between the quantization codewords is exploited. On
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the other hand, in I-HDA, the sources are quantized and mapped to DPC channel inputs.
In this case, the correlation between the DPC codewords is exploited instead. While
in this multi-terminal setup both structures achieve the same performance, we believe
that in other communication scenarios their performance will be different.

Now, we consider a symmetric power scenario for which P, = P, = P, and plot the
upper and lower bounds on the achievable distortion D with fixed SNR with respect to
the source correlation p, which quantifies the quality of the helper’s observation. We
consider P =1 in Fig. 2.5(c). Observe that all schemes achieve the lower bound, and
are thus optimal, when p = 0, which corresponds to the case with independent, hence
useless, helper observation. Since the helper is useless, the setup reduces to a Gaus-
sian point-to-point channel, for which both separation and ULC are optimal. Uncoded
transmission, I-HDA and S-VQ achieve the optimal performance at p = 1, i.e., when
both users have access to the main source signal, while digital transmission is subopti-
mal. In this case, the helper and the main transmitter can fully cooperate by generating
correlated channel inputs by exploiting the source correlation, although they still have
individual power constraints. However, separation based schemes cannot generate cor-
related inputs distributedly, since source and channel coding are done independently.
The suboptimality of digital transmission with respect to uncoded transmission for
MMSE reconstruction in this setup was proven in [52]. Note that digital transmission
is outperformed by the other schemes for any p > 0, while -HDA, S-VQ and uncoded
transmission achieve the same distortion. In Fig 2.5(c) we consider the upper and lower
bounds for P = 5. In this case, pure digital transmission outperforms analog transmis-
sion for low p, while analog transmission achieves lower distortions for high correlation
values. In general, the gains from separation based schemes are obtained only by the
distributed compression of the source, while gains in SLU are obtained only by gener-
ating correlated channel inputs that result in beamforming gains. When the correlation
is low, higher gains can be obtained from distributed compression, whereas when the
correlation is high, distributed beamforming provides higher performance. Nevertheless,
I-HDA and S-VQ schemes outperform both pure schemes and achieve lower distortions,
since both schemes exploit both types of gains. We observe that for high correlation
values, HDA schemes reduce to the performance of uncoded transmission. Note that,
as expected, at p = 0 and p = 1 we have the same optimality results as before.

While we have not been able to prove it analytically, we believe that the uncoded
transmission is optimal in those regions where the performance of HDA and uncoded
transmission coincide. This is reminiscent of the optimality of uncoded transmission in
the MAC setup considered in [13]. However, we note that the optimality conditions in
[13] differ from the conditions under which uncoded transmission achieves the lowest
distortion for intermediate correlation values.

In general, we observe that by using the correlated source sequences available at the
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transmitters, the encoders can generate correlated channel inputs that outperforms the
pure digital transmission scheme based on separate source and channel coding, for which
the channel inputs are independent. However, while the proposed HDA schemes achieve
significant better performance than both the pure analog and pure digital schemes, in
general the proposed transmission schemes are far from the derived distortion lower
bound. We believe that this mainly stems from the looseness of the proposed lower

bound, and tighter lower bounds in this setting is a challenging future research problem.

2.5 Conclusions

We have studied the JSCC one-helper problem in the Gaussian setting. We have pro-
posed a lower bound on the achievable distortion using cut-set bound arguments and
bounding the maximum correlation between the channel inputs. We have considered
the achievable distortion, and have derived the optimal performance of pure digital and
symbol-by-symbol linear analog transmission schemes. Then, we have proposed a gen-
eralized HDA transmission scheme based on power allocation among digital and analog
signals, and studied two operational approaches. First, an HDA scheme has been con-
sidered, in which an analog component is superposed with a quantized version of the
source sequence at each encoder, and joint decoding is employed at the destination. A
second HDA scheme has been considered, which exploits the analog components through
dirty paper coding and applies successive decoding. It is shown that in certain regimes,
analog transmission outperforms pure digital transmission. It is numerically shown that
both HDA schemes achieve the same distortion, which is significantly lower than pure

digital and analog transmission in some regimes.



Chapter 3

Joint Source-Channel Coding
with Time-Varying Channel
and Side-Information: SISO

In this chapter, we consider the transmission of analog data, such as video or voice, under
delay constraints in the presence of time-varying correlated information available at the
receiver considered in Section 1.1.1. We model this important practical communication
scenario as a JSCC problem of transmitting a Gaussian source over a time-varying
Gaussian channel with the minimum average end-to-end distortion in the presence of
time-varying correlated side information at the receiver. We consider a block fading
model for the states of both the channel and the side information, and these states are
assumed to be known perfectly at the receiver.

When both the channel and the side information are static, Shannon’s separation
theorem applies [28], and the optimal performance is achieved by separate source and
channel coding; that is, the concatenation of an optimal Wyner-Ziv source code [4],
which exploits the side information available at the decoder, with an optimal capacity
achieving channel code. However, in delay-limited transmission, if the channel and the
side information are time-varying, and the channel state information (CSI) is available
only at the receiver, the transmitter cannot use the optimal source and channel codes
without being prone to outages, and the separation theorem fails. In order to have a
good performance on average, the transmitter has to adapt to the time-varying nature
of both the channel and the side information without knowing their realizations.

Strategies based on separate source and channel coding suffer from the threshold
effect and do not adapt well to the uncertainties of the channel [17]. On the other hand,

simple uncoded transmission is robust to SNR mismatch, and does not suffer from the
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threshold effect. However, despite being optimal in the point-to-point Gaussian setup,
it becomes suboptimal in the presence of correlated side information. In [34] an HDA
scheme, which we denote by HDA-WZ, is proposed and shown to be robust to SNR
mismatch and, unlike uncoded transmission, HDA-WZ is optimal even in the presence
of side information at the receiver, or known interference in the channel. HDA-WZ is
also shown to outperform separate source and channel coding and uncoded transmission
in certain static setups, such as the transmission of a Gaussian source in the presence of
correlated interference [53,54], or to achieve the optimal distortion in the transmission
of a bivariate Gaussian source over a broadcast channel [55]. In addition to HDA-WZ or
various other HDA schemes, pure digital JSCC, based on joint decoding of the channel
and source codewords, is also shown to exhibit improved robustness to the threshold
effect, and to achieve the optimal performance in certain broadcasting scenarios [56-58].

The characterization of the optimal expected distortion for the proposed model in
the absence of time-varying side information has received a lot of interest in recent years.
Despite the ongoing efforts, the optimal performance remains an open problem. The
expected distortion in this model is studied using multi-layer source codes concatenated
with time-division [59] and superposition [42,60] coding schemes. In general, more con-
clusive results on the performance can be obtained by studying the distortion exponent,
which characterizes the exponential decay of the expected distortion in the asymptoti-
cally high SNR regime. The distortion exponent, which was introduced in [61], has been
considered as a figure of merit in many scenarios: for parallel fading channels in [62], for
the relay channel in [63], for channels with feedback in [64], for the two-way relay channel
in [65], for the interference channel in [66], and in the presence of side information that
might be absent in [67]. The distortion exponent, is characterized in the multi-antenna
setup in certain regimes in [15],[16] and [39], and it is shown that multi-layer source
and channel codes, or hybrid digital-analog coding schemes, are needed to achieve the
optimal distortion exponent.

The pure source coding version of our problem, in which the channel is considered
as an error-free constant-rate link, is studied in [43], and it is shown that, contrary
to the channel coding problem, when the side information follows a continuous quasi-
concave fading distribution, a single layer source code suffices to achieve the optimal
performance. Recently, the JSCC problem has also been considered in [68] and [69].
In [68], the distortion exponent for separate source and channel coding is derived when
the side information sequence has two states, the side information average gain does
not increase with the SNR, and the channel follows a Rayleigh fading. In [69], HDA
and joint decoding schemes are considered, and their performance is studied using the
distortion loss, which quantifies the loss with respect to a fully informed encoder that
perfectly knows the channels and the side information states.

In this chapter, we consider the JSCC problem both in the finite and asymtotically
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high SNR regimes for single antenna setups and defer the analysis of multi-antenna
scenarios to Chapter 4. We first consider two lower bounds on the expected distortion by
providing the encoder with different channel and side information state information. We
then study achievable schemes based on uncoded transmission, SSCC, joint decoding,
as well as HDA transmission and compare the performance of these schemes with the

lower bound. The main contributions of this chapter are the following:

e We prove the optimality of separate source and channel coding when the channel
is static and the side information state has a discrete or a continuous quasiconcave
gain distribution. Remarkably, most common distributions used to model wireless
communication channels, e.g., Rayleigh, Rician, Nakagami, have continuous and
quasiconcave gains.

e When both the channel and the side information are time-varying, and the side
information gain distribution is discrete or continuous quasiconcave, we derive a
lower bound on the expected distortion called the partially informed encoder lower
bound, by providing only the current channel state to the encoder while the side
information state remains unknown.

e We show that uncoded transmission meets this lower bound when the side infor-
mation fading state belongs to a certain class of continuous quasiconcave distribu-
tions, while separate source and channel coding is suboptimal. This class includes
monotonically decreasing functions which occur, for example, under Rayleigh fad-
ing. To the best of our knowledge, this is the first result showing the optimality of
uncoded transmission in a fading channel scenario while it would be suboptimal
in the static case.

e We propose achievable schemes based on separate source and channel coding
(SSCC), joint decoding (JDS) and hybrid digital analog transmission with a su-
perposed analog layer (SHDA). We show that JDS always outperforms SSCC and
numerically show that SHDA performs very close to the partially informed encoder
lower bound, although in general no particular scheme outperforms the others.

e We obtain the distortion exponent corresponding to the proposed upper and lower
bounds for Nakagami distributed channel and side information. We parameterize
the uncertainty by the shape parameter, given by L. for the channel and by L for
the side information. For L. > 1, we characterize the optimal distortion exponent
and show that it is achieved by SHDA, in line with the numerical results. For L. <
1, we show that JDS achieves the optimal distortion exponent in certain regimes,
while SHDA is suboptimal. However, as L increases, the performance of JDS
saturates and becomes worse than SHDA, whose distortion exponent converges to

the upper bound.

The rest of the chapter is organized as follows: in Section 3.1 we introduce the
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Figure 3.1: Block diagram of the joint source-channel coding problem with fading chan-
nel and side information.

system model. In Section 3.2 we provide some previous results and characterize the
optimal performance for a static channel; while in Section 3.3, we propose upper and
lower bounds on the performance. In Section 3.4 we prove the optimality of uncoded
transmission under certain side information fading distributions. In Section 3.5 we
provide numerical results for the finite SNR regime, while in Section 3.6 we consider a
high SNR analysis and characterize the optimal distortion exponent. Finally, in Section

4.8 we provide the conclusions.

3.1 System Model

We consider the transmission of a random source sequence S™ of independent and iden-
tically distributed (i.i.d.) entries form a zero mean, unit variance real Gaussian dis-
tribution, i.e., S; ~ N(0,1), over a time-varying channel (see Fig. 4.1). An encoder
f* : R™ — R™ maps the source sequence S™ to the input of this channel, X" € R",
i.e., 2™ = f"(s"), while satisfying an average power constraint: = > " | E[X?] < 1. The

block-fading channel is given by
Y*"=H. X"+ N", (3.1)

where H. € R is the channel fading state with probability density function (pdf)
pa,(he), and N™ is the additive white Gaussian noise N; ~ N (0, 1).

In addition, there is an orthogonal block-fading side information channel connecting
the source to the destination, which provides an uncoded noisy version of the source
sequence to the destination. This second channel models the time-varying correlated
side-information at the destination. Similarly to the communication channel, we model

this side information channel as a memoryless block fading channel given by

T" =T.S" + Z", (3.2)
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where I'. € R is the side information fading state with pdf pr,(v.), S™ is the uncoded
channel input, and Z™ is the additive white Gaussian noise, i.e., Z; ~ N(0,1), i =
1,...,n.

We define H = H? ¢ R* and I' £ T2 € Rt as the instantaneous channel gain and
the instantaneous side information gain, with pdfs pgy(h) and pr(7), respectively.

We assume a stringent delay constraint that imposes each source block of n source
samples to be transmitted over one block of the channel, consisting of n channel uses, i.e.,
we consider matched source and channel bandwidths. We study the more general case
with an arbitrary bandwidth ratio in Chapter 4. Some additional results considering a
mismatched bandwidth ratio in SISO channels have been reported in [70].

Both the channel and side information states, H. and I'., are assumed to be con-
stant, with values h. and ~., respectively, for the duration of one channel block, and
independent among different blocks. The channel and side information state realizations
he and -, are assumed to be known at the receiver, while the encoder is only aware of
their distributions.

The decoder reconstructs the source sequence from the channel output Y, the side
information sequence T, and the channel and side information states h. and ~. using
a mapping ¢" : R" x R" x Rx R—R", where 8™ = g™ (Y™, T"™ h¢, 7).

For given channel and side information distributions, we are interested in character-
izing the minimum ezpected distortion, E[D], where the quadratic distortion between

the source sequence and the reconstruction is given by

1< .
D2 =% (S -5 (3.3)
i
The expectation is taken with respect to the source, channel and side information states,
and the noise distributions. The minimum expected distortion can be expressed as

ED* £ lim min E[D]. (3.4)

n—oo fn gn

3.2 Preliminary Results

We first review some of the existing results in the literature for the source coding version
of the problem under consideration, in which the fading channel is substituted by an
error-free channel of finite capacity. We then focus on the scenario in which the channel
is noisy but static, i.e., the channel gain is constant and known both at the encoder and
the decoder. We show that separate source and channel coding is optimal in the case of

a static channel.
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3.2.1 Background: Lossy Source Coding with Fading Side In-

formation

The source-coding version of this problem in which the fading channel is substituted
by an error-free channel of rate R and a time-varying side information sequence T™ is
available at the destination is considered in [43]. Here we briefly review the results of
[43] which will be used later in the chapter.

Let the distribution pr(v) be discrete with M states v < -+ - < 7y with probabilities
Pr[I" = v;] = p;. We define the side information sequence available at the decoder when
the realization of the side information fading gain is vs; as T/ = VSt + 2 1 Note

that the side information has a degraded structure, characterized by the Markov chain
Tl,j_"'_Tﬂffl,j_T]\/I,j —Sj, _]: 1,...,7’1,. (35)

This is equivalent to the Heegard-Berger source coding problem with degraded side
information [5], in which an encoder is connected by an error-free channel of rate R to
M receivers, and receiver i has access to side information 77";. The minimum expected
distortion is given by the solution to the following problem,

ED*(R) =

. T
= D, 3.6
pon P (8.6)

where p £ [py, ..., par), D = [Dy, ..., Dyy] with D; defined as the achievable distortion at

receiver ¢ and Ry p(D) is the Heegard-Berger rate-distortion function given by

M
Rup(D) = i I(S;wW;|wi =t 1), 3.7
ni(D) wyné%l(n); ( Wi Th) (3.7)

where W7 denotes the auxiliary random variables W1,...,W;, and P(D) is the set of

random variables WM satisfying the Markov chain condition

Wag == Wi =8 = Tag = Ty — -+ — T,

for which there exist source reconstructions S;(T;, W7) satisfying E[d;(S, ;)] < D;,
i=1,...M.

When the source X" is Gaussian, it can be shown that the optimal auxiliary random
variables W minimizing (3.6) are jointly Gaussian. Then, the minimum expected

distortion for a Gaussian source with finite number of side information states can be

1To avoid confusion in the indexing, we use Y £ [Ti1,...,Tin] to denote all the elements Ti,5,
7 =1,...,n for the i-th side information state.
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found by solving the following convex optimization problem [43, Eq. (59)-(62)]:

1., D €RTF

M
ED%(R) = min ZpiDi
i=1

M-1
1 1
st —3 ;:o log(1 + (vig1 — i) Di) — 3 log Dy <R,
Di S (D;fll +71 - Vi—l)_la 1= 17 "'7M7 (38)

where Dy £ 02 = 1 and 79 2 0. The Heegard-Berger rate distortion function also

extends to the set of infinitely many degraded fading states, 71 < 9 < --- with
> ooy pi =1 [43]. For a countable number of states, the expected distortion is given in
[43, Eq. (75)-(78)] as the solution to

oo
EDL(R) =, pmin, . D piD;

1 _
st — 5 ;(log(Difl +9 —7,i-1) +log D;) < R,
Di < (D;11 + Yi — ’Y,i—l)_l, 1= 172a (39)

When the side information distribution pr(7) is continuous and quasiconcave?, the op-
timal expected distortion is achieved by single-layer rate allocation such that all the
available rate R is targeted to a single side information state 74 [43]. Then, the optimal

expected distortion is given by

EDZQ(R):/OVPF(W)dW—i—/OO (wlpr(”) _dy, (3.10)

14~ )22 4y =7

where 4 minimizing (3.10) is determined as follows: Let a super-level set be defined as
[Yi(a), v-(a)] & {y|pr(y) > a}. Then, 7 is defined as the left endpoint of the super-level
set induced by a*, i.e., ¥ = vy (a*), where o* € [0, maxpr(7y)] is found by solving the

equation

- pr(y) —a” B
/Yz(oc*) ((1+71(0¢*))22R+,Y_,Yl(a*))2d7 =0. (3.11)

When the side information state is Rayleigh distributed, the side information gain I’
is exponentially distributed. Then it can be seen that 4 = 0 and the optimal expected

distortion becomes

52R 2R
EDan(R) = E[lr}eﬁEl <}§[N> , (3.12)

2A function g(z) is quasiconcave if its supersets {z|g(z) > a} are convex for all a.
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where Ey(z) £ [ t7'e"dt is the exponential integral [43].

In the following sections we use ED%(R), EDy(R) and ED%,, (R) to generate lower
bounds on the expected distortion. To unify these results, we define the function
ED?(R) as the minimum expected distortion in the source coding problem for these
three setups. Therefore, while the achievability results are valid for any distribution,
the optimality results in this chapter are valid for discrete, i.e., finite or countable num-

ber of states, as well as continuous quasiconcave distributions of the side information.

3.2.2 Static Channel and Fading Side Information

In this section we consider a static channel and prove the optimality of separate source
and channel coding in this setting. We consider a channel from X" to Y™, not neces-
sarily the fading Gaussian channel characterized in (3.1), of fixed capacity C. The side
information is still block-fading as in (3.2) with the side information gain following a
distribution pr(v). Note that it is a JSCC generalization of the source coding problem
reviewed in Section 3.2.1. We denote the minimum expected distortion in the case of a
static channel by EDY, ..

Optimality of separate source and channel coding can be proven when I', the side
information gain, has finite or countable number of states, or when it has a continuous
quasiconcave distribution. This reduces the problem to the source coding problem of
Section 3.2.1 with R = C.

Theorem 2. Assume that the channel is static with capacity C. When the side infor-

mation gain T' has a discrete number of states, or a continuous quasiconcave pdf pr(7),

*

the minimum expected distortion, ED?,,,

18 achieved by separate source and channel
coding, and is given by

ED,, = ED(C). (3.13)
Proof. The theorem is first proven when I' has a discrete distribution. Then, to show
the optimality of separation when pr(7y) is continuous and quasiconcave we construct a
lower bound on the expected distortion ED},, by discretizing the continuum of analog
side information states, and show that this bound is achievable in the limit of finer
discretizations. See Appendix C for details. O

3.3 Upper and Lower Bounds

In this section we return to the problem presented in Section 3.1 in which both the
channel and the side information are block-fading. We construct two lower bounds on
ED*. The first one is obtained by informing the encoder with both of the channel and
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side information states H and I'. Then, we construct a tighter lower bound by informing
the encoder only with the channel state H. Next, we propose achievable schemes based
on uncoded transmission, separate source and channel coding, joint decoding and hybrid
digital-analog transmission. Comparison of the proposed upper and lower bounds in

different regimes of operation is relegated to Sections 3.4, 3.5 and 3.6.

3.3.1 Informed Encoder Lower Bound

A trivial lower bound on ED* can be obtained by providing the encoder with the in-
stantaneous states of the channel and the side information. We call this bound the
informed encoder lower bound. At each realization, the problem reduces to the system-
atic model considered in [28] (see also [71]), for which the separation theorem holds.
The encoder compresses the source sequence using Wyner-Ziv source coding consid-
ering the side information, and then transmits the compressed bits at the instanta-
neous capacity of the channel. For states (h,7), the optimal distortion is given by
A

Dine(h,7y) & (1 4+ h)~Y(1 + )7L, Averaging over the channel and side information

states, the informed encoder lower bound on the expected distortion is given by

EDg = En,r[Dine(H,T)]. (3.14)

3.3.2 Partially Informed Encoder Lower Bound

We can obtain a tighter lower bound by providing the encoder only with the channel
realization h. We call this the partially informed encoder lower bound, and denote it by
ED;,;. For a given channel state realization h, the setup reduces to the one considered in
Section 3.2.2, and for a discrete or continuous quasiconcave pr(7y), separation theorem
applies for each channel realization. Averaging over the channel states, we have the

following lower bound.

Lemma 3. If pr(y) is discrete or continuous quasiconcave, the minimum expected dis-

tortion is lower bounded by

ED,,; £ Eg[ED;(C(H))], (3.15)

where C(h) = Llog(1+ h) is the capacity of the channel for a given realization h = h?.

Providing only the side information state to the encoder does not lead to a tight
computable lower bound, since the optimality of separate source and channel coding
does not hold in this case. Although the partially informed encoder lower bound is
tighter, we will include the informed encoder bound in our analysis, as it provides a

benchmark for the performance when both channel and side information states are
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available at the transmitter, which sheds light on the value of the CSI feedback for this
JSCC problem.
Next, we study some achievable schemes (upper bounds) for the JSCC problem under

consideration.
3.3.3 Uncoded Transmission

Uncoded transmission is a memoryless and zero-delay transmission scheme in which
each channel input X; is generated by scaling the source signal S; while satisfying the
power constraint. In our model both the source variance and power constraint of the
encoder are 1, and hence, no scaling is needed, i.e., X; = 5;. The received signal from

the channel is then given by

}/i thsi—i-Ni, 1= 1,...,n. (316)

The receiver reconstructs each component with a MMSE estimator using both the
channel output and the side information sequence, i.e., S; = E[S;|Y;, T3], ¢ = 1,...,n.

The distortion for each source component S; for a given channel and side information
realization h. and . is given by D, (h,7) = (1+ h +v)~!. Averaging over the channel

and side information realizations, we have

ED, = Eyr[Dy(H,T)). (3.17)

3.3.4 Separate Source and Channel Coding (SSCC)

Next, we consider separate source and channel coding with a single layer based on
Wyner-Ziv source coding using the side information sequence followed by channel coding
for the channel. Note that due to the lack of CSI at the transmitter the rates of the
source and the channel codebooks are fixed at all channel and side information states.
Since the number of bins and channel codewords are fixed without knowledge of the
channel and the side information states, this scheme may suffer from outages both in
the channel decoding and in the source decoding stages.

The quantization codebook consists of 27t £s) length-n codewords, W" (i), i =
1,...,2"Ee+Rs) - generated through a ‘test channel’ given by W = S + Q, with Q ~
N(0,03) and independent of S. The quantization noise variance is chosen such that
R+ R. = I(S;W)+e, for an arbitrarily small € > 0, i.e., 03 = (22(FstFRe=e) _1)=1 The
generated quantization codewords are then uniformly distributed into 27 bins. On
average, each bin contains 2" codewords. Additionally, a Gaussian channel codebook
with 277 Jength-n codewords X™(s) is generated independently with X ~ A(0, 1), and
the codeword X" (s), s € [1, ..., 2"F¢] is assigned to the bin index s.

Given a source realization S™, the encoder searches for a quantization codeword
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W™ (1) that is jointly typical with S™. Assuming one such codeword is found, the channel
codeword X™(s) is transmitted over the channel, where s is the bin index of W" (7). At
reception, the bin index s is recovered with high probability using the channel output
Y™ if,

R. < I(X;Y). (3.18)

The decoder then looks for a quantization codeword within the estimated bin, that is
jointly typical with the side information sequence T". If the bin index is correct, the

correct codeword will be decoded with high probability if,
R. > I(S;W|T). (3.19)

If the quantization codeword W™ is successfully decoded, then S is reconstructed with
an optimal MMSE estimator as S; = E[S;|T;,W;] for i = 1,...,n.

An outage is declared whenever, due to the randomness of the channel or the side in-
formation, the quantization codebook cannot be correctly decoded, i.e., when condition
(3.18) or (3.19) are not satisfied. In case of an outage, only the side information sequence
is used to estimate the source, and we have S; = E[S;|T;]. When the quantization rate

is R and the side information state is 7, the distortion is
Dy(R,v) & (y+229)71, (3.20)

if the quantization codeword is decoded correctly. If an outage occurs, the achievable

distortion is given by D4(0,v). Then, the expected distortion of SSCC is given by
EDg(Rs, Re) = Eoe, [Da(Rs + Re,I')] + Eo,,[Da(0,T)],
where O¢, is the complement of the outage event defined as
Og £ {(h,7) : Re 2 I(X;Y) or R < I(S;WIT)},

where I(S; W|T) = L log (1 4 (22(Fs+Eet9) — 1) /(y 4+ 1)) and I(X;Y) = $log(1 + h).
Since the source and channel rates Ry and R, are fixed for all channel and side
information states, we can chose those in order to minimize the expected distortion.

Thus, we have

ED? £ min ED (R, R.). 3.21
b BUR

s

When the side information has a continuous quasiconcave gain distribution, we can

have a closed-form expression for the optimal source coding rate R, as given in the
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next lemma.

Lemma 4. For a given R, if pr(y) is continuous and quasiconcave, EDg,(Rs, R.) is
minimized by setting Ry = §log(1+ (1+%)(22% — 1)) — R. + € where ¥ is the solution
to (3.11).

Proof. Once the channel rate has been fixed, i.e., once R, is fixed, it follows from the
results in Section 3.2.1 that EDg,(Rs, R.) is minimized by compressing the source to
a single layer targeted for side information state 7, i.e., R. = I(S;W|T =4S + Z) =

2 log (1 + %), from where R, is obtained. O

We can reduce the complexity of SSCC by having only a single codeword in each
bin, that is, by letting Ry = 0. This way, we get rid of the outage event corresponding
to a poor side information gain realization. However, to achieve the same quantization
noise, we need to transmit at a higher rate over the channel, which increases the channel
outage probability. Without binning, the minimum expected distortion is found as
ED:, £ ming, EDg(0, R.).

Note that when the side information fading distribution is such that ¥ = 0, then,
from Lemma 4, the optimal source coding rate is R; = 0, i.e., the minimum expected

distortion is achieved by ignoring the decoder side information in the encoding process.

Corollary 1. If ¥ = 0, the optimal SSCC does not utilize binning, that is, R =0 and
ED? = ED},.

In this section, we have only considered a single layer source coding scheme since for
continuous quasiconcave pr(7), the optimal source code uses a single source code layer.
However, in the case of discrete number of side information gain states, the optimal
source code employs multiple source layers, one layer targeting each of the side informa-
tion states [43]. For a channel code at rate R, the achievable expected distortion can be
obtained similarly to the scheme described in this section, using EDg(R,.) and ED¢(R,)

n (3.8), for finite and countable number of side information states, respectively.

3.3.5 Joint Decoding Scheme (JDS)

Here, we consider a source-channel coding scheme that does not involve any explicit
binning at the encoder and uses joint decoding to reduce the outage probability. This
coding scheme is introduced in [57] in the context of broadcasting a common source to
multiple receivers with different side information qualities, and it is shown to be optimal
in the case of lossless broadcasting over a static channel. The success of the decoding
process depends on the joint quality of the channel and the side information states.

At the encoder, a codebook of 2"Fid length-n quantization codewords W" (i), i =
1,...,2"%4  are generated through a ‘test channel’ W = S + Q, where Q ~ N(O,aé)
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and is independent of S. The quantization noise variance is chosen such that R;q =
I(S; W) + ¢, for an arbitrarily small € > 0. Then, an independent Gaussian codebook
of size 2" is generated with length-n codewords X™(i) with X ~ A(0,1). Given
a source outcome S™, the transmitter finds the quantization codeword W™ (i) jointly
typical with the source outcome and transmits the corresponding channel codeword
X™(i) over the channel. At reception, the decoder looks for an index i for which both

(2™(2),Y™) and (T™,w™(i)) are jointly typical. Then the outage event is given by
Oja £ {(h,7) : I(S;W|T) = I(X:Y)}, (3.22)

where I(S; W|T) = Llog (14 (22(R5a=9 —1)/(y + 1)) and I(X;Y) = Llog(1 + h).

If decoding is successful, the source S™ is estimated using both the quantization
codeword and the side information sequence, while if an outage occurs, the source S™ is
reconstructed using only the side information sequence. Then, the expected distortion

for the JDS scheme is found as
EDjd(Rjd) = Eo;;d [Dd(Rjd, F)] + ond [Dd(O, F)} (323)

Similarly to (3.21), the expected distortion can be optimized over Rjq to obtain the
minimum expected distortion achieved by JDS, that is, ED7, £ ming,, ED;q(Rjq).

In SSCC, the quantization codeword is successfully decoded only if both the chan-
nel and the source codes are successfully decoded. On the other hand, JDS decodes
the quantized codeword exploiting the joint quality of both the channel and the side
information sequence. The joint decoding produces a binning-like decoding: only some
Y™ are jointly typical with X (s), generating a virtual bin of W™ codewords from which
only one is jointly typical with 7™. The size of those bins depends on the particular re-
alizations of H and I' unlike in a Wyner-Ziv scheme, in which the bin sizes are designed
in advance. Hence, a bad channel realization can be compensated with a sufficiently
good side information realization, or viceversa, reducing the outage probability.

Indeed, the minimum expected distortion of JDS is always lower than that of SSCC,
as stated in the next lemma.

Lemma 5. For any given py(h) and pr(v), JDS outperforms SSCC at any SNR, i.e.,
we have ED?) > ED;fd.

Proof. Consider the SSCC scheme as in Section 3.3.4 with rates R, and R;. We will show
that the JDS scheme with rate R;jq = Rs+ R. achieves a lower expected distortion, i.e.,
EDy(R:,Rs) > EDjq(R; + Rs). If both schemes are in outage, or if the quantization
codeword is decoded successfully in both, they achieve the same distortion. Thus, to

prove our claim, it will suffice to show that Oy, 2 Ojq4.
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Let (h,7) be such that R, > I(X;Y) = 2log(1 + h), i.e., SSCC is in outage. Note
that for given (h,v), Rs and R, I(X;Y) and I(S; W|T) have the same values for both
schemes. However, if I(S;W|T) < I(X;Y), JDS is able to decode the quantization
codeword successfully while SSCC would still be in outage. This condition is satisfied
22(?’%) < Llog(1 + h), or equivalently v > % —1. If
this condition does not hold, both schemes are in outage and have the same performance.
Then, Oy 2O O, q. Conversely, if JDS is in outage, i.e., I(S;W|T) > I(X,;Y), then
SSCC is also in outage since either R, > I(X;Y) or R. < I(X;Y) < I(S; W|T) holds.
Therefore, we have Oy 2 O,q, which implies EDg,(R., Ry) > EDjq(R. + Rp) and
ED3, > ED7,. This completes the proof. O

1
whenever 3 log (1 +

3.3.6 Superposed Hybrid Digital-Analog Transmission (SHDA)

In this section, we consider a general HDA scheme, and provide sufficient conditions
for the achievable distortion for discrete memoryless channels with side information
available at the decoder, similar to the general HDA scheme considered in [36] in the
absence of side information. Then, using this result, we propose a particular HDA
scheme for the time-varying setup that superposes a coded layer with an uncoded layer
and allocates the power among the two layers.

Consider the transmission of a memoryless source sequence S™ over a discrete memo-
ryless channel p(y|z), in which the destination is interested in reconstructing the source
sequence at an average distortion D. In addition, a memoryless sequence correlated with
S™ T"™, is available at the destination as side information. We consider a general HDA
scheme in which the source sequence S™ is mapped to one of the 2" digital codewords
U™(m). Then, each pair (5™, U™(m)) is mapped symbol-by-symbol to the channel input
sequence X", which is transmitted over the channel. Upon receiving Y™ and together
with the side information 7", the decoder jointly recovers the digital components U™ (m)
by joint typicality, and reconstructs Sn by mapping symbol-by-symbol the analog chan-
nel output Y, the side-information 7™ and the decoded digital message. The general
conditions for successful decoding of the messages and the achievable distortion D are

given in the next lemma, which follows from [36].

Lemma 6. Let (S,T) be a pair of discrete memoryless sources and d(s, §) be a distortion
measure. A distortion D is achievable for communicating S over a memoryless channel

p(y|z) with side-information T available at the decoder if
I(U;8) < I(U;YT) (3.24)

for some conditional pdf p(u|s), channel encoding x(u,s) and a reconstruction function
3(u,y,t), such that B[d(S;S)] < D.
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Proof. First, we note that the JSSC setup with side information can be converted into a
point-to-point JSCC with two parallel channels: the original channel with channel input
x = (u,s) and channel output Y, characterized by p(y|z), and an orthogonal channel
corresponding to the side-information, with channel input =’ = s and channel output
T, characterized by p(t|z’) = p(t|s). See Figure 3.1. The proof follows from the point-
to-point version of Lemma 6 in the absence of side information, given in [36, Theorem
1]. Let the point-to-point channel p(7|z) be given by ¥ = (Y,T), and X = (X,5),
and consider the transmission of S over the point-to-point memoryless channel p(7|Z),
with channel input X and channel output Y. From [36, Theorem 1], it follows that an
average distortion D is achievable if I(U;S) < I(U;Y) for some conditional pdf p(a|s),
channel encoding Z(i, s) and reconstruction function (i, §) such that E[d(S; S)] < D.
The proof is completed by substituting ¥ = (¥,T) and X = (X, S) in the sufficient

conditions. O

Relying on this result, we propose a particular HDA scheme for the time-varying
setup that superposes a coded layer with an uncoded layer and allocates the power
among the two layers. The decoder uses joint decoding to recover the quantized code-
word using the channel output and the side information sequence. The uncoded com-
ponent in the channel causes an interference correlated with the source sequence, and
thus, acts as side information in the decoding. On the contrary, if an outage occurs and
the quantization codeword is not successfully decoded, the analog component provides
additional robustness since the channel now contains a noisy uncoded version of the
source sequence useful for the reconstruction. This scheme was presented without the
uncoded layer in [34] for the static setting, i.e., static channel and static side information
available at the receiver, and was shown to be robust against channel SNR mismatch.

The encoder transmits a superposition of digital and analog input signals as
X=X+ X7, (3.25)

where X7 and X' are the length-n channel input vectors corresponding to digital and
analog input signals, respectively. The analog channel input X7 is a scaled version of
the source sequence S™ with power P,, given by X" = \/P,S™.

The digital portion of the transmitted signal X} is generated as follows. We first
define the auxiliary random variable U £ X4 + 7S, where X, is independent of S
and distributed as X; ~ N(0, P;), where P;, is the power allocated to the digital
channel input with P; = 1 — P,; and n and P, satisfy, for an arbitrarily small ¢ > 0,
Ry, = I(U;S) + € = log (1 + %z) + €, ie., n? = Py(221n=9) —1). Then, we generate
a codebook of 2"%r length-n codewords U™ with i.i.d. components according to the

auxiliary random variable U. For each source outcome, the encoder determines which of
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the 2" (U;9)+€) codewords U™ in the codebook is jointly typical with S™, and transmits
X} = U™ —nS™. For sufficiently large n, a unique U™ satisfies the joint typicality
condition with high probability since Ry, > I(U; S).

At the decoder, given the channel output Y and the side information sequence 1",
the receiver looks for an auxiliary codeword U™ which is simultaneously jointly typical

with Y™ and T™. From Lemma 6, the correct U™ codeword is decoded successfully if,
Ry, < I(U;Y,T). (3.26)
We define the matrix C;, £ E[[U, Y, T|[U,Y,T|T]. We have

Py +n? VR(Pi+nvVP)  nyA
Ch=| Vh(Pi+1VPs) hPi+P,)+1 hyP,
NGl h P, y+1

Let Cfﬁ"s} be defined as the submatrix of C;, with the first column and first row elimi-

nated. Then, we have

I(U;Y,T) = h(U) + h(Y,T) — h(U,Y,T)

_1 ((Pd+n2>|0if’3}|>
= 5 og

|Chl
~ Liog (L+y+h(1+Pry)) (Pat+n?)
2 Pd(1+7+h(m—n)2)+n2

An outage will be declared whenever condition (3.26) does not hold due to the

randomness of the channel and side information. Hence, the outage event is defined by

On 2 {(hy7) : I(U3 8) > I(U; Y, T)}, (3.27)
and is given by
On2{(h,7): Pah(1+ Pay) < Pa(h(v/Pa —1)%) +n*}. (3.28)

If U™ is successfully decoded, each S; is reconstructed using an MMSE estimator
with all the information available at the decoder, S; = E[S;|U;,Y;, T;]. The achievable

4L

distortion when U™ is successfully decoded is given by Dp(Py,n) = (1 + CHCIVIC)_I7
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where ¢ £ [Bv/P, + k,vP,,7]T and

P, VI

Cy=|Piwh hP;+1 0]. (3.29)
0 0 1
We have
P,
Dy (Pyg,m) = d (3.30)

n2+Pd(1+'y+h(\/17a—n)2).

If an outage occurs, the receiver estimates S™ from Y™ and T with an MMSE estimator,
S; = E[S;|Y;, T;]. The achieved distortion is found to be

hP, -1
DY (Py,m) 2 <1+ : +f:Pd +’y) ) (3.31)

Finally, the expected distortion for SHDA is given by
EDghia(Pa;n) = Eog [Dn(Pa,n)] + Eo, [DF" (Pa, n)]- (3.32)

Optimizing over Py and 7, we obtain ED?, ;. £ minp, , EDgpaq(Pg,n). Note that un-
coded transmission can be recovered from FDgpqq(Pg,n) with P; = 0. The hybrid digi-
tal analog (HDA-W?Z) scheme of [34] can be recovered by letting P, = 0. We define the
minimum expected distortion achievable with HDA-WZ as ED; £ ming FDgspaa(1,1n).
Alternatively to the derivation in Section 3.3.5, the performance of JDS can also be
derived by using Lemma 6 with U = (W, X), where W = S + Q with Q@ ~ N(0,03)
and X ~ N(0,P), and independent of each other, and using X as channel input.
While in SHDA the quantization codeword is directly mapped to the channel input,
in JDS the channel input is a codeword X independent of the quantization codeword
W. Therefore, despite originating from the same general scheme, SHDA and JDS are
operationally different. In Section 3.5 and Section 3.6, we observe that in general SHDA
performs better than JDS, although the latter outperforms SHDA in certain regimes.

3.4 Optimality of Uncoded Transmission

In addition to separate source and channel coding, uncoded transmission is well known
to achieve the minimum distortion in point-to-point static Gaussian channels [26], [27].
However, even in a point-to-point Gaussian channel, in the presence of static side infor-
mation at the decoder, uncoded transmission becomes suboptimal. In this case, sepa-
rate source and channel coding, concatenating a Wyner-Ziv source code with a capacity
achieving channel code [28], or JSCC through the HDA-WZ scheme in [34] is required
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to achieve the optimal distortion. Surprisingly, in our setting, when I' has a continu-
ous and quasiconcave distribution for which 4 = 0 is the solution to equation (3.11),
uncoded transmission achieves the lower bound ED}; in (3.15) for any arbitrarily dis-
tributed channel, while both separate source and channel coding and HDA-WZ schemes
are suboptimal. The optimality of uncoded transmission follows since, when 4 = 0, the
side information renders useless for the partially informed lower bound. Then, this lower
bound reduces to the fully informed transmitter lower bound of a point-to-point channel
without side information, for which uncoded transmission is optimal. Similarly to the
other results, the optimality of uncoded transmission in our setting is also sensitive to

the source and channel distributions.

Theorem 3. Let pg(h) be an arbitrary pdf while pr () is a continuous and quasiconcave
function satisfying equation (3.11) for ¥ = 0. Then, the minimum expected distortion

ED* is achieved by uncoded transmission.

Proof. For any pdf satisfying (3.11) with 4 = 0, the partially informed encoder lower

bound is given by

1
ED;::EH[ED5<bg1+fU)]

(@) (7)

- // 210g(1+h d dh

:// )ddh
h71+h+

= FED,,

7=0

where (a) is obtained by substituting 4 = 0 in (3.10). This completes the proof. O

The class of continuous quasiconcave functions for which any non-empty super-level
set of fr(vy) begins at v = 0, satisfies 5 = 0. It is not hard to see that the class of

continuous monotonically decreasing functions in v > 0 satisfy this condition.

Proposition 1. Let pr(y) be a continuous monotonically decreasing function for v > 0.
Then, (3.11) holds for ¥ = 0; and hence, uncoded transmission achieves the optimal

performance.

Proof. By definition, 7 is given by the left endpoint of the super-level set induced by o*.
For any monotonically decreasing function pr(v), the left endpoint of the super-level
set {7 : pr(y) > a} corresponds to v = 0, and as a consequence, we have ¥ = 0 for any

value of a*. O
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3.5 Finite SNR Results

In the previous section we have seen the optimality of uncoded transmission when the
side information fading state follows a continuous quasiconcave pdf for which ¥ = 0.
The exponential distribution, and the more general family of gamma distributions with
shape parameter L < 1, are continuous monotonically decreasing distributions, and
hence, the uncoded transmission is optimal when the side information gain I' follows
one of these distributions. Gamma distributed fading gains appear, for example, when
the channel state follows a Nakagami distribution. The gamma distribution with shape

parameter L and scale parameter 6, I' ~ T (L, 0), is given as

pr(v) = %ﬁv

L=1¢=% for v> 0,and L,0 > 0, (3.33)
where U(z) £ [Ft*"'e~'dt is the gamma function. The variance of T' is 0 = L§?
and its mean is E[I'] = L. When L < 1, it is easy to check that pr(v) is continuous
monotonically decreasing, while it is continuous quasiconcave for L > 1. Note that when
L =1, the gamma distribution reduces to the exponential distribution.

Parameter L models the side information diversity since a time-varying side informa-
tion sequence Y™, with state distribution pr(7), provides the equivalent information (in
the sense of sufficient statistics) provided by L independent side information sequences
each with i.i.d. Rayleigh block-fading gains. We note that despite the term “diversity”,
the side information diversity comes from uncoded noisy versions of the source sequence;
hence, the gains it provides are limited compared to the channel diversity which can be
better exploited through coding.

To illustrate the performance of the achievable schemes and compare them with the
lower bounds, we consider Nakagami fading channel and side information distributions.
We consider normalized channel and side information gains H. = /pHc and I'. =
VPl co, such that

Y™ = /pHoX" + N, T" = /pleS™ + 2",

where H.o and T satisfy E[H%)] = E[['%)] = 1. Basically, H. and 'y capture the
randomness in the channels while p is the average SNR. We define the associated in-
stantaneous gains Hy = H2 and 'y £ T?,.

We assume that the channel gain Hy has a gamma distribution with scale parameter
L.>0and 0. = L7, ie., Hy ~ Y(L., L7 '), and similarly, the side information gain
follows a gamma distribution with Ly > 0 and 6, = L; !, ie., Tg ~ YT(Ls,L;1). We
have fixed the value of 6. and 6, such that E[H2)] = E[Hy] = 1 and E[I'%,] = E[T] = 1,

and both channels have the same average SNR p for any L. and Ls;. Note that the
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Figure 3.2: Upper and lower bounds on the expected distortion versus the channel SNR
(p) for Rayleigh fading channel and side information gain distributions, i.e., Ly = L. = 1,
with p = E[H2] = E[l'?].

variance of I' is 02 = Ls0% = 1/L,. Thus, the side information gain I' becomes more
deterministic as L increases, and similarly, for L. and H.

First we consider the case with Ly = L. = 1, i.e., both the channel and the side
information gains are Rayleigh distributed. In Fig. 3.2 we plot the expected distortion
with respect to the channel SNR. As shown in Theorem 3, uncoded transmission achieves
the partially informed encoder lower bound EDj;. The minimum expected distortion is

given by

ED*=ED,=[ —-e ¢

1 P 1 /)h“
1+ph < +
ho f

) pH, (ho)dho. (3.34)

We see from the figure that the informed encoder lower bound is significantly loose,
especially at high SNR. This gap between the two lower bounds also illustrates the
potential performance improvement that will be achieved by increasing the feedback
resources. If both channel and side information states can be fed back to the encoder,
instead of only CSI feedback, a significant improvement can be achieved. In relation to
this observation, a problem that requires further research is the allocation of feedback
resources between channel and side information states when a limited feedback channel

is available from the decoder to the encoder.
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Figure 3.3: Lower and upper bounds on the expected distortion versus the channel SNR
for Ly = 2 and L. = 1 with p = E[H?] = E[T'2].

SHDA (ED?,,,) also achieves the optimal performance by allocating all available
power to the analog component, reducing it to uncoded transmission. Note that while
the HDA-WZ scheme of [34] cannot reach ED* in the low SNR regime, its performance
gets very close to ED* at high SNR values.

The expected distortion achievable by SSCC is minimized without any binning, since
we have 4 = 0 for Rayleigh fading side information. Hence, R} = 0 from Lemma 4,
and therefore EDY = ED},. It is interesting to observe that for Rayleigh fading
side information states, the uncertainty in the side information renders it useless in
transmitting the quantized source codeword, and the side information is ignored to
avoid outages in source decoding. The side information is used only in the estimation
step. As will be seen next, this is not the case when the side information fading has a
different distribution.

We also observe in Fig. 3.2 that JDS (ED}) outperforms SSCC by exploiting the
joint quality of the channel and the side information, as claimed by Lemma 5. We also
see that JDS cannot achieve the optimal performance in this setting. Observe that the

expected distortion achieved by MMSE estimation of the source using only the side

*

information, which we denote by ED;, ,

has a constant gap with F£D* in this setup, as
well as with the other schemes in the high SNR regime.

Observations above, including the optimality of uncoded transmission, hold for any
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Figure 3.4: Lower and upper bounds on the expected distortion versus the channel SNR
for Ly = 10 and L. = 1 with p = E[H?] = E[['Z].

L. value as long as Ly < 1. This follows from Proposition 1 since pr(+y) is monotonically
decreasing if Ly < 1. However, while uncoded transmission is optimal when Ly < 1, this
optimality does not hold in general. Next, it will be shown that for a wide variety of
channel distributions, while uncoded transmission is suboptimal, SHDA performs very
close to the partially informed encoder lower bound.

We consider the case with Ly = 2 and L. = 1 in Fig. 3.3. We can see that SHDA
achieves the lowest expected distortion among the proposed schemes and performs very
close to the lower bound at all SNR values, while uncoded transmission is suboptimal.
Although the performance of uncoded transmission is very close to EDy; in the low
SNR regime, as the SNR increases, the gap between uncoded transmission and the
partially informed encoder bound increases. In addition, both SSCC and JDS surpass
the performance of uncoded transmission as the SNR increases. In general, the robust-
ness of uncoded transmission is helpful in the low SNR regime. However, in the high
SNR regime uncoded transmission is not capable of exploiting the additional degrees-of-
freedom in the system, given by the diversity in the side-information, i.e., when L, > 1,
and digital schemes exploit this additional degree-of-freedom better.

We see that SSCC with and without binning both have worse performance than JDS
in all SNR regimes and, while at low SNR binning does not provide significant gains,
as the SNR increases E'D}, starts to outperform ED},. On the other hand, ED}, lies
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Figure 3.5: Lower and upper bounds on the expected distortion versus the channel SNR
for Ly = 1.5 and L. = 0.5 with p = E[H?] = E[I'?].

between ED, and ED,,. These three schemes have the same decay rate and maintain
a constant gap. The rate of decay in the high SNR regime is characterized in Section
3.6 for all the proposed schemes.

Similar behavior is observed in Fig. 3.4 for Ly = 10 and L. = 1. The minimum dis-
tortion among the proposed transmission schemes is achieved by SHDA, which performs
very close to the lower bound beyond SNR ~ 8dB. We can observe that as L increases,
the performance of uncoded transmission is further away from the lower bound, and
JDS outperforms it even at lower SNR values. However, the rate of decay of JDS is
worse than the optimal decay in this setting. We also observe that when no binning
is considered, the minimum expected distortion achieved by SSCC is still worse than
that achieved by uncoded transmission, while the two have the same decay rate in the
high SNR regime. However, the use of binning allows SSCC to outperform uncoded
transmission, yet £ D7, is still far from the lower bound.

Finally, in Fig 3.5, we consider L. = 0.5 and L, = 1.5. Contrary to the previous
scenarios, in this setup JDS outperforms SHDA for SNR values greater than SNR =
37dB. As the SNR increases, JDS performs close to the partially informed lower bound,
while SHDA performance is further from the lower bound. Similarly to the previous

scenarios, we observe that uncoded transmission performs close to the lower bound for
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low SNR values and that SSCC achieves lower distortion values if binning is considered.

Observe from Fig. 3.3 and Fig. 3.4 that, as the side information diversity, L,
increases, the gap at any SNR between the informed encoder lower bound and the
partially informed encoder lower bound reduces. The two bounds converge since for the
studied setup 012160 = L;!, and as L, increases, the variance decreases, and therefore,
the level of uncertainty in the available side information gain state drops. In fact, the
two bounds can be shown to converge at any SNR value and for any arbitrary side
information gain whose variance decreases with some parameter, namely L, as given

in the next lemma.

Lemma 7. Let H be arbitrarily distributed and have a finite mean, i.e., Eg[H] < co.
Let (I'y); s, be a sequence of side information gain random variables such that, for
every L, I‘; follows an arbitrary distribution with variance o2 . Assume that 02 — 0 for
L — oo. Then, the partially informed encoder lower bound converges to the informed
encoder lower bound, i.e., the following limit holds:

lim (EDin; — ED;) = 0. (3.35)

L—oo

Proof. See Appendix C. O

Although the side information available at the decoder becomes more deterministic
with increasing L, the channel is still block-fading. Only SHDA performs close to the
informed encoder lower bound, i.e., the optimal performance when the current channel
and side information states are known. On the contrary, the rest of the studied schemes
cannot fully exploit the determinism in the side information fading gain for L. > 1, while
it seems that for L. < 1 JDS is the scheme achieving the lowest expected distortion.
The performance of each scheme will be analyzed in the next section in terms of the

exponential decay rate of the expected distortion in the high SNR regime.

3.6 High SNR Analysis

In the previous section we have seen the optimality of uncoded transmission in certain
settings in which the proposed digital schemes are suboptimal. On the other hand,
our numerical results have shown that the SHDA scheme has a good performance for
a wide variety of channel distributions while the optimality of uncoded transmission
is very sensitive to the distribution of the side information. We have also observed
that JDS outperforms SHDA in certain regimes. Although we have characterized the
optimal expected distortion in closed-form for the Rayleigh fading scenario in (3.34),
a closed-form expression of the optimal expected distortion for general channel and

side information distributions is elusive. Instead, we focus on the high SNR regime,



Chapter 3. JSCC with Time-Varying Channel and Side-Information: SISO 67

and study the exponential decay rate of the expected distortion with increasing SNR,
defined as the distortion exponent, and denoted by A [41]. We have,

(3.36)

The study of the asymptotic behavior of the expected distortion in terms of the
distortion exponent does not give exact results for the finite SNR regime. However, it
provides relevant information on the average distortion at high SNR values, in terms of
the exponential decay. We will see in the numerical evaluation in Section 3.5 that, the
expected distortion converges to the asymptotic behavior for not so high SNR values,
and therefore, the distortion exponent is a valuable metric to evaluate the performance
of the transmission schemes.

In this section, we study the distortion exponent for the model considered in Section
3.5, i.e., a Nakagami fading channel and side information gains, i.e., Hy ~ Y (L., L, 1)
and Tg ~ T(Ls, L71). We are interested in characterizing the maximum distortion
exponent over all encoder and decoder pairs, denoted by A*(Ls, L..).

We first provide an upper bound on the distortion exponent by studying the partially
informed encoder lower bound on the expected distortion in (3.15). In determining the
high SNR behavior of the partially informed encoder lower bound, it is challenging
to characterize the optimal SNR exponent for the target side information state ¥ in
(3.11) for different channel states. Hence, we further bound the expected distortion by
considering the ergodic channel capacity as the channel rate.

Lemma 8. The optimal distortion exponent is upper bounded by the exponent of the

partially informed encoder lower bound at the ergodic channel capacity, given by

+
Ape(Los L) = 1+ (1 _ ;) . (3.37)

Proof. See Appendix C. O

We will see that Ape(Ls, L) is tight only for L. > 1, and the ergodic channel
relaxation is loose for L. < 1. In order to tighten the bound in these regimes, we consider

the distortion exponent of the informed encoder upper lower proposed in Section 3.3.

Lemma 9. The distortion exponent is upper bounded by the exponent of the informed

encoder lower bound, given by
Aing(Ls, L) = min{ L, 1} + min{L,, 1}. (3.38)

Proof. See Appendix C. O
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Figure 3.6: Distortion exponent upper and lower bounds for Nakagami fading channel
and side information with L. = 1, as a function of L.

While for L. > 1, Ape(Ls, Le) is always tighter than Ajn¢(Ls, L), for L. < 1 we
have Ape(Lg, Le) > Aing(Ls, L) if Ly > ﬁ In the next proposition, we combine the

two upper bounds into a single upper bound on the distortion exponent.

Theorem 4. For a Nakagami fading channel with Hy ~ Y(L., L;'), and a Nakagami
fading side information with Tg ~ Y (Lgs, L;'), the optimal distortion exponent is upper
bounded by

min{1, L, + L.} if Ly <1,
min{Ape(Ls, Le), Aing(Ls; Le)} = { 2 — - if1< Ly < —L— (3.39)

s (17LC)+7

1+ L, if Ly > (17ic)+~

In Fig. 3.6 and Fig. 3.7 we plot the distortion exponent upper and lower bounds
with respect to the parameter Ly of the Nakagami distribution for L, = 1 and L, = 0.5,
respectively.

Note that for L. > 1, as L increases, the optimal distortion exponent A*(Ls, L..)
converges to the informed encoder upper bound, which is obtained by assuming perfect
knowledge of both channel and side information states at the encoder. This observation
is parallel to the result in Lemma 7. However, this is not the case if L. < 1. While
Lemma 7 applies to any channel distribution, the partially informed bound with ergodic

channel relaxation is loose in this regime.
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Figure 3.7: Distortion exponent upper and lower bounds for Nakagami fading channel
and side information with L. = 0.5, as a function of L.

Next, we consider the distortion exponent achievable by the transmission schemes
proposed in Section 3.3. The proofs of the corresponding distortion exponent results
can be found in Appendix C.

Lemma 10. The distortion exponent achieved by uncoded transmission is given by
Ay (Lg, Le) = min{Lg + L, 1}. (3.40)

As expected from Theorem 3, uncoded transmission achieves the optimal distortion
exponent for Ly < 1. However, it is suboptimal for Ly > 1. We note that the distortion
exponent of simple MMSE estimation using only the side information sequence, ED,,,,
is given by A,,(Ls, L) = min{ L, 1}.

Lemma 11. The distortion exponent achievable by SSCC with binning is given by

1- O-L®  ep o<
_ Lc+1—Ls s ="
Ao Le) =9 L oriin .

' (3.41)
S S ¢ if Ly > 1.

If binning is not used, the achievable distortion exponent is given by

L e
Anb(LsaLc) = etl=ks (342)

1 if Ly > 1.



Chapter 3. JSCC with Time-Varying Channel and Side-Information: SISO 70

From Lemma 4, we know that binning is suboptimal for Ly < 1 irrespective of the
channel distribution, and both schemes achieve the same distortion exponent in this
regime. Note also that when Ly = 1, SSCC achieves the optimal distortion exponent
of 1. However, when Lg; > 1, if binning is not used the scheme cannot exploit the
side information state properly, and achieves the same distortion exponent as uncoded

transmission. This proves that binning is required in this regime.

Lemma 12. The distortion exponent achievable by JDS is given by

1_M if Ly < 1,

Le+1—Lg
Aja(Ls,Le) = 92—+ if1 <Ly <1+ Le, (3.43)
1+ 2 if Ly > L+ 1.

JDS achieves the same distortion exponent as SSCC for L; < 1. However, inter-
estingly, for 1 < Ly < 1+ L., JDS achieves the optimal distortion exponent and then
saturates for Ly > 1+ L.. Observe that, as L increases, the achievable distortion

exponent with SSCC converges to the performance of JDS.
Lemma 13. The distortion exponent achievable by SHDA and HDA-WZ is given by

min{l, L. }(Ls —1)*
Ly —1+min{l,L.}"

Aghaa(Ls, L) = min{1, Ls + L.} + (3.44)

Lemma 13 reveals that the robustness provided by the uncoded layer in SHDA is
not required in the high SNR regime to achieve the optimal distortion exponent, and
allocating all the available power to the HDA-WZ layer of the SHDA scheme is sufficient.
However, we remark that, in terms of the expected distortion in the low SNR regime pure
HDA-WZ is not sufficient to achieve a performance close to the lower bound, and the
uncoded layer improves the performance in general, as observed in the previous section.

HDA-WZ achieves the optimal distortion exponent for L. > 1 while the rest of the
proposed schemes are suboptimal. However, when L. < 1, JDS outperforms HDA-W7Z
for 1 < Ly < 2. Nevertheless, as L, increases, HDA-WZ converges to the distortion
exponent of the informed encoder lower bound, despite the uncertainty in the channel
state.

We can see that in the limit L, — oo, with 0 < L. < 1, we have

A*(OO, Lc) = Ainf(ooa Lc) = Ahda(OO, Lc) =1+ Lca

whereas

L.
Asb(ooaLC) = Aj(OO,LC) =1+ Lc +1 < 1+L('
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This result suggests that, as the side information fading state becomes more determinis-
tic, the performance of HDA-WZ converges to the informed encoder lower bound, while
the rest of the schemes perform significantly worse than HDA-WZ.

Combining the achievable distortion exponents of the JDS and HDA-WZ schemes,
we can characterize the optimal distortion exponent A*(Lg, L.) in certain regimes, as

given next.

Theorem 5. Consider a Nakagami fading channel with Hy ~ Y(L.,L;') and a Nak-
agami fading side information with To ~ Y (Ls, L71). If L. > 1, the optimal distortion
exponent is achieved by the HDA-WZ scheme, and is given by

A*(Ly, L) =1+ (1 - L1>+ . (3.45)

If L. <1, and Ls < 1+ L., the optimal distortion exponent is given by

1\t
A*(Lg,L.) =min{l, Ly + L.} + (1 - L) , (3.46)
and is achieved by uncoded transmission and HDA-WZ when Ly < 1, and by JDS when
1<Ly<L.+1.

These analytical results are in line with the numerical analysis carried out in Section
3.5. For Ly = L. = 1, all the schemes achieve the optimal distortion exponent A*(1,1) =
1, which is far from the informed encoder upper bound given by A;¢(1,1) = 2, as
observed in Fig. 3.2. For Ly = 2 and L. = 1, plotted in Fig. 3.3, the optimal distortion
exponent is given by A*(2,1) = 3/2, which is achieved by HDA-WZ, while uncoded
transmission is suboptimal since A, (2, 1) = 1. In this case JDS also achieves the optimal
distortion exponent, while SSCC with binning achieves a lower distortion exponent of
Agp(2,1) = 4/3. As observed in the numerical analysis, if no binning is used, SSCC
achieves the same distortion exponent as the uncoded transmission, and the one achieved
by using only the side information sequence, i.e., A, (2,1) = Ap(2,1) = Apo(2,1) = 1.
Although a similar behavior is observed for higher values of Ly, JDS does not achieve the
optimal distortion exponent in general. For the case of Ly = 10 and L. = 1 plotted in
Fig. 3.4, we have A*(10,1) = 19/10, while Aj;4(Ls, 1) = 3/2 for Ly > 2. However, when
L.=0.5and Ly = 1.5, plotted in Fig. 3.5, JDS achieves the optimal distortion exponent
of A*(1.5,0.5) = 4/3, while HDA-WZ achieves a smaller distortion exponent given by
Aghda(1.5,0.5) = 5/4. In this setup the performance of SSCC is improved if binning is
used since Ag(1.5,0.5) = 6/5, while if binning is not used we have Ay (1.5,0.5) = 1,
which coincides with the distortion exponent of uncoded transmission. In general, we
observe that the decay of the expected distortion for finite SNR values converges to the

distortion exponent in the asymptotic high SNR regime.
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3.7 Conclusions

We have studied the JSCC problem of transmitting a Gaussian source over a delay-
limited block-fading channel when block-fading side information is available at the de-
coder. We have assumed that only the receiver has full knowledge of the channel and
side information states while the transmitter is aware only of their distributions. In the
case of a static channel, we have shown the optimality of separate source and channel
coding when the side information gain follows a discrete or a continuous quasiconcave
distribution.

When both the channel and side information states are block-fading, the optimal
performance is not known in general. We have proposed achievable schemes based on
uncoded transmission, separate source and channel coding, joint decoding and hybrid
digital-analog transmission. We have also derived a lower bound on the expected distor-
tion by providing the encoder with the actual channel state. We call this the partially
informed encoder lower bound, since the side information state remains unknown to the
encoder. We have shown that this lower bound is tight for a certain class of continu-
ous quasiconcave side information fading distributions, and the optimal performance is
achieved by uncoded transmission. This, to the best of our knowledge, constitutes the
first communication scenario in which the uncoded transmission would be suboptimal
in the static setup and is optimal thanks to the existence of fading, while the known
digital encoding schemes fall short of the optimal performance. We have also proved
that joint decoding outperforms separate source and channel coding since the success of
decoding at the receiver depends on the joint quality of the channel and side information
states, rather than being limited by each of them separately. We have also shown nu-
merically that hybrid digital-analog transmission performs very close to the lower bound
for a wide range of channel and side-information distributions (in particular, we have
considered Gamma distributed channel and side information gains with different shape
parameters). However, it has also been observed that no unique transmission scheme
outperforms others at all cases.

In the high SNR regime, we have obtained closed-form expressions for the distortion
exponent, i.e., the optimal exponential decay rate of the expected distortion in the high
SNR regime, of the proposed upper and lower bounds for Nakagami distributed channel
and side information. Aligned with the numerical results in the finite SNR regime, we
have shown that hybrid digital-analog transmission outperforms other schemes in most
cases and achieves the optimal distortion exponent for certain values of channel and side
information diversity, and joint decoding achieves the optimal distortion exponent for
some values of side information diversity when the channel diversity is less than one, in

which case hybrid digital-analog transmission is suboptimal.



Chapter 4

Joint Source-Channel Coding
with Time-Varying Channel
and Side-Information: MIMO

In this chapter, we study a generalization of the problem studied in Chapter 3. We
consider the JSCC problem of transmitting a Gaussian source over a multiple-input
multiple-output (MIMO) block-fading channel when the receiver has access to a time-
varying correlated side information. As in the previous chapter, both the channel and
the side-information quality states are assumed to follow block-fading models, whose
states are unknown at the transmitter. Strict delay constraints apply, requiring the
transmission of a block of source samples, for which the side-information quality state
is constant, over a block of the channel, during which the channel state is constant. We
assume that the two blocks do not necessarily have the same length, and their ratio is
defined as the bandwidth ratio between the channel and the source bandwidths, similarly
to Section 1.1.1. While in Chapter 3 we have studied the effects of the side information
distribution on the expected distortion, here we assume that the side information fading
follows a Rayleigh distribution.

The use of multiple antennas at the transmitter and the receiver (MIMO) has been
proposed as a viable technology to significantly improve the performance over wireless
channels and has been already adopted in many current standards. The use of MIMO
provides additional degrees-of-freedom to the system which can be utilized in the form
of spatial multiplexing gain and spatial diversity gain. How to translate this additional
resources into performance improvements requires a careful design.

When the knowledge of the channel and side information states is available at both

the transmitter and the receiver (CSI-TR), Shannon’s separation theorem applies [28],

73



Chapter 4. JSCC with Time-Varying Channel and Side-Information: MIMO 74

that is, the optimal performance is achieved by first compressing the source with an
optimal source code and transmitting the compressed bits with a capacity achieving
channel code. However, as in Chapter 3, the optimality of source-channel separation
does not extend to non-ergodic scenarios such as the model studied in this chapter.

This problem has been studied extensively in the literature for MIMO channels,
mismatched bandwidth and in the absence of correlated side information at the receiver
[42,59,72]. Despite the ongoing efforts, the minimum achievable average distortion
remains an open problem; however, as observed in the previous chapter, more conclusive
results on the performance can be obtained by studying the distortion exponent, which
characterizes the exponential decay of the expected distortion in the high SNR regime
[61]. In the absence of side information at the receiver, the optimal distortion exponent
in MIMO channels is known in some regimes of operation, such as the large bandwidth
regime [15] and the low bandwidth regime [16]. However, the general problem remains
open. In [15] digital multi-layer superposition transmission schemes are shown to achieve
the optimal distortion exponent for high bandwidth ratios in MIMO systems. The
optimal distortion exponent in the low bandwidth regime is achieved through hybrid
digital-analog transmission [15,16]. In [39], superposition multi-layer schemes are shown
to achieve the optimal distortion exponent for some other bandwidth ratios. Overall,
multi-layer transmission has been shown to achieve the largest distortion exponents
among the existing schemes in the literature.

In this chapter, our goal is to find tight bounds on the distortion exponent when
transmitting a Gaussian source over a time-varying MIMO channel in the presence of
time-varying correlated side information at the receiver. We first derive upper bounds
on the distortion exponent by providing the channel state information to the encoder.
Then, we consider single layer encoding schemes based on separate source and channel
coding (SSCC), joint decoding (JDS), uncoded transmission and hybrid digital-analog
transmission. As shown in Chapter 3, in the SISO and matched bandwidth model,
uncoded transmission achieves the minimum expected distortion for certain side infor-
mation fading gain distributions. However, in the presence of additional degrees-of-
freedom provided by the MIMO channel and the available bandwidth, SSCC, JDS and
HDA schemes are expected to better exploit the additional resources and significantly
outperform uncoded transmission, specially in terms of the distortion exponent. On the
other hand, motivated by the improvements provided by multi-layer transmission in [15],
we then consider two different multi-layer joint decoding schemes based on successive
refinement of the source followed either by progressive transmission over the channel
(LS-JDS), or by superposing JDS codes in a broadcast fashion (BS-JDS), and show
that these schemes achieve the best distortion exponents.

The main results of this chapter can be summarized as follows:
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e We first derive an upper bound on the distortion exponent by providing both the
channel and the side information states to the encoder. Then, a tighter upper
bound is obtained by providing only the channel state to the encoder.

e We characterize the distortion exponent achieved by JDS. While this scheme
achieves a lower expected distortion than SSCC, we show that it does not im-
prove the distortion exponent.

e We then consider a hybrid digital-analog scheme (HDA-WZ) that combines JDS
with an analog layer. We show that HDA-WZ outperforms JDS not only in terms
of the average distortion, but also the distortion exponent.

e We extend JDS by considering multi-layer transmission, where each layer carries
successive refinement information for the source sequence. We consider both the
progressive (LS-JDS) and superposition (BS-JDS) transmission of these layers,
and derive the respective achievable distortion exponent expressions.

e We show that BS-JDS achieves the optimal distortion exponent for SISO/SI-
MO/MISO systems, thus characterizing the optimal distortion exponent in these
scenarios. We also show that HDA-WZ achieves the optimal distortion exponent
in SISO channels as well.

e In the general MIMO setup, we characterize the optimal distortion exponent in
the low bandwidth ratio regime, and show that it is achievable by both HDA-WZ
and BS-JDS. In addition, we show that in certain regimes of operation, LS-JDS

outperforms all the other proposed schemes.

The rest of the chapter is organized as follows. The problem statement is given in
Section 4.1. Then, known results on the diversity multiplexing tradeoff are provided in
Section 4.2. Two upper bounds on the system performance are derived in Section 4.3
and the optimal distortion exponent in the low bandwidth regime is discusses in Section
4.4. Various single-layer achievable schemes are studied in Section 4.5, while multi-layer
schemes are considered in Section 4.6. The characterization of the optimal distortion
exponent for certain regimes is relegated to Section 4.7. Finally, the conclusions are

presented in Section 4.8.

4.1 System Model

We wish to transmit a zero mean, unit variance real Gaussian source sequence S™ € R™
of independent and identically distributed (i.i.d.) random variables, i.e., S; ~ N(0,1),
over a complex MIMO block Rayleigh-fading channel with M; transmit and M, receiver
antennas, as shown in Figure 4.1. In addition to the channel output, time-varying
correlated source side information is also available at the decoder. Time-variations in

the source side information are assumed to follow a block fading model as well. The
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Figure 4.1: Block diagram of the joint source-channel coding problem with fading chan-
nel and side information qualities.

channel and the side information states are assumed to be constant for the duration of
one block, and independent of each other, and among different blocks. We assume that
each source block is composed of m source samples, which, due to the delay limitations of
the underlying application, are supposed to be transmitted over one block of the channel,

which consists of n channel uses. We define the bandwidth ratio of the system as'

A 2N . .
b= — complex channel dimension per real source sample.
m

The encoder maps each source sequence S™ to a channel input sequence X" € CM:xn
using an encoding function f(™™) : R™ — CM:*" such that the average power constraint
is satisfied: > i Tr{E[XFX;]} < M;n. The memoryless slow fading channel is modeled
as

Y; = ﬁHXi TN, i=1,..m,

where H € CM»*M: jg the channel matrix with i.i.d. zero mean complex Gaussian
entries, i.e., h;j ~ CN(0, 1), whose realizations are denoted by H, p € R* is the average
signal to noise ratio (SNR) in the channel, and N; models the additive noise with
N; ~ CN(0,1I). We define M* = max{M;, M,.} and M, = min{M;, M.}, and consider
Apm, = -+ > A1 > 0 to be the eigenvalues of HHY.

In addition to the channel output V* = [V, ..., V,,] € CM+*" the decoder observes

T™ € R™, a randomly degraded version of the source sequence:
™ = V pchSm + Zm’

where T'. models Rayleigh fading? in the quality of the side information satisfying

IThis scaled definition is done for consistency of results with previous works in the distortion expo-
nent literature, which use real/real or complex/complex sources and channels[15].

2The assumption of a real source sequence X™ and a real fading coefficient I'. is made in order
to allow a degradation model possible. That is, the side-information qualities can be ordered among
different channel states. Complex source and fading side information sequences would not allow an
ordering in the quality of the side information sequences.
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E[I'2] = 1, ps € RT models the average quality of the side information, and Z; ~ N (0, 1),
j =1,...,m, models the noise. We define the side information gain as T' 2 T'?, and its

realization as . Then, I' follows an exponential distribution with probability density

function (pdf):

pr(y) =e7, v >0.

In this work, we assume that the receiver knows the side information and the channel
realizations, v and H, while the encoder is only aware of their distributions. The decoder
reconstructs the source sequence Sm = g(m’")(Y",Tm,H,fy) with a mapping g(™™ :
C*Mr x R™ x CMexMr « R — R™. The distortion between the source sequence and the
reconstruction is measured by the quadratic average distortion D £ L 3™ (S, — Si)2.

We are interested in characterizing the minimum expected distortion, E[D], where
the expectation is taken with respect to the source, the side information and channels
state realizations, as well as the noise terms, and expressed as

ED*(p, ps;b) = | lim_ jo i E[D].
2n<mb. :

In particular, we are interested in characterizing the optimal performance in the
high SNR regime, i.e., when p, ps — co. We define x as a measure of the average side

information quality in the high SNR regime, as follows:

The performance measure we consider is the distortion exponent, defined as

A(b,z) = — lim M,
p.ps—oo  logp

4.2 Diversity-Multiplexing tradeoff

Here we depart shortly from the distortion exponent problem introduces above, and
briefly talk about another, more commonly used, performance measure in the high SNR
regime, that will be instrumented in our analysis. The diversity-multiplexing tradeoff
(DMT) measures the tradeoff between the rate and reliability in the transmission of
a message over a MIMO fading channel in the asymptotic high SNR regime. Hence,
the DMT is a performance measure for the channel coding problem over block-fading
channels. In this section we briefly review some known results on the DMT, which will
be useful in the distortion exponent analysis. We refer the reader to [73] for a more
detailed exposition of the DMT.
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For a family of channel codes with rate R = rlog p, where r is the multiplexing gain,

the diversity gain is defined as

d(r) = — lim log Pe(p)
p—oo  logp

)

where P.(p) is the probability of decoding error of the channel code. For each r, the
supremum of the diversity gain d(r) over all coding schemes is given by d*(r). The
DMT for a MIMO channel is given as the solution to the following problem [73],

M,
d*(r) = glf;(m — 1+ M* — M,)a;

M,
stor>Y (1—a), (4.1)
i=1

where at 2 {(a1,...,ap,) € RM+ 11>y > ... > aypy, > 0}. The DMT obtained from
(4.1) is a piecewise-linear function connecting the points (k,d*(k)), k = 0, ..., M., where
d*(k) = (M* — k)(M, — k). More specifically, for r > M,, we have d*(r) = 0, and for
0 <r < M, satisfying k <r < k+1 for some £k =0,1,..., M, — 1, the DMT curve is

characterized by
d*(r) £ & — Ti(r — k), (4.2)
where we have defined

Oy 2 (M* —k)(M, —k) and Ty 2 (M*+ M, — 2k —1). (4.3)

4.3 Distortion Exponent Upper Bound

In this section we derive two upper bounds on the distortion exponent by extending the
two bounds on the expected distortion £ D* obtained in Chapter 3 to the MIMO setup
with bandwidth mismatch, and analyzing their high SNR behavior.

4.3.1 Fully informed encoder upper bound

Following Chapter 3, the first upper bound, which we denote as the fully informed
encoder upper bound, is obtained by providing the transmitter with both the channel
state H and the side information state . At each realization, the problem reduces to
the static setup studied in [28], and source-channel separation theorem applies; that is,
the concatenation of a Wyner-Ziv source code with a capacity achieving channel code

is optimal at each realization. Averaging the achieved distortion over the realizations
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of the channel and side information states, the expected distortion is found as

EDinf(pa Ps; b) =

)

E 2bC(H):|
i {1 + s
where C(H) is the capacity of the MIMO channel in bits/channel use.

Following similar derivations in [15] and the Appendix of Chapter 3, we find an

upper bound on the distortion exponent, stated in the following lemma.

Lemma 14. The distortion exponent is upper bounded by the informed encoder upper

bound, given by

Aipt(z,b) = z + Ammvo (b), (4.4)
where
M,
Ao (b) £ ) min{b, 20 — 1+ M* — M.} (4.5)
i=1

4.3.2 Partially informed encoder upper bound

As in Chapter 3, a tighter upper bound can be constructed by providing the transmitter
with only the channel state realization H while the side information state v remains
unknown. We call this the partially informed encoder upper bound. The optimality of
separate source and channel coding is shown in Chapter 3 when the side information
fading gain distribution is discrete, or continuous and quasiconcave for b = 1. The proof
easily extends to the non-matched bandwidth ratio setup and, since in our model pr(7y)
is exponential, and hence, is continuous and quasiconcave, separation is optimal at each
channel block.

As shown in Section 3.4, if pr(v) is monotonically decreasing, the optimal source
encoder ignores the side information completely, and the side-information is used only
at the decoder for source reconstruction®. Concatenating this side-information-ignorant
source code with a channel code at the instantaneous capacity, the minimum expected

distortion at each channel state H is given by

1 e 9bC(H)
Dop(p7 pS7b7 H) =-—€ rs El ( P ) )
s s

where Fj(x) is the exponential integral given by Ey(z) = f;o t~letdt. Averaging over

3We note that when the distribution of the side information is not Rayleigh, the optimal encoder
follows a different strategy. For example, for quasiconcave continuous distributions the optimal source
code compresses the source aiming at a single target side information state. See Chapter 3 for details.
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the channel state realizations, the expected distortion is lower bounded as
ED;i(pvaab) :EH[DOP(/)’ psvbaH)]' (46)

An upper bound on the distortion exponent is found by analyzing the high SNR

behavior of (4.6) as given in the next theorem.

Theorem 6. For M,(2(l —1) — 1+ M* - M,) <z < M,(2l =1+ M* — M,) let
lLe(l,..., M, —1] be the integer satisfying the inequality, and let | =1 for x < M,(M*+
M, —1). Then, for 2k — 1+ M* — M, <b <2k +1+M*— M, k=1,..,M, — 1, the

distortion exponent is upper bounded by

x if 0<b< 31,

bM, if 5 <b< M*— M, +1,
Aup(x,0) = o +d* (§) if M* = My +1<b < 7%,

Anmvo(b)  if 3 <b< M+ M, -1,

w4+ d (%) ifb> M+ M, 1.

If e > M,(M* + M, — 1), then,

Aup(b,z) = z + d* (%) :

where d*(r) is the DMT characterized in (4.2)-(4.3).
Proof. The proof is given in Appendix D. O

By comparing the two upper bounds in Lemma 14 and Theorem 6, we can see
that the latter is always tighter. When = > 0, the two bounds meet only at the two
extremes, when either b = 0 or b — co. Note that these bounds provide the achievable
distortion exponents when either both states or only the channel state is available at
the transmitter, illustrating the gains from the channel state feedback in fading JSCC

problems.

4.4 Optimal distortion exponent in the low band-

width regime

In this section we use the upper bound derived in the previous section to characterize the
optimal distortion exponent in the low bandwidth regime, i.e., 0 < bM, < 1. We show
that, if the available bandwidth is small, the optimal distortion exponent is achieved

by ignoring the channel and reconstructing the source sequence using only the side
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information. However, if more bandwidth is available, the optimal distortion exponent
is achieved by ignoring the side information, and employing the optimal transmission
scheme in the absence of side information.

First, we consider the MMSE reconstruction of S™ only from the side information
sequence T™ available at the receiver, i.e., S; = E[S;:|T;]. The source sequence is recon-
structed with distortion D,,,(7) £ (1+ psy)~!, and averaging over the side information
realizations, the expected distortion is given by ED,, = E[D,,(I')]. The achievable
distortion exponent is found as A,,(z,b) = x, which meets the upper bound A, (x,b)

for 0 < bM, < z, characterizing the optimal distortion exponent in this regime.

Lemma 15. For 0 <bM, < x, the optimal distortion exponent A*(b, x)=wx is achievable

by simple MMSE reconstruction of S™ only from the side information sequence T™.

Additionally, Theorem 6 reveals that in certain regimes, the distortion exponent
is upper bounded by Aymvo(b), the distortion exponent upper bound in the absence
of side information at the destination [15, Theorem 3.1]. In fact, for z < bM, < 1,
we have A,,(z,b) = bM,, which is achievable by ignoring the side information and
using the hybrid digital-analog scheme proposed in [16]. In this scheme, which we
denote by superposed HDA (HDA-S), the source sequence is divided and transmitted
using two layers. The first layer transmits a part of the source sequence in an uncoded
fashion, while the second layer digitally transmits the second sequence part. Both
layers are superposed and the available power is allocated among them to maximize the
achievable distortion exponent. At the destination, the digital layer is decoded treating
the uncoded layer as noise. Then, the source sequence is reconstructed using both layers.
The achievable distortion exponent is given by Ag(x,b) = bM, for 0 < bM, < 1.

Lemma 16. For x < bM, < 1, the optimal distortion exponent is given by A*(b,x) =

bM,, and is achievable by ignoring the side information sequence T™ and using HDA-S.

In larger bandwidth ratio regimes, i.e., for bM, > 1, transmission schemes using

both the channel and the side information available are required.

4.5 Single layer transmission

In this section, we propose transmission schemes consisting of single layer code, and ana-
lyze their achievable distortion exponent performance. The illustration of the achievable
distortion exponents and its comparison between transmission techniques and the pro-

posed upper bound is deferred to Section 4.5.5.
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4.5.1 Separate source and channel coding scheme (SSCC)

In this section we consider the generalization of the SSCC scheme considered in Chapter
3 to MIMO channels and general bandwidth ratios. As in the single antenna setup,
the transmission suffers from two separate outage events: outage in channel decoding
and outage in source decoding. It is shown in Corollary 1 in Section 3.3.4 that, for
monotonically decreasing pdfs, such as pr(7y) considered here, the expected distortion
is minimized by avoiding outage in source decoding, that is, by not using binning.
Therefore, the optimal SSCC scheme compresses the source sequence at rate Ry ignoring
the side information, and transmits the compressed bits over the channel with a channel
code with rate R, such that %RC = R,.

At the encoder, the quantization codebook consists of 2™ length-m codewords,
W™(i), i = 1,...,2™m%s  generated through a ‘test channel’ given by W = S + Q, where
Q~N (0,0%), and is independent of S. The quantization noise variance is such that
Ry = I(S;W) + ¢, for an arbitrarily small € > 0, ie., 05 = (22(Bs=¢) _ 1)=1. For
the channel code, a Gaussian channel codebook with 27%¢ length-n codewords X" (s) is
generated independently with X ~ CA(0,T), and each codeword X" (s), s € [1, ..., 2"E¢],
is assigned to a quantization codeword W™ (). Given a source sequence S™, the encoder
searches for a quantization codeword W™ (i) jointly typical with S™, and transmits the
corresponding channel codeword X(7).

The decoder recovers the digital codeword with high probability if R. < I(X,Y).
An outage is declared whenever due to the channel randomness, the channel rate R, is
above the capacity and the codeword cannot be recovered. Then, the outage event is

given by
Os={H:R.>I(X;Y)}, (4.7)

where I(X;Y) = log det(I + - HH").

If W™ is successfully decoded, the source sequence is estimated with a MMSE
estimator using the quantization codeword and the side information sequence, i.e.,
S; = E[S;|W;, T;], and reconstructed with a distortion Dgy(bR./2,7), where

Da(R,y) £ (psy + 22771 (4.8)

If there is an outage over the channel, only the side information is used in the source
reconstruction and the corresponding distortion is given by Dg4(0,v). The probability
of outage depends only on the channel state H. The expected distortion for SSCC can
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be written as

ED,(bR.) = Eo;[Da(bRe/2,T)] + Eo, [Da(0,T) (4.9)
:(1 - PO(H))EF[Dd(bRc/27F)] + PO(H)EF[Dd(()?F)L

where P,(H) £ Pr{R,. > logdet(I + ML*HHH)} is the channel probability of outage.
In the next theorem, the distortion exponent achievable by SSCC is provided.

Theorem 7. The achievable distortion exponent for SSCC, A (b, x), is given by

D) + kY o i)
As(b,x)max{x,bw},forbe[ an St Bk

k=0,1,.., M, —1,
e +0 E+1 &k > o

where @y, and T are as defined in (4.3).

Proof. See Appendix D O

4.5.2 Joint Decoding Scheme (JDS)

In this section we consider the generalization of the JDS scheme considered in Chapter
3 to MIMO channels and general bandwidth ratios, which, by joint decoding of the
channel and the source codewords, reduces the outage probability. It uses no explicit
binning at the encoding, and the success of decoding depends on the joint quality of the
channel and the side information. In the previous chapter, JDS is shown to outperform
SSCC at any SNR and to achieve the optimal distortion exponent in certain regimes.
At the encoder, we generate a codebook of 2™ length-m quantization codewords
W™ (i) and an independent Gaussian codebook of size 27385 with length-n codewords
X(i) € CM*™ with X ~ CN(0,I), such that 2R; = I(S; W) +e, for an arbitrarily small
e > 0. Given a source outcome S™, the transmitter finds the quantization codeword
W™ (4) jointly typical with the source outcome and transmits the corresponding channel
codeword X(7). Joint typicality decoding is performed such that the decoder looks for
an index ¢ for which both (X" (), Y™) and (7™, W™ (7)) are jointly typical. Then the

outage event is

0; = {(H,v) I(S;W|T) > I;I(X;Y)}7 (4.10)

where I(X;Y) = logdet(I + -HH") and I(S; W|T) = Llog(1 + Z2-51).

Similarly to SSCC, if there is no outage the source is reconstructed using the quan-

tization codeword and the side information sequence with an MMSE estimator, while
only the side information is used in case of an outage.

The joint decoding produces a binning-like decoding: only some Y™ are jointly
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typical with X(s), generating a virtual bin of W™ codewords from which only one is
jointly typical with T™. The size of those bins depends on the particular realizations of
H and T' unlike in a Wyner-Ziv scheme, in which the bin sizes are designed in advance.
Since the outage event depends jointly on the channel and the side information states
(H, ), the expectation over the states is not separable as in (4.9). Then, the expected

distortion for JDS is expressed as
b
ED;(R;j) = Eos | Da | 58,1 )| + Eo, [Da(0,I)].

JDS reduces the probability of outage, and hence, the expected distortion compared
to SSCC. However, both schemes achieve the same distortion exponent, as stated in the

following theorem.

Theorem 8. JDS achieves the same distortion exponent as SSCC characterized in
Theorem 7, i.e., Aj(b,x) = As(b,x).

Proof. See Appendix D. O

Although JDS and SSCC achieve the same distortion exponent in the current setting,
JDS is shown to achieve larger distortion exponents than SSCC in general in Chapter

3. A comparison between the two schemes is deferred to Section 4.5.5.

4.5.3 Uncoded transmission

Uncoded transmission has been considered in Chapter 3, and shown to be exactly opti-
mal in terms of the expected distortion when the side information gain follows a mono-
tonically decreasing distribution function, such as pr(y) in our model. However, for
general MIMO channels and bandwidth ratios, it falls short of the optimal performance,
since it cannot fully exploit the additional degrees-of-freedom in the system.

In uncoded transmission, the source samples are used directly as the channel inputs.

X, Wi ¢ v
Since the channel is complex, we reorder the source sequence as SZ € C2 given b

1 T
S = — ([S1, .., S|+ j[Smiq, ..., Sm , 4.11
NG ([ 1 2] Jl 41 ]) ( )

o

where j=+/—1. In the transmission we consider M, of the M, transmit antennas since
only M, samples are effectively transmitted at each channel use, because rank{H} < M,.
For bM, <1, the channel input X" is generated scaling the first nM, source samples
of Xc% and mapping them into the channel input as X" = [Sé\ﬂ*, Szf\]/‘[v[**ﬂ, - S?,I(Vf:q)M*H}T
At reception, the transmitted nM, source samples are reconstructed with an MMSE es-
timator using Y™ and T+, while the remaining 5 — nM, source samples that have

not been transmitted, are estimated using only 7773, ;. For bM, > 1, the whole source
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sequence is transmitted in the first 53— channel uses scaling the power by bM.,, and
reconstructed at the decoder using an MMSE estimator. The minimum achievable dis-

tortion using uncoded transmission at uniform power P at state (H,~) is given by

M,

=1

1

- 4.12
1+ Puip+yps (4.12)

where p1 > -+ > ppr, > 0 are the ordered eigenvalues of the matrix H M*Hf[*, where
H,,, is the submatrix of H obtained by taking the M, columns corresponding to the

antennas effectively used for transmission. Then, the expected distortion is found as

bM*E[Dy (1, H,T)] + (1 — bM,)E[D,(0,H,T)] if bM, < 1,
E[D,(bM*,H,T)] if BM, > 1.

ED, =

The distortion exponent for uncoded transmission is obtained similarly to Ag(b, x)

and is given in the next theorem without proof.

Theorem 9. The distortion exponent for uncoded transmission, A, (b,x) is given by

x if DM, < 1,
max{1l,z} f bM, > 1.

Ay(b,x) =

In Section 4.5.5, the performance of uncoded transmission will be compared to the

proposed achievable schemes and upper bounds.

4.5.4 HDA Wyner-Ziv Coding (HDA-WZ)

In this section we consider a generalization of HDA-WZ in Chapter 3 to the MIMO
channel and to bandwidth ratios satisfying bM™ > 1. This scheme quantizes the source,
uses a scaled version of the quantization error as channel input, and applies joint decod-
ing at the decoder. In the SISO fading setup with b = 1, HDA-WZ is shown to achieve
the optimal distortion exponent for a wide family of side information distributions. We
note that, HDA-S introduced in Section 4.4 for bM, < 1, can be modified to include
joint decoding to better exploit the available side information and reduce the expected
distortion. However, the distortion exponent will not increase.

At the encoder, consider a quantization codebook of 2™F» length-m codewords
Wm(s), s =1,...,2"F with a test channel W = S + @, where Q ~ N(O,aé) is inde-
pendent of S, and quantization noise variance is chosen such that R2h =I(W;S) +e,
for an arbitrarily small € > 0, i.e., O’é £ (2Fr=¢ —1)~1. Then, each W™ is reordered
into length-577— complex codewords W(s) = [Wi(s),..., W_n_(s)] € 2 M where




Chapter 4. JSCC with Time-Varying Channel and Side-Information: MIMO 86

W;(s),i=1,.., 311+ 18 given by
1 . T
Wi(s) = —= ((Winto41(8); s Wik nynr, (9)] + G IWearnyar, +1(8); s Waing, (5)])

V2

Similarly, we can reorder S™ and @™, and define S; and Q);.

We then generate 2™ independent auxiliary random vectors U € (D("7 2itz ) X M-

distributed as U; ~ CN(0,I), fori=1,...,n— 737 and assign one to each W(s) to con-
struct the codebook of size 2% consisting of the pairs of codewords (W(s), U(s)),
s = 1,..,2mF For a given source sequence S™, the encoder looks for the s*-th
codeword W (s*) such that (W(s*),S™) are jointly typical. A unique s* is found if
M. Ry, > I(W;8). Then, the pair (W(s*), U(s*)) is used to generate the channel input,
which is scaled to satisfy the power constraint:

X; = %[Si—wi(s*)L fori=1,.., 57,

* . m
Ui,ﬁ(s ), fori= 57 +1,...,n.

Basically, in the first block of 77— channel accesses we transmit a scaled version of the
error in the quantization Q; in an uncoded fashion, while in the second block of n — ﬁ
accesses we transmit a digital codeword.

The decoder looks for an index s such that W(s), T™ and the channel output cor-
responding to the uncoded input, Y;ﬁ 21Y4,... , Y, o0, ], are jointly typical, while
simultaneously U(s) is jointly typical with the channel output that corresponds to the
coded input block, YTUFﬁ = (Yo on 4155 Yol Let Ty = [T_1yar. 415 oy Tinr 12,
fori =1,.., ]%, be blocks of T™. At the receiver, it follows from Lemma 6 that
decoding is successful with high probability if

I(W;S) < M,R), < [(WU;YT) (4.13)
The outage event is obtained in Appendix D as

O = {(Hﬂ) :I(W,8) > I(W; YwT) + (bM, — 1)I(U;YU)}, (4.14)

where I(U; Yp) = log det(I + - HH') and,

2 « de s o
[(W; YwT) = log ((é(l +03))M- det(1+ 4-HH ))) |

det(I+ o ({-HH" + 1))

where € £ 1 + p,.

If Wt is successfully decoded, each S™ is reconstructed with an MMSE estimator
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using Y and T™ with a distortion

M, -1
D0, H,7)= 1\2 2 (1 + sy + Ulé (1 + AZ* A)) . (4.15)
The derivation of (4.15) is found in Appendix D.

If an outage occurs and W is not decoded, only T™ is used in the reconstruction,
since X" is uncorrelated with the source sequence by construction, and so is Y”. Using
an MMSE estimator, the achievable distortion is given by D4(0,~). Then, the expected
distortion for HDA-WZ is found as

EDy(Rp) = EOZ [Dh(o'é)’ H, F)} + Eo, [Dd(oa F)]

The distortion exponent of HDA-WZ is given next.

Theorem 10. The distortion exponent achieved by HDA-WZ, Ay (b,x), is given by
Ap(b,x) = max{x,bM.} if bM,. < 1. If bM, > 1, the distortion exponent is given by
Ap(byz) =z if 1 <bM, < x, and by

(bM, — 1)(®p + kYs — 1+ )

Ap(b,z) =1
if
Py —14+2 1 ¢op—-14=2 1
be | ——— _— k=0,...M, —1.
€ k+ 1 + M*7 k + M*> ) for ) ’
Proof. See Appendix D. O

4.5.5 Comparison of single layer tranmission schemes

Here, we compare the performance of the single layer schemes presented in this section.
Figure 4.2 shows the expected distortion achievable by SSCC and JDS schemes in a
SISO and a 3 x 3 MIMO setup for b = 2. It is observed that JDS outperforms SSCC in
both SISO and MIMO scenarios. We also observe that both SSCC and JDS fall short
of the expected distortion lower bound, EDJ;. Moreover the gap increases with the
number of degrees-of-freedom in the system. We note that not only the gap between
the achievable distortion exponent increase, but also the gap between the slopes of the
curves, which means that the proposed transmission schemes perform especially poorly
in the high SNR regime.

To illustrate this, we compare the distortion exponent achieved by SSCC, JDS,
uncoded transmission, HDA-S and HDA-WZ in Figure 4.3 in a 2 x 2 MIMO channel.

First, we note that, as discussed in Section 4.4, for bM, < 1, the upper bound is achieved
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Figure 4.2: Minimum expected distortion achievable by SSCC and JDS for a SISO and
a 3 x 3 MIMO channel for b = 2 and x = 1. The partially informed encoder bound is
also included.
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Figure 4.3: Distortion exponents upper bounds and lower bounds for single-layer
schemes in function of b for z = 0.5 and 2 x 2 MIMO. The performance of these schemes
is also shown in the absence of side information, i.e., x = 0.
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by S-HDA and by only using the side information. SSCC, JDS and uncoded transmission
also achieve the optimal performance for 0 < bM, < z, since these schemes also use
the available side information. For larger bandwidth ratios, HDA-WZ improves upon
SSCC and JDS, while uncoded transmission achieves the optimal distortion exponent
for bM, = 1 and then saturates becoming highly suboptimal for large b values. Note
that uncoded transmission outperforms SSCC and JDS for the range z < b < 0.7. We
also include the distortion exponent achievable when no side information is available,
which can be modeled by letting z = 0. Significant gains can be obtained by exploiting
the side information. However, this is not the case for uncoded transmission, for which
Ay(b,x) = Ay(b,0) =1 for M,b > 1. In general we observe that single layer schemes are
not capable of fully exploiting the available degrees-of-freedom in the system, especially
in the large bandwidth regime. Single layer schemes depend on a single parameter, the
rate, and cannot adapt to the system, specially in those regimes in which the system
has many degrees-of-freedom available. This motivates us to consider other achievability
techniques, based on multi-layer transmission. In multi-layer transmission, each layer
provides additional degrees-of-freedom to the system, and therefore can adapt better to
the time variations and achieve higher distortion exponent values.

We also observe that the difference between the fully informed encoder upper bound

and the partially informed encoder upper bound.

4.6 Multi-layer transmission

In the previous section, we have observed that the distortion exponent achievable with
single layer schemes is far from the upper bound, especially in the high bandwidth
regime. Here, we consider multi-layer schemes to improve the achievable distortion
exponent in this regime. Multi-layer transmission is proposed in [15] to combat channel
fading by transmitting multiple layers that carry successive refinements of the source
[38]. At the receiver, as many layers as possible are decoded depending on the channel
state. The better the channel state, the more layers can be decoded and the smaller
is the distortion at the receiver. We propose the extension of the JDS schemes to
progressive multi-layer JDS transmission and superposed multi-layer JDS transmission,

and derive the corresponding distortion exponents.

4.6.1 Progressive multi-layer JDS transmission (LS-JDS)

In this section we consider the progressive transmission of JDS layers over the channel.
The refinement codewords are transmitted one after the other over the channel using
JDS transmission. Similarly to [15], we assume that each layer is allocated the same time

resources (or number of channel accesses). In the limit of infinite layers, this assumption
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does not incur a loss in performance.

At the encoder, we generate L Gaussian quantization codebooks, at rates bR;/2L =
1(S; VVl|Wll_1)+e/2, [ =1,..., L, and an arbitrarily small € > 0, such that each Gaussian
codebook is a refinement for the previous layers [38]. The quantization codewords are
generated as W; = S + Zf:z Q;, for 1 = 1,..., L, where Q; ~ N(0,07) are independent
of each other. As shown in Appendix D, for a given rate tuple R £ [Ry,..., Rr] the

quantization noises satisfy
L 1
b
doop ===l Tt =1, L (4.16)
i=l

We generate L independent channel codebooks with 7-lenght codewords X7 €
CMexn/L with X;; ~ CN(0,I). Each successive refinement codeword is transmitted
using JDS as in Section 4.5.2. At the destination, the decoder successively decodes
each refinement codeword using joint decoding from the first layer up to the L-th layer.

Then, [ layers will be successfully decoded if
b
(S, Wi|T,Wi™") < - I Y) < I(S, Wi [T, W),

that is, [ layers are successfully decoded while there is an outage in decoding [+ 1 layers.

Let us define the outage event, for [ = 0, ..., L, as follows

Ollsé{(Hq):I(S, Wiy T,Wi™t) > QbLI(X;Y)} : (4.17)

where I(X,Y) = log det (I + MLHHH) and, for Ry 2 0,
-1 1
Iwmmm,ﬂ—2m<

225’,:1 %Ri + Yps
QZLL;} %Ri + YPs

The details of the derivation are given in Appendix D. Due to the successive refinability
of the Gaussian source, provided [ layers have been successfully decoded, the receiver
reconstructs the source with a MMSE estimator using the side information and the
decoded layers with a distortion given by Dd(Zézl bR;/2L,~). The expected distortion

can be expressed as follows.

L l
bR;
ED;(R) = ZE(o;S)C Noli, [Dd (Z 2L’ 7)

=0 i=1

(4.18)

The distortion exponent achieved by LS-JDS is given next.
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Theorem 11. Let us define
b= M* — M, +2k—1, My= M, —k+1, (4.19)

and the sequence {c;} defined as

M,—i1+1
co=0, ¢ =ci—1+¢n (H_>,

M, —1i
fori=1,.., M, —1 and cp;, = 0.

The distortion exponent achieved by LS-JDS with infinite number of layers is given
by Ay (b,x) = & for b < x/M,, and for

_r

Cp—1+ b<cr+

x
M, -k’
k=1,...,M,, the achievable distortion exponent is given by

k—1
A (bx) =z + Y (M* = M, +2i—1)
1=1

b(1—k*)—cp_1

F(M, — k4 1)(M* — M, + 2k — 1) x (1—6_M*—M*+2k—1>,

where

and W(z) is the function W of Lambert, which gives the principal solution for w in

z = wev.
Proof. See Appendix D O

The proof of Theorem 11 indicates that the distortion exponent for LS-JDS is
achieved by allocating an equal rate among the first k*L layers to guarantee that the
distortion exponent is at least x. Then, the rest of layers, (1 — x*)L, are used to further
increase the distortion exponent with the corresponding rate allocation. Note that for

x =0, we have k* = 0.

4.6.2 Superposed multi-layer JDS scheme (BS-JDS)

In this section, we consider that the successive refinements of the source are transmitted
by a superposition of JDS layers. The receiver decodes as many layers a possible using

successive joint decoding and reconstructs the source.
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At the encoder, generate L Gaussian quantization codebooks, at rates given by
gRl = I(S;VVZ|W1I_1) +¢/2,1=1,...,L, and an arbitrarily small ¢ > 0, as in Section
4.6.1, and L channel codebooks U, | = 1,...,L, iid. with U;; ~ CN(0,I). Let
p = [p1,--pr,pr+1]t be the power allocation among channel codebooks such that
p= Zf:ll pi. We consider a power allocation p; = p&-1 — p& with 1 =& > & > ... >
¢ > 0 and define £ £ [¢1,...,&1]. In the last layer, the layer L+ 1, Gaussian i.i.d. noise
N; ~ CN (0,1) is transmitted using the remaining power pr41 = pt= for mathematical
convenience. Then, the channel input U is generated as the superposition of U} with

the corresponding power allocation /p; as
1 & N
o= LS U AR
it
At the receiver, the decoder uses successive joint decoding from layer 1 up to layer L
considering the posterior layers as noise. Layer L + 1, containing the noise, is ignored.
The outage event at layer [, provided [ — 1 layers have been decoded, is given by

b
o = { (.5 JIOxYIXI < rswir i ).

If [ layers are decoded, the source is reconstructed at a distortion Dd(Zizl bR;,~) with

a MMSE estimator, and the expected distortion is found as

L l
b
EDyi(R,€)=> Eop, lDd <§ 2RZ—,F>
=1 =0

)

where R £ [Ry,..., Rr] and (92"_{_1 is the set of states in which the all L layers with
information are decoded.
The distortion exponent for the transmission of L coded layers using BS-JDS is given

in the next theorem.

Theorem 12. Let us define

b(k+1) — Ppyq 11—kt
£ - d Tp2 —"k 4.20
Mk T, an k 11— ( )

The distortion exponent AL (b, z) achieved by BS-JDS with L layers with a power

allocation p; = p&i-1 — pSi, 1 =& > & > ... > & > 0 and diversity multiplexing gain
fr=[(k+1)(&-1— &) — €], e1 — 0 is given by AL (b, x) =z for bM. < z and by

(T 4+ b(1 + k) (Tr +b(1 + k)Ty,) — b(k + 1)®,T},

AL (b2) =2+ By, — (4.21)
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Pri1+z P+

b
| "kx1 &

>, k=0,.. M, —1.

The power allocation & used given by

(Tk + @kfk)(Tk + b(/{: + 1) — O — ZZ?)

&1 T Tk +0(1+ k) (T +0(1+ k)Ts) — b(k + 1)@,
€6y = O (T +b(k+1) — O — z) (4.22)
LT (kb1 + k) (T + b(1+ k)Dg) — b(k + 1)®T) ‘
and forl=2,..., L,
i1
&:&f@rfﬂ%{%a (4.23)
Proof. See Appendix D. O

An upper bound on the performance of BS-JDS is obtained for a continuum of

infinite layers, i.e., L — oo.

Corollary 2. The distortion exponent of BS-JDS in the limit of infinite layers, A, (b, z),
is found, for k=0,..., M,—1, by

f;fl(ba x) - maX{x,b(k + 1)} forbe {W > > ’

k k41

and

b(1+ k) — @y O Ptz
v :q) —_—— .
(b, ) k+x<b(1+k)—<1>k+1) forbe{k_'_l, ’ )

Proof. See Appendix D. O

The solution in Theorem 12 is obtained by fixing the diversity multiplexing gains
of the code in each layer as #; = b[(k 4+ 1)(&§—-1 — &) — €1]. As discussed in Appendix
D, this choice excludes single layer JDS from the set of feasible solutions. By choosing
rg = ... = rp = 0, BS-JDS scheme reduces to single layer JDS. Interestingly, for b in the

regions

By
be[k EET

k=1,.., M —1,
k’ k )’ PR

single layer JDS achieves a larger distortion exponent than A% (b, z) in Corollary 2,

as shown in Figure 4.4. Note that this region is empty for x = 0, and thus, this
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phenomena does not appear in the absence of side information. Then, the achievable

distortion exponent for BS-JDS can be given as follows.

Lemma 17. BS-JDS achieves the distortion exponent
A:nl(bv x) > maX{A;.r?l(bv x)v Aj (ba x)}

The problem of optimizing the distortion exponent for BS-JDS can be formulated as
a linear optimization program, as shown in (D.43) in Appendix D and efficiently solved
numerically. In Figure 4.4 we show one instance of the numerical optimization for 2 x 2
MIMO, z = 0.5 and L = 500 layers. We also include the distortion exponent achievable
by single layer JDS, i.e., when L = 1, and the exponent achievable by considering # for
L =2 and in the limit of infinite layers, given by A2 (b, z) and A%S(b, z), respectively.
We observe that the achievable distortion exponent for fixed multiplexing gains t is
not continuous, even in the limit of infinite layers. However, in general the distortion
exponent is continuous when jointly optimized over the multiplexing gains and the power
allocations. We also observe that there is a significant improvement in the distortion
exponent just by using two layers. Also, we note that there is a tight match in the
numerical and the achievable distortion given in Lemma 17. Many more numerical
solutions suggest that, in fact, the optimal distortion exponent achievable by BS-JDS is
given by the best of A(b,z) and A, (b, ).

Conjecture 1. The optimal distortion exponent achievable by BS-JDS is given by
A0 (b, 2) = max{A7 (b, x), A; (b, 2)}-

In next section, we will see that fixing the diversity multiplexing gain to 7 suffices
for BS-JDS to meet the partially informed upper bound in the MISO/SIMO setup, and

thus, this conjecture is resolved for the positive in these case.

4.7 Comparisons and Discussion

In this section, we discuss the performance of the proposed schemes with respect to the
derived upper bounds and characterize the optimal distortion exponent for MISO/SI-
MO/SISO. In MISO/SIMO, i.e., M, = 1, we show that BS-JDS achieves the partially
informed encoder upper bound, thus characterizing the optimal distortion exponent. For
SISO, i.e., M* = M, = 1, HDA-WZ also meets the optimal distortion exponent. For
the general MIMO setup, the low bandwidth regime has been characterized in Section
4.4. However, the proposed schemes do not meet the upper bound for b6M, > 1. Never-
theless, multi-layer transmission schemes perform close to the upper bound, especially

in the high bandwidth regime.
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Figure 4.4: Distortion exponent achieved by BS-JDS with L = 1,2 and in the limit of
infinite layers with respect to the bandwidth ratio b for a 2 x 2 MIMO system and a side
information quality given by & = 0.5. Numerical results on the achievable distortion
exponent for L = 500 are also included.

4.7.1 Optimal Distortion Exponent for MISO/SIMO /SISO

We first particularize the upper bounds on the distortion exponent for M, = 1. The

informed encoder upper bound is found as
Aint(z,b) =  + min{b, M},
and the partially informed encoder upper bound is given by

max{z, b} for b < max{M*, x},

ALy (b ) = )
M*+z (1 — MT) for b > max{M*, x}.
Notice that as the bandwidth ratio increases, the partially informed encoder upper
bound A}, (b, z) converges to the fully informed encoder upper bound Aju¢(z,b).

Now we particularize the proposed lower bounds to M, = 1. The distortion exponent
for SSCC and JDS is given by

M*
Aj(b,x) :max{x,bx+ },

b+ M*
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while for uncoded transmission we have

x ifb <1,
Ay(byz) =
max{1l,z} ifb>1.

Note that for b = 1, uncoded transmission meets Ay (b, r) = max{l,z}, while SSCC
and JDS are both suboptimal. Similalry happens in the general MIMO channels.

The following distortion exponent is achievable by HDA-S, for b < 1 and HDA-WZ,
for b > 1, in the MISO/SIMO setup.

max{z,b} for b <1,

max{z, %W} for b > 1.

Ah(b, l‘) =

As seen in Section 4.4, HDA-S meets the partially informed upper bound for b < 1.
HDA-WZ is in general suboptimal.

For the multi-layer transmission schemes, the distortion exponent acheivable by LS-
JDS is given by

—r* M* L*z

b M+

As for BS-JDS, considering the achievable rate in Corollary 2, this scheme meets the
partially informed encoder lower bound in the limit of infinite layers, i.e., A, (b, z) =
Ay, (b, ). This fully characterizes the optimal distortion exponent in the MISO/SIMO

setup, as stated in the next theorem.

Theorem 13. The optimal distortion exponent A*(b,x) for MISO/SIMO systems is
given by

max{z, b} for b < max{M*, z},

AT(bx) = .
M*+z (1 - MT) for b > max{M*, z},

and is achieved by BS-JDS in the limit of infinite layers.

In Figure 4.5 we show the distortion exponent for a MISO/SIMO channel with
M* =4 and = = 0.5, with respect to the bandwidth ratio b. We observe that, as given in
Theorem 13, BS-JDS achieves the optimal distortion exponent. As discussed in Section
4.5.5, single layer schemes performs poorly as the bandwidth ration increases. We
observe that HDA-WZ outperforms JDS in all regimes and that, although it outperforms
the multi-layer LS-JDS for low b values, LS-JDS achieves larger distortion exponents
than HDA-WZ for b > 3.
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Figure 4.5: Distortion exponent A with respect to the bandwidth ratio b for a 4 x 1
MISO system and a side information quality given by x = 0.5.

In Figure 4.6, we show upper and lower bounds on the distortion exponent for the
SISO case and x = 0.4. We observe that the performance of the schemes is similar
to the MISO/SIMO case. However, LS-JDS achieves worse distortion exponents than
HDA-WZ, which achieves the optimal distortion exponent for b > 1.

Lemma 18. The optimal distortion exponent for SISO channels is achieved by BS-JDS,
HDA-WZ and HDA-S.

4.7.2 General MIMO

Here, we consider the general MIMO channel. Figure 4.7 shows the upper and lower
bounds on the distortion exponents derived in the previous sections for a 2 x 2 MIMO
channel with x = 0.5. First, it can be observed that, the optimal distortion exponent is
achieved by HDA-S and BS-JDS for b < 0.5, as expected from Section 4.4. In addition,
we note that BS-JDS with infinite layers also achieves the optimal distortion exponent
in this regime, while the other schemes are suboptimal in general. In general, uncoded

transmission achieves the optimal distortion exponent at bM, = 1.
Lemma 19. Uncoded transmission achieves the optimal distortion exponent for bM,=1.

For 0.5 < b < 2.4, HDA-WZ is the scheme achieving the largest distortion exponent,

and outperforms BS-JDS, and in particular, in all the regimes where the performance of
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Figure 4.7: Distortion exponent A with respect to the bandwidth ratio b for a 2 x 2
MIMO system and a side information quality given by x = 0.5.

BS-JDS reduces to the performance of JDS, since HDA-WZ outperforms JDS in general.
For larger b values, the largest distortion exponent is achieved by BS-JDS. Note that for
b >4, Af,(b,0.5) is very close to the partially informed encoder lower bound. We also
observe that for b = 2.4 LS-JDS outperforms HDA-WZ, but it is worse than BS-JDS.
This is not the case in other regimes, as will be seen next.

In Figure 4.8, we show the upper and lower bounds proposed for a 4 x 4 MIMO
channel with = 0.5. We note that in this case, for bM, < max{1,z}, A*(b,3) = 3,
which is achievable by all schemes only using the side information sequence at the

decoder. For this setup, LS-JDS achieves the best distortion exponent for intermediate
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Figure 4.8: Distortion exponent A with respect to the bandwidth ratio b for a 4 x 4
MIMO system and a side information quality given by x = 3.

b values, outperforming both HDA-WZ and BS-JDS. Again, in the large bandwidth
regime, BS-JDS achieves the best distortion exponent, and performs close to the upper

bound. We note that as the number of antennas increases, the difference in performance
between JDS and HDA-WZ decreases.

4.8 Conclusions

We have studied the distortion exponent when transmitting a Gaussian source over
a time-varying fading MIMO channel in the presence of time-varying correlated side
information at the decoder. We have assumed a block-fading model for both the channel
and the side information states, and perfect state information of the channel and the
side information at the receiver, while the transmitter has only a statistical knowledge.
We have derived two upper bounds on the distortion exponent, as well as lower bounds
based on separate source and channel coding, joint decoding, uncoded transmission and
hybrid digital-analog transmission. We have proposed multi-layer transmission schemes
based on progressive transmission of joint decoding codes or the superposition of them.
We have considered the effects of the bandwidth ratio and the side information quality on
the distortion exponent, and shown that the multi-layer transmission scheme based on
superposition meets the upper bound in MISO/SIMO /SISO channels, solving the JSCC
problem in the high SNR regime. For the general MIMO channel, we have characterized
the optimal distortion in the low bandwidth regime and shown the multi-layer scheme

based on superposition performs very close to the upper bound.



Chapter 5

A Class of Orthogonal Relay
Channels with State

In this chapter, we consider a state-dependent orthogonal relay channel, in which the
channels connecting the source to the relay and the destination are orthogonal, and are
governed by a state sequence, which is assumed to be known only at the destination.
We call this model the state-dependent orthogonal relay channel with state information
available at the destination, and refer to it as the ORC-D model. See Fig. 5.1 for
an illustration of the ORC-D channel model. While the setups considered in previous
chapters are joint source-channel coding problems, this is a channel coding problem in
which the use of source coding tools will be required to achieve the optimal performance.

As discussed in Section 1.2, many practical communication scenarios can be mod-
elled by the ORC-D model. For example, consider a cognitive network with a relay,
in which the transmit signal of the secondary user interferes simultaneously with the
received primary user signals at both the relay and the destination. After decoding
the secondary user message, the destination obtains information about the interference
affecting the source-relay channel, which can be exploited to decode the primary trans-
mitter’s message, which may not be decoded at the relay. Similarly, consider a mobile
network with a relay (e.g., a femtostation), in which the base station (BS) operates
in the full-duplex mode, and transmits on the downlink channel to a user, in parallel
to the uplink transmission of a femtocell user, causing interference for the first user’s
transmission at the femtostation. While the relay has no prior information about this
interfering signal, the BS already knows it (if decoding of the secondary user’s message
is successful), which can be used to decode the primary user’s message.

The best known transmission strategies for the three terminal relay channel are

the decode-and-forward (DF), compress-and-forward (CF) and partial decode-compress-

100
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and-forward (pDCF) schemes, which were all introduced by Cover and El Gamal in [74].
In DF the relay decodes the source message and forwards it to the destination together
with the source terminal. DF is generalized by the partial decode-and-forward (pDF)
scheme in which the relay decodes and forwards only a part of the message. In the ORC-
D model, pDF would be optimal when the channel state information is not available at
the destination [75]; however, when the state information is known at the destination,
fully decoding and re-encoding the message transmitted on the source-relay link renders
the channel state information at the destination useless. Hence, we expect that pDF is
suboptimal for ORC-D in general.

In CF, the relay does not decode any part of the message, and simply compresses
the received signal and forwards the compressed bits to the destination using Wyner-
Ziv coding followed by separate channel coding. Using CF in the ORC-D model allows
the destination exploit its knowledge of the state sequence; and hence, it can decode
messages that may not be decodable by the relay. However, CF also forwards some noise
to the destination, and therefore, may be suboptimal in certain scenarios. For example,
as the dependence of the source-relay channel on the state sequence weakens, i.e., when
the state information becomes less informative, CF performance is expected to degrade.

pDCF combines both schemes: part of the source message is decoded by the relay,
and forwarded, while the remaining signal is compressed and forwarded to the desti-
nation. Hence, pDCF can optimally adapt its transmission to the dependence of the
orthogonal channels on the state sequence. Indeed, we show that pDFC achieves the
capacity in the ORC-D channel model, while pure DF and CF are in general suboptimal.

The main results of the chapter are summarized as follows:

e We derive an upper bound on the capacity of the ORC-D model, and show that
it is achievable by the pDCF scheme. This characterizes the capacity of this class
of relay channels.

e Focusing on the two-hop binary and Gaussian models, we show that applying
either only the CF or only the DF scheme is in general suboptimal.

e We show that the capacity of the ORC-D model is in general below the cut-set
bound. We identify the conditions under which pure DF or pure CF meets the
cut-set bound. Under these conditions the cut-set bounds is tight, and either DF

or CF scheme is sufficient to achieve the capacity.

While the capacity of the general relay channel is still an open problem, there have
been significant achievements within the last decade in understanding the capabilities
of various transmission schemes, and the capacity of some classes of relay channels has
been characterized. For example, DF is shown to be optimal for physically degraded
relay channels and inversely degraded relay channels in [74]. In [75], the capacity of
the orthogonal relay channel is characterized, and shown to be achieved by the pDF
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scheme. It is shown in [76] that pDF achieves the capacity of semi-deterministic relay
channels as well. CF is shown to achieve the capacity in deterministic primitive relay
channels in [77]. While all of these capacity results are obtained by using the cut-set
bound for the converse proof [24], the capacity of a class of modulo-sum relay channels
is characterized in [78], and it is shown that the capacity, achievable by the CF scheme,
can be below the cut-set bound. The pDCF scheme is shown to achieve the capacity of
a class of diamond relay channels in [79].

The state-dependent relay channel has recently attracted considerable attention in
the literature. Key to the investigation of the state-dependent relay channel model is
whether the state sequence controlling the channel is known at the nodes of the network,
the source, relay or the destination in a causal or non-causal manner. The relay channel
in which the state information is non-causally available only at the source is considered
in [80,81], and both causally and non-causally available state information is considered
in [82]. The model in which the state is non-causally known only at the relay is studied
in [83] while causal and non-causal knowledge is considered in [84]. Similarly, the relay
channel with state causally known at source and relay is considered in [85] and state non-
causally known at source, relay and destination in [86]. The compound relay channel
with informed relay and destination are discussed in [87] and [88]. The state-dependent
relay channel with structured state has been considered in [89] and [90]. To the best of
our knowledge, this is the first work that focuses on the state-dependent relay channel
in which the state information is available only at the destination.

The rest of the chapter is organized as follows. In Section II we provide the system
model and our main result. Section III is devoted to the proof of the achievability
and converse of the main result. In section IV, we provide two examples showing the
suboptimality of pDF and CF schemes, while in Section V we show that the capacity
is in general below the cut-set bound, and we provide conditions under which pure DF

and CF schemes meet the cut-set bound. Finally, Section VII concludes the chapter.

5.1 System Model and Main Result

We consider the class of orthogonal relay channels depicted in Fig. 5.1. The source
and the relay are connected through a memoryless channel characterized by p(yg|z1, 2),
while the source and the destination are connected through an orthogonal memoryless
channel characterized by p(yz2|z2,z). Both memoryless channels depend on an inde-
pendent and identically distributed (i.i.d.) state sequence {Z}?_,, which is available at
the destination. The relay and the destination are connected by a memoryless chan-
nel p(y1|xg), which is independent of the state sequence z". The input and output
alphabets are denoted by Xy, X5, X'r, V1, V> and Vg, and the state alphabet by Z.
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Figure 5.1: Orthogonal state-dependent relay channel with channel state information
available at the destination, denoted by ORC-D model.

Let W be the message to be transmitted to the destination with the assistance of
the relay. The message W is assumed to be uniformly distributed over the set W =
{1,...,N}. An (M,n,v,) code for this channel consists of an encoding function at the

source:
Foll, o, MY — X1 x A, (5.1)

a set of encoding functions {f,;}? ; at the relay, whose output at time i depends on

the symbols it has received up to time ¢ — 1:
Xpi = fri(Yr1, ., YR(-1)), 1=1,..,m, (5.2)
and a decoding function at the destination
g: Y x Yy x 2" = {1,..,.M}. (5.3)

The probability of error, v, is defined as

M
1 n n n
— i E Pr{g(Y?",Y5", Z") # w|W = w}. (5.4)
w=1

The joint probability mass function (pmf) of the involved random variables over the
set W x 2% x X x AP x X2 x V% x VP x Y is given by

n

plw, 2", 2t 2y, afh, yk i us) = p(w) [ [ p(z)p (@1, w2i|w):
i=1

P(ym \Zzy Cﬂu)p(xm \yﬁil)p(yu |$Ri)p(y2i|$2i, Zz)

A rate R is said to be achievable if there exists a sequence of (2", n,v,,) codes such
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that lim,,_, o, v, = 0. The capacity C of this class of state-dependent orthogonal relay
channels, denoted as ORC-D, is defined as the supremum of the set of achievable rates.

We define Ry as the capacity of the link connecting the relay to the destination, and
R as the capacity of the direct link connecting the source to the destination when the

channel state sequence is available at the destination:

Ry = max I(Xg; Y1), Ry = maxI(Xo;Ya|Z), (5.5)
p(zR) p(w2)

and let p*(xg) and p*(xz2) be the channel input distributions achieving Ry and Ry,

respectively.

Let us define P as the set of all joint pmf’s given by

,Pé {p(ua T1,%2, YR, QR) :p(ua T1,2,YR, QR) :p(ua xl)p(Z)p(yR|x1, Z)p(gR|yR7 u)}a(56)

where U and Yj are auxiliary random variables defines over the alphabets U and )A)R,
respectively.
The main result of this chapter, provided in the next theorem, is the capacity of the

class of relay channels described above.

Theorem 14. The capacity of the ORC-D relay channel is given by

C =sup Ry + I(U;Yr) + I(X1; Yr|U Z),
P

s.t. Ro > I(U;Yg) + I(Yr; YR|UZ), (5.7)

where |U| < |X1| + 3 and |J>R| < |U||Yr| + 1.

Proof. The achievability part of the theorem is proven in Section 5.2.1, while the con-

verse proof is given in Section 5.2.2. O

In the next section, we show that the capacity of this class of state-dependent relay
channels is achieved by the pDCF scheme. To the best of our knowledge, this is the
first single relay channel model for which the capacity is achieved by pDCF, while the
partial decode-and-forward (pDF) and compress-and-forward (CF) schemes are both
suboptimal in general. In addition, the capacity of this relay channel is in general below
the cut-set bound [24]. In certain cases, pDF or CF is sufficient to achieve the capacity,
e.g., pDF is optimal when the channel state Z is absent or constant. These issues are

discussed in more detail in Sections 5.3 and 5.4.
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5.2 Proof of Theorem 14

We first show in Section 5.2.1 that the capacity region in Theorem 14 is achievable by
pDCF. Then, we derive the converse for Theorem 14 in Section 5.2.2.

5.2.1 Achievability

We derive the rate achievable by pDCF scheme for ORC-D using the achievable rate
expression for the pDCF scheme proposed in [74] for the general relay channel. The
discrete memoryless relay channel consists of four finite sets X', Xr, Y and Vi and a
set of probability distribution p(y, yr|z,xr). In this setup, X corresponds to the source
input to the channel, Y to the channel output available at the destination, while Yp is
the channel output available at the relay, and Xp is the channel input symbol chosen
by the relay. We note that the three terminal relay channel in [74] reduces to the ORC-
D-channel by setting X™ = (X7, X%) and Y™ = (Y{*,Y]", Z™), and p(y,rr|xi2R) =
P(Y1: Y2, YR, 2|71, T2, 2R) = p(2)P(YR|21, 2)P(Y1 |2 R)P(Y2|22).

In pDCF for the general relay channel, the source applies message splitting, and
the relay decodes only a part of the message. The part to be decoded by the relay is
transmitted through the auxiliary random variable U™, while the rest of the message
is superposed onto this through channel input X™. Block Markov encoding is used for
transmission. The relay receives Y7 and decodes only the part of the message that
is conveyed by U™. The remaining signal Y7 is compressed into f’ﬁ The decoded
message is forwarded through V", which is correlated with U™, and the compressed
signal is superposed onto V" through the relay channel input X73. At the destination
the received signal Y™ is used to recover the message. See [74] for details. The achievable

rate of the pDCF scheme is given below.

Theorem 15. (Theorem 7,[74]) The capacity of a relay channel p(y, yr|z, zgr) is lower
bounded by the following rate:

R,pcr = supmin {I(X;Y,Yg|Xg, U) + [(U; Yg|Xg, V),
I(X,Xp;Y) = I(Yg; Yg|X, Xgr,U,Y)},
s.t. I(Yr; Yr|Y, Xgr,U) < I(Xg;Y|V), (5.8)

where the supremum is taken over all joint pmf’s of the form

p(v)p(ulv)p(zlu)p(zi|v)p(y, yrlz, r)P(IR|T R, YR, U)-

Since ORC-D is a special case of the general relay channel model, the rate B,pcr

is achievable in an ORC-D as well. The capacity achieving pDCF scheme for the state-
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dependent channel from (5.8) is obtained by setting V' = () and generating X}; and X7’
independent of the rest of variables with distribution p*(zg) and p*(x1), respectively,

as given in the next lemma.

Lemma 20. For the class of relay channels characterized by the ORC-D model, the
capacity expression C defined in (5.7) is achievable by the pDCF scheme.

Proof. See Appendix E. O

The optimal pDCF scheme for ORC-D applies independent coding over the source-
destination and the source-relay-destination branches. The source applies message split-
ting. Part of the message is transmitted over the source-destination branch and decoded
at the destination using Yy* and Z". In the relay branch, the part of the message to be
decoded at the relay is transmitted through U™, while the rest of the message is super-
posed onto this through the channel input X7'. At the relay the part conveyed by U" is
decoded from Y7, and the remaining signal Y7 is compressed into ffﬁ using binning and
assuming that Z™ is available at the decoder. Both U™ and the bin index corresponding
to Y]{ are transmitted over the relay-destination channel using X7. At the destination,
X5 is decoded from Y7*, and U™ and the bin index are recovered. Then, the decoder
looks for the part of message transmitted over the relay branch jointly typical with }71}}

within the corresponding bin and Z™.

5.2.2 Converse

The proof of the converse consists of two parts. First we derive a single-letter upper
bound on the capacity, and then, using the single-letter expression of the upper bound we
provide an alternative expression for this bound, which coincides with the rate achievable
by pDCF.

Lemma 21. The capacity of the class of relay channels characterized by the ORC-D
model is upper bounded by

Rup :supmin{R1 + I(U,YR) + I(Xl,YR‘UZ),Rl + RO - ](YR,YR|X1UZ>} (59)
P

Proof. See Appendix E. O

As stated in the next lemma, the upper bound R,,;, given in Lemma 21, is equivalent
to the capacity expression C given in Theorem 14. Since the achievable rate meets the

upper bound, this concludes the proof of Theorem 14.

Lemma 22. The upper bound on the achievable rate R, given in Lemma 21 is equiv-

alent to the capacity expression C in Theorem 14.

Proof. See Appendix E. O
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5.3 The Two-Hop Relay Channel with State: Subop-
timality of Pure pDF and CF schemes

We have seen in Section 5.2 that the pDCF scheme is capacity-achieving for the class of
relay channels characterized by the ORC-D model. In order to prove the suboptimality
of the pure DF and CF schemes for this class of relay channels, we consider a simplified
system model, called the two-hop relay channel with state information available at the
destination (MRC-D), which is obtained by simply removing the direct channel from
the source to the destination, i.e., R; = 0.

The capacity of this two-hop relay channel model and the optimality of pDCF follows
directly from Theorem 14. However, the single-letter capacity expression depends on the
joint pmf of X1, Yr, Xgr and Y; together with the auxiliary random variables U and f’R.
Unfortunately, the numerical characterization of the optimal joint pmf of these random
variables is very complicated for most channels. A simple and computable upper bound
on the capacity can be obtained from the cut-set bound [25]. For MRC-D, the cut-set

bound is given by
Rcs = min{ Ry, rr(la>§I(X1; Yr|Z)}. (5.10)
p(x1

Next, we characterize the rates achievable by the DF and CF schemes for MRC-D.
Since they are special cases of the pDCF scheme, their achievable rates can be obtained

by particularizing the achievable rate of pDCF for this setup.

DF Scheme

If we consider a pDCF scheme that does not perform any compression at the relay,
ie., Yi = (), we obtain the rate achievable by the pDF scheme. Note that the optimal

distributions of Xg is given by p*(x,). Then, we have

R,pr = min{Ry, sup I(U;Yr)}. (5.11)
p(z1,u)
From the Markov chain U — X; — YR, we have that I(U;Ygr) < I(X1;YR), where the
equality is achieved by U = X;. That is, the performance of pDF is maximized by
letting the relay decode the whole message. Therefore, the maximum rate achievable
by pDF and DF for MRC-D coincide, and is given by

RDF = RpDF = min{Ro,maxI(Xl;YR)}. (512)

p(w1)
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Figure 5.2: The parallel binary symmetric MRC-D with parallel source-relay links. The
destination has side information about only one of the source-relay links.

CF Scheme

If the pDCF scheme does not perform any decoding at the relay, i.e., U = ), pDCF
reduces to CF. Then, the achievable rate for the CF scheme in MRC-D is easily seen to
be given by

Rcr = supI(Xl;}A’R|Z)
s.t. Ro > I(Yr; Yg|Z),
over p(z1)p(2)p(yrlz1, 2)p(Ir|YR)- (5.13)

5.3.1 Two-Hop Parallel Binary Symmetric Channel

In this section we consider a special MRC-D as shown in Fig. 5.2, which we call the par-
allel binary symmetric MRC-D. For this setup, we characterize the optimal performance
of the DF and CF schemes, and show that in general pDCF outperforms both, and that
in some cases the cut-set bound is tight and coincides with the channel capacity. This
example proves the suboptimality of both DF and CF on their own for the ORC-D.

In this scenario, the source-relay channel consists of two parallel binary symmetric
channels. We have X; = (X{, X?), Yr = (Y3,Y3) and p(yr|zr, 2) = p(yk|zl, 2)p(y|2?)

characterized by
Yi=Xl®oN@®Z and Yi=X2® Ny,

where N7 and Ny are i.i.d. Bernoulli random variables with Pr{N; = 1} = Pr{N,; =
1} = 0, i.e., Ny ~ Ber(d) and Ny ~ Ber(d). We consider a Bernoulli distributed state
Z, 7Z ~ Ber(p,), which affects one of the two parallel channels, and is available at the
destination. We have X! = X2 =V = Vi =N; =No = Z = {0,1}.
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From (5.10), the cut-set bound is given by

Ros = min{Ro, max I(X{X7;Y3Y3|Z)}

p(zio7)

= min{ R, 2(1 — h2(8))}, (5.14)

where ho(-) is the binary entropy function defined as hy(p) £ —plogp— (1—p)log(1—p).
The maximum DF rate is achieved by X{ ~ Ber(1/2) and X? ~ Ber(1/2), and is
found to be

Rpp = min{Ry, {nfi}g)I(XllX%;YI%YI%)}
plryTy
= min{Ro, 2— h2(6 *pz) — hQ((S)}, (515)

where ax 82 a(l1 — ) + (1 — a)B.
Following (5.13), the rate achievable by the CF scheme in the parallel binary sym-
metric MRC-D is given by

Rep = max I(X{ X}, YR|Z),
s.t. Ry > I(YAYR; YRr|Z)
over p(2)p(z1a1)p(yrlz, 21)p(yk|2)p(GrlyRYE). (5.16)

Let us define hy'(q) as the inverse of the entropy function hy(p) for ¢ > 0. For
q < 0, we define hy*(q) = 0.

As we show in the next lemma, the achievable CF rate in (5.16) is maximized by
transmitting independent channel inputs over the two parallel links to the relay by
setting X1 ~ Ber(1/2), X7 ~ Ber(1/2), and by independently compressing each of the
channel outputs YI% and YJ% as YI% = Yﬁ/ @ @1 and YI% = YI% @ @2, respectively, where
Q1 ~ Ber(hy'(1 — Ry/2)) and Qy ~ Ber(hy'(1 — Ry/2)). Note that for Ry > 2, the
channel outputs can be compressed errorlessly. The maximum achievable CF rate is

given in the following lemma.

Lemma 23. The mazimum rate achievable by CF in the parallel binary symmetric

MRC-D is given by
1 Ry

Proof. See Appendix E. O

Now, we consider the pDCF scheme for the parallel binary symmetric MRC-D.
Although we have not been able to characterize the optimal choice of (U, ?R7X11, X3)

in general, we provide an achievable scheme that outperforms both DF and CF schemes
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Figure 5.3: Achievable rates and the cut-set upper bound for the parallel binary sym-
metric MRC-D with respect to the binary noise parameter §, for Ry = 1.2 and p, = 0.15.

and meets the cut-set bound in some regimes. Let X{ ~ Ber(1/2) and X? ~ Ber(1/2)
and U = X2, i.e., the relay decodes the channel input X?, while Y}% is compressed using
Yr = Y34 +Q, where Q ~ Ber(hy ' (2 — ha(8) — Ry)). The rate achievable by this scheme

is given in the following lemma.

Lemma 24. A lower bound on the achievable pDCF rate in the parallel binary sym-
metric MRC-D is given by

Rypcr > min{Ry,2 — ha(8) — ha (6 % hy ' (2 — ha(6) — Ro))}-

Proof. See Appendix E. O

We notice that for p, < hy '(2—ho(6)— Ry), or equivalently, § < hy '(2—ha(p.) — Ro),
the proposed pDCF is outperformed by DF. In this regime, pDCF can achieve the same
performance by decoding both channel inputs, reducing to DF.

Comparing the cut-set bound expression in (5.14) with Rpp in (5.15) and Reop in
(5.17), we observe that DF achieves the cut-set bound if Ry < 2— h(d*p,) — h(d) while
Rer coincides with the cut-set bound if Ry > 2. On the other hand, the proposed
suboptimal pDCF scheme achieves the cut-set bound if Ry > 2 — hy(d), i.e., for 6 >
hy 1(2 — Ry). Hence, the capacity of the parallel binary symmetric MRC-D in this
regime is achieved by pDCF, while both DF and CF are suboptimal, as stated in the

next lemma.
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Lemma 25. If Ry < 2 and § > hy'(2 — Ry), pDCF achieves the capacity of the
parallel binary symmetric MRC-D, while pure CF and DF are both suboptimal under
these constraints. For Ry > 2, both CF and pDCF achieve the capacity.

The achievable rates of DF, CF and pDCF, together with the cut-set bound are
shown in Fig. 5.3 with respect to § for Ry = 1.2 and p, = 0.15. We observe that in this
setup, DF outperforms CF in general, while for § < hz_l(Q — Rg — ha(p.)) = 0.0463, DF
outperforms pDCF as well. We also observe that pDCF meets the cut-set bound for
0> hy 1(2 — Ry) = 0.2430, characterizing the capacity in this regime, and proving the
suboptimality of both the DF and CF schemes when they are used on their own.

5.3.2 Two-Hop Binary Symmetric Channel

In order to gain further insights into the proposed pDCF scheme, we look into the binary
symmetric MRC-D, in which, there is only a single channel connecting the source to the

relay, given by
Yr=X1®ON®Z, (5.18)

where N ~ Ber(d) and Z ~ Ber(p,).
Similarly to Section 5.3.1, the cut-set bound and the maximum achievable rates for
DF and CF are found as

Ros = min{ Ry, 1 — hy(d)}, (5.19)
Rpr =min{Ry, 1 — ha(d xp.)}, (5.20)
Ror =1—ha(6xhy ' (1 — Ry))), (5.21)

where Rpp is achieved by X7 ~ Ber(1/2), and Rcp can be shown to be maximized by
X, ~ Ber(1/2) and Yz = Yz @ Q, where Q ~ Ber(h; (1 — Ry)) similarly to Lemma 23.
Note that, for Yz independent of Z, i.e., p, = 0, DF achieves the cut-set bound while
CF is suboptimal. However, CF outperforms DF whenever p, > hy 1(1 — Ryo).

For the pDCF scheme, we consider binary (U, X1, YR), with U ~ Ber(p), a superpo-
sition codebook X1 = U @ W, where W ~ Ber(q), and Yir=Yr®Q with Q ~ Ber(a).
As stated in the next lemma, the maximum achievable rate of this pDCF scheme is

obtained by reducing it to either DF or CF, depending on the values of p, and Ry.

Lemma 26. For the binary symmetric MRC-D, pDCF with binary (U, X1, }A/R) achieves
the following rate.

min{Ro,1 — ha(§ xp.)} if p» < hy'(1 — Ry),

RpDCF = maX{RDFyRCF} = 1 . 1
1—h2(5*h2 (1—R0)) prz th (I—Ro).
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Figure 5.4: The two-hop Gaussian relay channel with source-relay channel state infor-
mation available at the destination.

This result justifies the pDCF scheme proposed in Section 5.3.1 for the parallel
binary symmetric MRC-D. Since the channel p(y?|z2) is independent of the channel
state Z, the largest rate is are achieved if the relay decodes X7 from Y3. However, for
channel p(yi|z1,2), which depends on Z, the relay either decodes X7, or compress Yﬁv
depending on p,.

5.3.3 Two-Hop Gaussian Channel with State

Next, we consider an AWGN two-hop channel, which we denote by Gaussian MRC-D,
in which the source-relay link is characterized by Yr = X; + V, while the destination
has access to correlated state information Z. We assume that V and Z are zero mean

jointly Gaussian random variables with a covariance matrix

Coy = [1 p] . (5.22)
p 1

The channel input at the source has to satisfy the power constraint E[|X}'|?] < nP.
Finally, the relay and the destination are connected by a noiseless link of rate Ry (see

Fig. 5.4 for the channel model).

In this case, the cut-set bound is given by

1 P
Rcszmin{Ro,Qlog (1—1— 1—p2>}' (5.23)

It easy to characterize the optimal DF rate, achieved by a Gaussian input, as follows:
) 1
Rpr = min 4 Ry, 3 log(1+P)¢. (5.24)

For CF and pDCF, we consider the achievable rate when the random variables
(X1,U, )A/R) are constrained to be jointly Gaussian, which is a common assumption

in evaluating achievable rates, yet potentially suboptimal. For CF, we generate the

2

compression codebook using Yz = Yz + Q, where Q ~ N (0, 02). Optimizing over o,
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Figure 5.5: Achievable rates and the cut-set upper bound for the two-hop AWGN relay
channel with source-relay channel state information at the destination for Ry = 1 and
P =0.3.

the maximum achievable rate is given by

1
RCF = R() — 5 log ( (5.25)

P+ 2280 (1 — p?)
P+1—p? ’

For pDCF, we let U ~ N (0,aP;), and X; = U + T to be a superposition codebook
where T is independent of U and distributed as T' ~ N(0,@P;), where @ £ 1 — a. We
generate a quantization codebook using the test channel Yr=Yr+ Q@ as in CF. Next
lemma shows that with this choice of random variables, pDCF reduces either to pure

DF or pure CF, similarly to the two-hop binary model in Section 5.3.2.

Lemma 27. The optimal achievable rate for pDCF with jointly Gaussian (X1, U, YR)

s given by

min {Rp,1/2log(1 + P)}  if p? <272Bo(1 4 P),

Ry~ 3log (ZHER0) if g2 > 92R0(1 4 P).

R,pcr = max{Rpr, Rcr} =

Proof. See Appendix E. O

In Fig. 5.5 the achievable rates are compared with the cut-set bound. It is shown
that DF achieves the best rate when the correlation coefficient p is low, i.e., when the
destination has low quality channel state information, while CF achieves higher rates

for higher values of p. It is seen that pDCF achieves the best of the two transmission
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schemes. Note also that for p = 0 DF achieves the cut-set bound, while for p =1 CF
achieves the cut-set bound.

Although this example proves the suboptimality of the DF scheme for the channel
model under consideration, it does not necessarily lead to the suboptimality of the CF

scheme as we have constrained the auxiliary random variables to Gaussian.

5.4 Comparison with the Cut-Set Bound

In the examples considered in Section 5.3, we have seen that for certain conditions, the
choice of certain random variables allows us to show that the cut-set bound and the
capacity coincide. For example, we have seen that for the parallel binary symmetric
MRC-D the proposed pDCF scheme achieves the cut-set bound for § > h2_1(2 — Ryp), or
Gaussian random variables meet the cut-set bound for p = 0 or p = 1 in the Gaussian
MRC-D. An interesting question is whether the capacity expression in Theorem 14
always coincides with the cut-set bound or not; that is, whether the cut-set bound is
tight for the relay channel model under consideration.

To address this question, we consider the two-hop binary channel in (5.18) for Z ~

Ber(1/2). The capacity C of this channel is given in the following lemma.

Lemma 28. The capacity of the binary symmetric MRC-D with Y = X1 & N & Z,
where N ~ Ber(d) and Z ~ Ber(1/2), is achieved by CF and pDCF, and is given by

C=1-hy(dxhy'(1— Ry)). (5.26)

Proof. See Appendix E. O

From (5.19), the cut-set bound is given by Rcs = 1 — ha(d). It then follows that in
general the capacity is below the cut-set bound. Note that for this setup, Rpr = 0 and
pDCEF reduces to CF, i.e., Rypcr = Rcr. See Fig. 5.6 for comparison of the capacity
with the cut-set bound for varying § values.

CF sulffices to achieve the capacity of the binary symmetric MRC-D for Z ~ Ber(1/2).
While in general pDCF outperforms DF and CF, in certain cases these two schemes are
sufficient to achieve the cut-set bound, and hence, the capacity. For the ORC-D model

introduced in Section 5.1, the cut-set bound is given by
Rcs = Ri + min{ Ry, n(1a>§I(X1; Yr|Z)}. (5.27)
p(z1

Next, we present four cases for which the cut-set bound is achievable, and hence, is

the capacity:
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Figure 5.6: Achievable rates, capacity and cut-set upper bound for the two-hop binary
relay channel with respect to d for Ry = 0.25 and p, = 0.5.

1. IfI(Z;YR) = 0, the setup reduces to the class of orthogonal relay channels studied
in [91], for which the capacity is known to be achieved by pDF.
2. If H(Yr|X1Z) =0, i.e., Yg is a deterministic function of X; and Z, the capacity,
given by
Ry + min{Ro,;r(lj)if(Xl; Yr|Z)},

is achievable by CF.

3. If max I(X1;YR) > Ry, the capacity, given by C = Ry + Ry, is achievable by
pDF.

4. Let argmax(z,) I (X1;Yr|Z) = p(a1). If Ry > H(Yg|Z) for Yz induced by p(z1),
the capacity, given by Ry + I(X1;Yg|Z), is achievable by CF.

p(x1)

Proof. See Appendix E. O

These cases can be observed in the examples from Section 5.3. For example, in the
Gaussian MRC-D, with p = 0, Yy is independent of Z, and thus, DF meets the cut-set
bound as stated in case 1. Similarly, for p = 1 CF meets the cut-set bound since Yp is
a deterministic function of X and Z, which corresponds to case 2.

For the parallel binary symmetric MRC-D in Section 5.3.1, pDCF achieves the cut-set
bound if § > h;*(2— Ry) due to the following reasoning. Since Y} is independent of X7,
from case 1, DF should achieve the cut-set bound. Once X7 is decoded, the available
rate to compress Ys is given by Ry — I(X1;Y1) = Ro — 1 + he(d), and the entropy
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of Y,, given the channel state at the destination, is given by H(Y2|Z) = 1 — ha(9).
For § > hy'(2 — Ry) we have Ry — I(X1;Y1) > H(Y3|Z). Therefore the relay can
compress Y5 losslessly, and transmit to the destination. This corresponds to case 4.
Thus, the capacity characterization in the parallel binary symmetric MRC-D is due to

a combination of cases 1 and case 4.

5.5 Conclusion

We have considered a class of orthogonal relay channels, in which the source and the
relay are connected with a channel that depends on a state sequence, known at the
destination. We have characterized the capacity of this class of relay channels, and
shown that it is achieved by the partial decode-compress-and-forward (pDCF') scheme.
This is the first three-terminal relay channel model for which the pDCF is shown to be
capacity achieving while partial decode-and-forward (pDF) and compress-and-forward
(CF) schemes are both suboptimal in general. We have also shown that, in general, the

capacity of this channel is below the cut-set bound.
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Conclusions

In mid 20th century, Shannon settled the fundamental principles of information theory
and reliable communication. In his groundbreaking paper, Shannon proved that, with-
out incurring any performance loss, the communication problem can be divided into
two separate simpler problems: data compression and data transmission. Since then,
communication networks has systematically followed this division in their architecture
design. This separate operation framework presents significant advantages in terms of
simplicity and modularity, which led to the development of highly complex networks,
such as the Internet. However, this approach has created a bottleneck in the design
of wireless networks, since they significantly differ from wired networks, for which the
layered framework was originally designed. Wireless channels are highly dynamic and
present a broadcast nature, causing interferences in nearby devices, as opposed to wired
channels, which are, essentially, time-invariant and non-interfering.

Moreover, sources and channels in wireless communication networks exhibit statis-
tical correlation, which can stem from the physical nature of the underlying sources or
can be created within the network. While current architectures ignore this correlation,
communication technologies that exploit it, and go beyond the layered architecture ap-
proach, can become a key feature of future high performance networks, as information
theory promises significant gains. However, translating the available correlation into
performance improvements implies a careful system design and the use of appropriate
communication strategies.

In this dissertation, we have studied potential novel technologies for next generation
wireless networks from an information theoretic perspective. We have focused on three
distinct problems involving the availability of correlated side information in wireless
networks, and developed fundamental performance bounds and novel communication
schemes that go beyond the classical separate source and channel coding approach.

We have identified operation regimes in which significant performance gains can be

117
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expected. In general, joint source-channel coding (JSCC) schemes, such as uncoded
transmission, joint decoding, hybrid digital-analog (HDA) transmission and multi-layer
transmission, have been shown to be able to provide significant performance gains over
separate source and channel (SSCC) schemes. Under certain conditions, the proposed
schemes have been shown to achieve the optimal performance, proving the necessity of
JSCC in the presence of correlated information in wireless networks. Uncoded trans-
mission plays a major role in the JSCC schemes considered in this thesis and, despite its
simplicity, its optimality has been proven in many regimes of operation, in which SSCC
is strictly suboptimal. On the other hand, we have also shown that the benefits of JSCC
schemes are not restricted to JSCC problems. We have shown that a combination of
channel coding and source coding techniques, are required in certain multi-terminal
channel problems in order to achieve the channel capacity.

In Chapter 2, we have studied the joint source-channel Gaussian one-helper problem,
in which two correlated Gaussian sources are available at two separate terminals and
have to be transmitted over a time-invariant Gaussian MAC. Of the two sources, only
one of the sources has to be reconstructed at the destination with minimum distortion,
while the terminal with the second source acts as a helper.

We have characterized the optimal performance achievable by SSCC and uncoded
transmission, and seen that, for low SNR and high correlation regimes, the latter out-
performs SSCC. On the contrary, SSCC has been shown to perform better at high SNR
and low correlation regimes. The optimality of separation breaks down in this scenario
because by exploiting the correlated source sequences, each terminal can generate corre-
lated channel inputs. This is unfeasible for SSCC, which can only generate independent
inputs in this distributed setup. The correlation between the channel inputs brings
an additional degree-of-freedom to the system, which potentially improves the perfor-
mance. However, the amount of correlation that can be created is limited by the source
correlation. We have used this fact, together with cut-set bound arguments to obtain a
lower bound on the achievable distortion.

While we have seen that uncoded transmission outperforms SSCC, the good perfor-
mance of uncoded transmission is dependent on certain source and channel matching
conditions and, in general, uncoded transmission is not capable of exploiting the avail-
able degrees-of-freedom in the system. In order to benefit from both digital and analog
transmission, we have considered a generalized HDA transmission scheme based on
power allocation among digital and analog signals, denoted by I-HDA. The correspond-
ing signals are transmitted by superposition, and the analog transmissions are treated
as noise when decoding the digital codewords. This scheme includes pure SSCC and
uncoded transmission schemes as particular cases. A second HDA transmission scheme,
denoted by S-VQ, has also been considered. In the S-V(Q scheme, at each terminal, the

source is quantized and superposed onto an uncoded analog layer. These two schemes



Chapter 6. Conclusions 119

have been numerically shown to outperform pure SSCC and pure analog transmission
by better exploiting the degrees-of-freedom in the system. We have observed that,
both HDA schemes reduce to pure analog transmission in certain regimes, for which
we conjecture that uncoded transmission is optimal. These results indicate that, even
simple uncoded transmission is capable of outperforming SSCC, and in fact, achieve the
best known performance, although more advanced schemes have been shown to provide
higher gains in general.

In Chapter 3, we have looked at the JSCC problem of transmitting a Gaussian
source over a time-varying fading channel with delay constraints and minimum expected
distortion. We have studied the benefits of having correlated side information at the
receiver whose quality, i.e., correlation with the source signal, varies over time, assuming
that the states of the time-varying channel and side information are available only at the
destination. In this case, contrary to the helper setup, the side information is provided
to the destination through an orthogonal link. The optimality of Shannon’s separation
breaks down since, under delay constraints, SSCC cannot adapt to the channel and side
information variations and suffers from outages in both the source and channel codes.
Therefore, JSCC techniques that jointly adapt to the channel and the side information
states are required.

We have derived a lower bound on the expected distortion by providing the encoder
with the channel state, and shown that in this case, SSCC achieves the optimal per-
formance, although the side information state is unknown at the transmitter. We have
proved the optimality of uncoded transmission under discrete and continuous quasicon-
cave side information fading distributions, by showing that under these distributions
uncoded transmission achieves the lower bound, rendering the available side informa-
tion useless in transmission. This is the first known case, in which uncoded transmission
becomes optimal due to fading while it would be suboptimal in the static case. We have
also shown that, under this class of distributions, the optimal SSCC scheme ignores
the available side information and uses the side information only for reconstruction at
the destination. However, for other side information fading distributions, performance
improvements can be achieved by exploiting the available side information.

We have shown that SSCC performs poorly compared to joint designs and considered
a transmission schemes based on joint source and channel decoding (JDS), compensat-
ing bad quality channel states with good side information realizations (or the reverse),
thus reducing the outage probability compared to SSCC. We have also considered an
HDA scheme based on joint decoding that transmits an uncoded layer on top of a digital
layer (SHDA). We have provided results in the finite SNR regime, and shown that, in
general, JDS outperforms SSCC and, we have numerically observed that SHDA trans-
mission performs very close to the lower bound. While the optimal transmission strategy

remains open for finite SNR values, we have studied the high SNR performance, and
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characterized the distortion exponent in certain regimes of operation. We have shown
that SHDA achieves the optimal distortion exponent for a family of side information
distributions. However, in certain regimes of operation, JDS achieves the optimal dis-
tortion exponent while SHDA is suboptimal. Therefore, none of the schemes outperform
the other in general.

The results in this chapter have been extended in Chapter 4 to MIMO channels and
general bandwidth ratios, which provide the system with additional degrees-of-freedom.
We have focused on the high SNR regime and assumed that the side information fading
follows a Rayleigh distribution, and have considered the effects of its quality. By general-
izing the bounds in the previous chapter, we have shown that in the very low bandwidth
regime, the optimal distortion exponent is achieved by using only the side information,
ignoring the channel output, and in the low bandwidth regime, by ignoring the side
information and only using the optimal scheme in the absence of side information.

Then, we have considered larger bandwidth ratios. While in the SISO setup single
layer schemes are sufficient, they fall short of the optimal performance in the MIMO
setup. SSCC and JDS have been shown to achieve the same distortion exponent de-
spite the latter suffering from fewer outages. Uncoded transmission has been shown
to be highly suboptimal, specially for large bandwidth ratios, since it is not capable
of exploiting the additional degrees-of-freedom in the system. We have also proposed
an HDA scheme, which we call HDA-WZ, and shown that it outperforms the previous
schemes. However, these schemes are not sufficient to exploit the degrees-of-freedom
in the system, especially in the large bandwidth regime. We have considered multi-
layer transmission schemes that transmit successive refinement layers of the source to
combat the uncertainty, either in a progressive (LS-JDS) or with a broadcast (BS-JDS)
approach. We have shown that these schemes achieve larger distortion exponents and
that, in particular, BS-JDS achieves the optimal performance in MISO/SIMO /SISO
setups, solving the JSCC problem in the high SNR regime. For the general MIMO
channel, we have characterized the optimal distortion in the low bandwidth regime and
shown that BS-JDS performs very close to the upper bound. However, we have also
observed that LS-JDS outperforms BS-JDS for intermediate bandwidth ratio values,
and thus both schemes are required to achieve the largest distortion exponent values,
depending on the regime of operation.

In general, providing an estimation of the channel and side information state to the
transmitter is costly. Although in Chapters 3 and 4 the transmitter is not aware of the
current channel and side information states, the results in these chapters indicate that,
in the high SNR regime, some schemes achieve the optimal performance of a transmitter
that perfectly knows the channel state. We have also quantified the optimal performance
of a transmitter that perfectly knows the channel and side information state, illustrating

the gains from the channel state feedback in delay limited JSCC problems. The results
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in Chapters 3 and 4 indicate that, having correlated side information available at the
receiver can be exploited to obtain significant performance gains, despite the transmitter
not being aware of the current state of this information.

Finally, in Chapter 5, we have studied the capacity of a class of orthogonal relay
channels in the presence of channel side information at the destination. We have mod-
eled the side information in this setting as follows: the source and the relay, and the
source and the destination are connected through orthogonal channels that depend on
a common state sequence, which is fully known at the destination, and unknown at
the source and the relay. While this is essentially a channel coding problem, source
compression techniques are required to optimally exploit the side information. We have
considered the partial-decode-and-forward (pDF) scheme, which decodes part of the
message at the relay and forwards it to the destination, removing the channel noise but
rendering the channel state available at the destination useless. We have also considered
compress-and-forward (CF), which compresses the relay received signal and forwards to
the destination, which decodes the message using the state information available. How-
ever, CF also forwards the channel noise. We have characterized the capacity of this class
of relay channels, and proved the optimality of the partial decode-compress-and-forward
scheme (pDCF), which combines both DF and CF. To the best of our knowledge, this
is the first three terminal channel model for which partial-decode-compress-and-forward
has been shown to be optimal. We have also proved that, in general, neither the pDF
nor the CF scheme can achieve the capacity on its own. The results in this chapter
show the importance of a fundamental understanding on how to exploit the side infor-
mation in communication networks in order to translate the available side information
to significant performance improvements.

Even though the nature of the side information and the performance measure in the
three scenarios studied in this thesis are quite different, our results concerning these
three different scenarios emphasize the significant benefits of exploiting correlated side

information when designing a communication system.

Future Research Directions

In this thesis we have studied several open problems concerning the availability of corre-
lated side information in the network and the use of JSCC schemes to efficiently exploit
it. While in some cases we have fully solved these problems, there are still a plethora of
questions that could be further explored to improve the understanding of fundamental
benefits of side information. Here, we discuss some potential research direction that can
be pursued.

In Chapter 2, we have provided achievable schemes based on separate source and

channel coding, uncoded transmission and HDA schemes that combine the two schemes,



Chapter 6. Conclusions 122

however, their performance is far from the proposed lower bound. We believe that the
large gap between the lower and upper bounds is caused by the looseness of the lower
bound. Tightening this bound is a challenging problem that requires significant effort.
Advances in this line of research could lead to improved performance bounds for the
transmission of correlated sources in other multi-terminal setups, such as the JSCC
interference channel, where little is known.

In Chapters 3 and 4, we have fully characterized the minimum expected distortion
in some regimes, for which uncoded transmission has been shown to be optimal. How-
ever, most of the optimality results in these chapters have been obtained in terms of the
distortion exponent, that is, in the high SNR regime. Further research for the expected
distortion in the finite SNR regimes is required. Although this is a very challenging
problem that remains open even in the absence of side information, it would be interest-
ing to study the optimal performance of LS-JDS and BS-JDS in the finite SNR regime,
and quantify the potential improvements with respect to SSCC based schemes. We ex-
pect this improvement to be quite significant. A noticeable performance improvement
is observed in the simulations even when a single layer is used. It would also be interest-
ing to further investigate why the achievable distortion exponent for BC-JDS reduces
to the performance of JDS in certain regimes, while this does not occur in the absence
of side-information. We have also quantified the optimal performance when perfect
feedback of the channel and/or side information states is available to the transmitter.
An interesting research direction would be to study this problem when the feedback
is rate limited, and to characterize the optimal resource allocation among the channel
and the side information feedback, as well as to identify the performance of the schemes
proposed in this thesis in this model.

Extensions of the tools developed in Chapters 3 and 4 to multi-terminal problems,
such as the MAC, the BC, the IC, the relay channel, or a time-varying version of the one-
helper problem studied in Chapter 2, would be interesting. We believe that techniques
that combine joint decoding, HDA and multi-layer schemes could provide significant
gains in these JSCC scenarios, as well.

Finally, in Chapter 5, we have characterized the capacity of a class of relay channel
with state information at the destination. More general relay models can be considered
that go beyond the orthogonal setup studied in this chapter. However, we believe that
this is an extremely challenging problem, since even simpler relay scenarios without
channel state, have remained unsolved for many years.

There are still many challenges and open problems to be solved concerning the
availability of side information. As wireless networks become more densified in future
generations and the M2M paradigm becomes popular, we believe that the role of corre-
lated side information in the network will become a key feature to improve the network

performance. Information theory will be instrumental in developing novel transmission
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strategies that go beyond Shannon’s separation paradigm, and settle the fundamental
principles of the networks of tomorrow. We hope that the research work presented in
this Ph.D. thesis has contributed to achieving this goal, as well as to raise awareness

about the potential benefits of side information explotation in wireless networks.
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Appendix A

Some Notions and Results

In this appendix, we briefly review the notions of types and strong typicality that are
used in this thesis, following [92] .

Let X and Y be a random variable over alphabets X and ), respectively, jointly
distributed following pxy (z,y), and with marginal distribution px (z) and py (y).

Definition 1. Given a distribution px (z), the type Pyn of an n-tuple x™ is the empirical

distribution )
"N (afa™)

where N(a|z™) is the number of occurrences of the letter a in x™.

Definition 2. The set of all n-tuples x™ with type Q is called the type class Q and
denoted by 1.

Definition 3. The set of §-strongly typical n-tuples according to px(x) is denoted by
Tﬁqé and s defined by

mn n 1 n
Tix), = {:c e xX™: ‘HN(ax )—Px(a)| <6Vae X
and N(a|z™) = 0 whenever px(x) = O}. (A1)
The definitions of type and strong typicality can be extended to joint and conditional

distributions in a similar manner [92].

Next, we provide some results concerning typical sets used in the thesis.

Lemma 29. Given a random variable X distributed following px (x), for each z" €

T[’}qé we have

1 mn
- log [T{x,| — H(X)| < (A.2)

9
||
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for sufficiently large n.

Lemma 30. Given a joint distribution pxy (x,y), if (z;,y;) is drawn independent and

identically distributed (i.i.d.) with px(x)py (y) for i =1,...,n, then
Pr{(z",y") € T{xy),} < g~ nU(X5Y)=30) (A.3)

Finally, we have the following lemma.

Lemma 31. For a joint distribution pxyz(x,y, 2), if (x:,yi,2i) is drawn i.i.d. with

px(X)py (Y)pz(2) for i = 1,...,n, where px(x), py(y) and pz(z) are the marginals,
then

PI‘{(I‘” y" Zn) c T[r)L(YZ] } < zfn(I(X;Y,Z)+I(Y;X,Z)+I(Z;Y,X)745)' (A4)
Y ) s -_—
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Proofs for Chapter 2

B.1 Proof of Lower Bound

Using the rate-distortion functions, we will lower bound some mutual information terms.
We have,

(@ .
I(ST;Y"[S3) = I(ST;5115%) (B.1)

= ZI(Smgﬂ%LSﬁl)
i=1
® S i—1 gn A
2 Zh(51i|511 S5) — h(S1ilS1:S2:)

i=1

DS h(SuilS2) — h(SlS1:)
=1

I(Su; 5'11'\521)

(=1

i=1

@ <1 5

>ny. —Rsi|s, (E[(Su - Sli)Q])

i=1

(e) 1 — A

> TLR51|52 (n ZE[(SM - Sli)2]>
=1

(f)

> nRSl|Sz(D+€)’

where (a) follows from the data processing inequality, (b) follows since conditioning
reduces entropy, (c¢) follows due to the sources being i.i.d., (d) follows from the definition
of Rg,|s,(+) in (2.6), (e) follows from the convexity of Rg,|s,(-), and (f) follows since D

is achievable.
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On the other hand, we have the following

(@) N
I(SI’SS;Y") > I(SI’; S1) (B.2)

where (a) follows from the data processing inequality; (b) follows since conditioning
reduces entropy, (c) follows from the definition of Rg, (D) in (2.5), (d) follows from the
convexity of Rg, (D7) and from the achievability of D.

Next, we upper bound the mutual information terms in (B.2) and (B.1). For (B.2)
we have

I(S7;Y™[83) = Y h(YilS5Yi™") — h(Yi| ST S3Y, ™)

I

-
Il
-

h(Y;|S5Y{ ™ Xo) — h(Yi|Sy S5 Y X1 X2:)

S Il
M- 117-

s
Il
—

INE

h(Yi| Xai) — h(Y| X1: X2;)

|

I(X1; Yi| X2:), (B.3)

s
Il
—

where (a) follows from the Markov chain Y; — X7, Xo; — S?SQYlFl.

Then, for (B.1) we have

I(SPSy;Y™) = h(Y™) =Y h(Y;|SpSpyi—)
=1
< h(Y™) = h(Yi|SPSpYi T X1 Xs)
i=1

@ h(Y") (Y| X1 X o)

< Zh h(Yi| X1i X;)

n

i=1
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where (a) is due to the Markov chain Y; — X1, Xo; — S?Sngfl.
Expressions in (B.3) and (B.4) can be jointly upper bounded using the following
lemma, derived in the context of a MAC channel with feedback in [93].

Lemma 32 (From [93]). Let {X1;} and {Xa;} be zero-mean satisfying L 3" | E[X}] <

Py for k = 1,2. Let Y; = Xy; + Xo; + Z; where Z; ~ N(0,N) and, for every i, is

independent of (X1;, Xo;). Let p, € [0,1] be defined as

s |3 i1 E[X1iXai|
V&S EXED(E T, BX)

Pn (B.5)

Then,

o3

Y P, + P, + 2p,\/P, P.
ZI(YZ‘§X11'XQZ‘) < —log <1 + 1 2 anm> ’
i=1

n
Pi(1—p3
=1

Next, we bound the correlation between the channel inputs (X7', X7') at each trans-
mitter, denoted in Lemma 32 by p,,. While, in the presence of feedback, channel inputs
can potentially be arbitrarily correlated, i.e., 0 < p,, < 1, in the Gaussian helper setup,
the correlation is limited by the correlation between the source sequences, therefore, we

have 0 < p, < p.
Lemma 33. The correlation between the channel inputs, denoted by p, and defined in
(B.5), is upper bounded by the correlation between the source sequences as follows

0< pn < p. (B.6)

Proof. The proof uses the following result from [13, Lemma B.2|, given next.

Lemma 34. For any coding scheme with encoding functions of the form X = fI(SI")
for i = 1,2 that satisfy the power constraint (2.2) and reduction E[X, ;] = 0, for i €
{1,2} and k =1,...,n, and the encoder input sequences are jointly Gaussian as in (2.1)

with 0 < p <1 and 0} = 03 = 02, any time-k encoder output X1 j, and Xo . satisfy

BE[X1; X2
E[X?]VE[XZ]

< p. (B.7)
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Using Lemma 34, we can bound p,, in (B.5) as follows

b = |L 50 BX1 Xo]|
VS EXE) (S, BXE))
© 1Ly, p/EXEVERE]
C R I B T, BIX3)

(<b) |%P\/Z?:1 EX7]VYis EIXG]
V& S EXED(E S, LX)
= p. (B.8)
where (a) is due to (B.7) and (b) follows from the Cauchy-Schwarz inequality. O

Finally, in order to prove Lemma 1, we applying Lemma 32, to upper bound (B.3) and
(B.4) and combining with the lower bound in (B.2) and (B.1) we obtain the inequalities
in Lemma 1. Applying Lemma 34 we bound p,,, which completes the proof.
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Proofs for Chapter 3

C.1 Proof of Theorem 2

C.1.1 Separation for Discrete Distributions

For T' with two states optimality of separation can be obtained as a special case of
the model studied in [71]. This result can be extended to M receivers (or states) by
combining the converses in [71] and [5, Sec.VII] for M side information states, i.e., T},
1=1,...,M. The direct part is shown by the concatenation of the optimal source code
in [5] and an optimal channel code.

First, we consider the converse. We have,
(@)
nC > I(X™Y")
®)
> I(S™Y™)
(©) n n n
= I(S aTM,1%Y )

d)
> I(S™ YTy ,)

—

(e) n n n n n n n.n n n
= I(S™;Y aT1,17T2,17"'7TM71,1‘TM,1)_I(S ?TM71,1|Y aTM,l)
—](X";Yﬁ72’1|V”,Y]@71,1,Y]\’}[,1) - I(S";TffﬂY”,Tz’fl, -~-7T}\r}1,1)

Z {I(Sﬁyn,Tln,'laTzn;p -~-aTJ7v"171,1|TJ\n47175§71) - I(Sn§TM717i|Yn>T1iL;—11,17TJT\L4,1)

i=1

—1(S™; TM—27i|Y"7 T]ﬁ/[—&l? TJTVLI—l,I’ T]@,l)
e = XY VY Y i)

where (a) is due to the definition of capacity, (b) is due to the data processing inequality,
(c) is due to the Markov chain 77, —S™ — Y™, (d) and (e) are due to the chain rule of

the mutual information.
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From this point, by applying the steps in [5, Sec.VII] with some slight modifications

we obtain

nC = Z { (Sis Wari| T i) + 1(Sis War—1,4| Tnr -1, W)
+I(Si; War—2,i| Thi—2,i, War—1,4, Wars) + -+ - + L(Sas W 3| T i, Was, ..o, WIVI,i)]

= Z Z I(Si; Wil Ty i, Wi s oo, War i)
=1 =1

where we have defined the random variables

Wy =
WMfl N

i—1 n/i

( TM 117TM )7
( Z ' TIZ\/[1217TJV[ 12+17WMZ)
Wir—2,i = (Tar 23,15 Thi—2,i01, War—1,4),
(

i—1
Whi—s,i = (T, - 41’TM 31+17WM 2:)

Wi = (Tﬁiﬂv W2A,i)7
for i = 1,...,n. Note that the random variables satisfy the Markov chain condition
Was— - =Wii =S =T — - —Thys.

Applying the usual techniques by defining the auxiliary random variable @ ~ Unif[1,n],
Siq, Wiqg, and T;q for i =1,..., M, we obtain the single letter condition,

C > Rugp(D). (C.1)

Finally, the right hand side of (C.1) is given by the Heegard-Berger rate-distortion
function, Ry (D), and does not depend on the number of receivers but only on the
sum of the mutual information terms, each one corresponding to a receiver with side
information Y;, as discussed in [43]. Hence, the converse applies for countably many
receivers as well.

The achievability follows from Heegard-Berger source coding [5, Sec.VII] followed by
channel coding at rate R = C.

C.1.2 Separation for Continuous Quasiconcave Distributions

To prove the optimality of separation when pr(v) is a continuous quasiconcave distri-

bution, we construct a lower bound on the expected distortion ED},, by discretizing
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the continuum of side information states, and show that this bound is achievable in the

limit of finer discretizations.

We divide the side information state 7 into some partition s given by [so, s1), [s1, $2), ...

such that sp = 0 < 81 < ... < 8 < -+ and v € [s;_1,8;) if 8,01 < v < s; for some
i =1,2,.... The length of the partition [s;_1, ;) is defined by As;, i.e., As; E T
Let us define ¥ > 0 as the super-level set ¥ satisfying (3.11). The partition is chosen

such that for some index j, we have s; = 7. A fading realization belongs to the interval
S

[si—1,s;) with probability p; = fsiil pr(v)dy.

We assume that when ~ belongs to the interval [s;_1,s;), a genie substitutes the
current side information sequence T' = ~.S + N with a sequence with gain s;, i.e.,
T 2 /35S + N. Note that this receiver has a better performance as noise can be

added to Y to recover the original side information sequence if required. Hence, the

*

expected distortion for a given partition s, denoted by EDg.,

(s), is a lower bound
on the expected distortion of the continuous fading setup. The genie aided system now

consists of a countable number of receivers and, due to the optimality of separation under

*

countable number of side information states, £Dy,,,

(s) is achieved by the concatenation
of a Heegard-Berger source encoder with side information states s1, s, ... and a capacity
achieving channel code. Then, for a given partition s, we have,

EDg.,(s) = ED¢(C), (C.2)
where ED{(-) is defined in (3.9).

With the channel state h. known, expected distortion EDf)(C) is achievable with
separate source and channel coding by concatenating a single layer source encoder for
side information state 7, and a channel code at a rate arbitrarily close to C. Then,

ED;.,(s) < EDg, < ED(C). (C.3)
As the partition gets finer in the sense that max; As; — 0, the limiting behavior of
ED:,, (s) can be obtained by noting that once the optimality of separation is proved

gen

for each ED?,_ (s), the problem reduces to the problem studied in [43]. Hence, by

gen

[43, Proposition 4] and [43, Proposition 5], ED},,(s) converges to ED{(C), i.e.,

gen

lim  ED,.(s) = ED,(C). (C.4)

en
max; As; —0 9

Then from inequality (C.3) we have, in the limit of finer partitions, EDj;, = EDg,(C).
This completes the proof.
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C.2 Proof of Lemma 7

In order to show the convergence of ED7; to EDiyy, first, we construct an upper bound
on ED7; and we show that this bound converges to EDiy¢ for large enough L.

The lower bound ED;; is achieved by the concatenation of a capacity achieving
channel code with a single-layer source code targeting the side information state 7, the
solution to (3.11), for each realization of H. Instead, we consider that, for a given L the

source coding is done targeting the state

where 1 £ E[['f] is the mean of I';, and § £ y/02. The expected distortion achieved by

this scheme is an upper bound on ED7; and is found, similarly to ED7;, to be given by

P’

EDjay 2 By [EDQ ( log(1 + H))}

(M (h)
= d +// dvdh,
/0 1+7 5. (L+R)( 1+7L)+7 T

where EDq(R) is given as in (3.10) for 4 substituted by 7r and pr(v) is the pdf of I',.

Then, we have the following bound

EDpi»—EDiys < EDlay E D¢

_ " pr(y (V)pu(h) pr(h)pL(y)
a /0 d +//7L (1+n)( 1+'YL)+'Y 7Ld7dh_~/}z/«/(1+h)1+7)dlydh

(a) L p+6
0 5 (L+h)( 1+'YL)+'7 L nJu—s (L+h)(1+7)

u+5
L(7)pu(h)
= [y < dydh
L <7l //7 (1+h)( 1+’)’L)+’Y YL

> pr(Vpu(h) oo pL(7)
+/h/u+5(1+h JA+7L) +7 - de dh = // 1+h 1+ )dvdh

Pr[l' < A1) + //M(S ()P (h) dydh
14+ h)( 1+'7L)+’Y YL

nts
+Pr(0p, > pu+ 6] - //H mmd "

pts h(y = 31)pL(v)pm (h)
Pr(|T - uf < 8] + // @R+ +7 )+ W)

A
INS

—~
3]
~

INS

Pr{T; — il < 8] + En[H] - 20
2

%L+EH[H].25

A
N
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where (a) follows since T < 1 for the first integral, and because we are reducing the

1+ )
integration region in the third one, (b) follows due to

(V)pm(h) //”
drydh < pr(Y)pu (h)dydh
//u+5 14 h)( 1+’YL)+7 ) w ) ss L(V)pu(h)dy
=Pr[l'y, > p+4].

Then (c) follows since 7y, = p — d, and subtracting the two integrals, (d) follows from

the following bound,

e h(y — 3)pL (Y)pa (R)
//#_5 AW+ + 7 -+ B+

M+6
// h(y —3L)prL(v)pu (h)dydh

pto

B R By

< E[H]-26

where (f) follows since v <+ ¢ in the integration region; (g) follows since y, = u — 8
and f et s pL v)dvy < 1. Finally, (e) follows from Chebyshev’s inequality.
By the choice of § = y/0%, we have

. o}
ED;; — EDyt < 2L+ E[H) 26 = o} + E[H] 2\/02,
2

and the difference converges to 0 from the assumption o7 — 0 for L — oo. This

completes the proof.

C.3 Converse

C.3.1 Partially Informed Encoder Upper Bound

In Section 3.3.2 we have seen that for continuous quasiconcave pdfs, EDy; is obtained
by averaging the expected distortion achievable by the concatenation of a single layer
source code designed for the side information state 7(h) and an optimal channel code
for the current channel state h. For each h, the optimal 7(h) is determined by solving
(3.11) with R = C(h) = 3log(1 + h). Note that (k) is a random variable dependant
on the realization of the channel fading H.

An upper bound on the distortion exponent can be found by lower bounding ED,;.
First, we note that EDf,(R) in (3.10) is a convex function of R. This follows from the

time-sharing arguments and convexity of the Heegard-Berger rate-distortion function
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[5]. Then, by Jensen’s inequality, we have
ED;,; = Eq[EDG(C(H))] > EDg(Ex[C(H))), (C.6)

where

EDy(En[C(H))) = /0” };Ffv)dw /; (1+1)22Ezj[((3?11)]+7:7d% (C.7)

and 4 is the solution to (3.11) with R = Eg[C(H)], that is, the ergodic capacity of the
channel. Note that 4 depends only on the ergodic capacity of the channel and not on the
current channel state realization, and therefore, is not a random variable, as opposed to
3(h).

Now, since C(h) is a concave function of h, applying Jensen’s inequality again, we

have
1 1 1
Eg[C(H)] =Eg [2 log(1 + H)} < 5 log(1+E[H]) = 5 log(1+ p), (C.8)

that is, the ergodic capacity of the channel is lower than the capacity of a static channel
with the same average SNR.
We define, for 4 > 0,

NN &pr(’Y) >~ pr(v)
EDpe('Y)*/O 1+7d7+lf (’Ay—&—l)(l—l—p)—i—v—fyd’y' (C.9)

Then, we have

(@) [7 o
by [y [,
o 1+7 5 DA +p)+7-7
)
> min ED,,.(%) £ ED;,, (C.10)
4=>0.
where (a) follows from inequality (C.8), and (b) follows from the definition in (C.9).
Now, we obtain the exponential behavior of ED;,. Consider a sequence of normalized

gamma distributed random variables Hy ~ Y (L, #) under the change of variables A =
—losHo e pdf for A is found as

log p
aHO —a —«
pa(e) = |0 o o) = 0~ (=)o 1)
Then, pa(«) is given by
1 1 -« 1 1 —a
— - —(,Y(L—l) _pT 1 _ —La _pT 1
pale) =p~"p v’ e A AT 0g p,
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and the exponential behavior is found as

La ifa>0,
Sa() = — lim 208PAM) _ o= (C.12)
p—roe logp +oo if a<O.

For the model considered in Section 3.5, the SNR exponent for the Nakagami fading
channel, Hy ~ Y (L., L; '), is given by Sa(a) = Lea for a > 0, and for the Nakagami
fading side information, I'g ~ T (Lg, L;1), we have Sg(83) = L3 for 8 > 0.

Define k £ féz, such that 4 = p”. Applying the change of variables to (C.9), in the
high SNR regime, we have

EDu) = [ {2 dn

p5(B)
as, (0" + 1) (1 +p) +p'=F — p=

= / P_(l_B)+pB(5)d5 +/ P_(K++1)p3(5)d5

pe A;e

ﬁ/ -8 4550l g5 +/A LS (Bl g

c
pe pe

dg  (C.13)

where we have defined
Ape £{B:4>p" Py ={B:r>1-8},
and we have used the fact that, in the high SNR asymptotic, and for g € A;., we have
(07 + D)L+ p) + p! P —p"] 7 = [ pt o prex iy

=p max{r+1,(1-8)"}

= p (T,

which follows since p* + p¥ = p™@{=:¥} for 2y > 0, and we have 1 — 8 > & for § € A,
Similarly, in the high SNR limit we have (14 p!=#)~! = p= =R

Since the exponents in the integral do not depend on p, the distortion exponent
for each integral can be found by applying Varadhan’s Lemma [94] separately for each

integral term, similar to the proof of Theorem 4 in [73]. We define

Api(k) = inf (1= B)* + Sp(8), (C.14)

pe

and

Apg(/i) £ Jlﬂf KT +1+ Sp(B), (C.15)
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and write (C.10) as follows
* > mi )1 S mi —Ap1(k) —Ap2(r)Y = )= maxger min{Ap1(x),Ap2(r)}
ED}; 2 min{ EDpe(p")} = min{p +p FJ=p
Then, the distortion exponent is upper bounded by

max min{Apq (), Apa(x)}. (C.16)

rER

We solve the optimization problem in (C.16) with Sp(8) = Ls3, and denote the
optimal value by Ape(Ls, L:). We note that we can restrict the domain of § in (C.14)
and (C.15) to 8 > 0 without loss of optimality since Sg(83) = +oo for 8 < 0.

First, we consider the case k£ < 0. In that case, A,y (k) is minimized by 8* =1 — &
and we have A,1(k) = Ls(1 — k). On the other hand, we have

Apa(k) = éf;fo 1+ LB
st. B<1—k, (C.17)

which is minimized by 8* = 0, and A,2(x) = 1. Then, from (C.16), we have Ay (Ls, L) =
max, <o min{Ls(1 — ), 1}, which is maximized by x = —oo, and we have A, (Ls, L) =
1.

Next, we consider the case k > 0. Substituting Sp(8) = Lsf in Ay (k) in (C.14), we
note that we can constrain our search to 0 < g < 1, since any § > 1 can only increase

the objective function. We have,

Api(k) = 0<i%f<1 1+ (Ls—1)p
st. B>1—k. (C.18)

Since for Ly > 1, 1 + (Ls — 1)f is increasing in 3, the minimum is achieved by * =

(1—rk)*t and Api(k) =14 (Ls —1)(1 — k)*. On the contrary, for Ly < 1, the objective

function is decreasing in 8, and is minimized at 5* = 1, which yields Ay (k) = L.
Similarly, for Aps(x) in (C.15), we have

Apa(k) = /;g{)fi +14 L,
st. B<1—k. (C.19)

This problem is minimized by £* = 0, for which Aps(k) =1+, for 0 < k < 1, and has
no solution for k > 1, since there are no feasible 8 in the optimization set.

Then, substituting in (C.16), for Ly < 1, we have Ay (Ls, L) = max,>o min{L,, 1+
k} = Lg, and Ape(Ls,L.) = 1. For Ly > 1, since Ap(k) is decreasing in x while
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Apa(k) is increasing in &, the maximum Ay (Ls, L) in (C.16) is achieved when the two

exponents are equal, i.e., 1 + Kk = 1+ (Ls — 1)(1 — &), from which we find

1 L,—1
Ape(Ls,Le) =2— —, for k" =

T 7 € (0,1). (C.20)

Now, we find the maximizing # for each L, regime to obtain A% (L, L.). For
Ly <1, the distortion exponent is maximized by k = —oo and A,e(Ls, L) = 1, since
Ape(Ls, L.) = L, for any k > 0. On the contrary, for Ly > 1, the distortion exponent
is maximized as (C.20), while Ape(Ls, L.) = 1 if we consider k£ < 0.

Note that when L; < 1, the side information gain distribution is monotonically
decreasing. Then 7(h) = 0 for any h from Proposition 1, and therefore, from Theorem
3, uncoded transmission achieves the minimum expected distortion, i.e., ED;; = ED,,.
The distortion exponent for uncoded transmission A, (L, L) is calculated in Appendix
Cas Ay(Ls, L) = min{1, Ly+L.}. Comparing A, (Ls, L.) with Ape(Ls, L), we observe

that the proposed lower bound on ED?, is in general not tight due to inequality (C.8).

’L

C.3.2 Informed Encoder Upper Bound

Expressing the informed encoder lower bound EDjy¢ in (3.14) in terms of o and f, the

distortion exponent is found by using Varadhan’s Lemma as follows,

)
ED;, ————————dhdy
= //,w 1+h 1+’y)

@)ps(B)
//,5 1+p1 )1+ pt= B)dadﬂ

:/ pala >pB<ﬁ> dodd
R2 P

(I—a)t+(1-p)*
Ainf(Ls)’

ipf

where the distortion exponent is found as the solution to the following optimization

problem,
Aini(Ls, Lc) 2 inf(1 — )t + (1= B)* + Sa(e) + Sp(f). (C.21)

We note that we can reduce the optimization domain to a, § > 0 since S4(a) = Sp(8) =
+oo for o, < 0. Evaluating for Sa(a) = L.a and Sp(8) = L8, the minimum
in (C.21) is achieved by o* = 1 if L. < 1 and «* = 0if L, > 1, and by * = 1
if Ly < 1, and 8* = 0 for Ly > 1. Then, the minimum is found to be given by
Aint(Ls, L) = min{1, L.} + min{1, Ls}.
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C.4 Distortion Exponent Derivations

C.4.1 Uncoded transmission

Similarly to the proof in Appendix C.3.1 , applying the change of variables Hy = p~4

B and Varadhan’s lemma, we have

B(8) - AL
EDu—// _PAIPBE)__j0q = pBulLs)
5 1—i—p1 a—l—pl B

where the distortion exponent is found by substituting S4(a) = L.a and Sg(8) = Lsf

and I'g = p~

as

AL, L) = 0d réuﬂnqmax{l —a,1—pB}+ L.a+ LS.

Note that we can constraint to 0 < «, 5 < 1 without loss in optimality since any o, 8 > 1
achieve a larger solution. Then, if 1—« > 1— 3, the minimum is achieved by 8* = o™ and
o*=0if Ly+ L. > 1, while o* =1 if Ly + L. < 1. Similarly occurs by symmetry when
1—a < 1—4. Then, the minimum is found to be given by A, (Ls, L.) = min{Ls+ L., 1}.

C.4.2 Separate Source and Channel Coding (SSCC)

Here we find the distortion exponent of SSCC. Let us define the events

O1 2 {(h,7): R > I(U;V)},
Oy 2 {(h,7): Re < I(U;V),R. < I(X;W|Y)}.

Event O; corresponds to an outage due to bad quality of the channel, and Oy corre-
sponds to a correct decoding of the channel codeword while an outage occurs due to the
bad quality of the side information. It is readily seen that Oy = O1 |J O3. Consider the
change of variables Hy = p~4, Ty = p~ %, R, = S logp and R, = % logp, for rg > 0
and r. > 0. We consider r; = 0 to allow SSCC to transmit without binning. We have

Dy (Re, Rs) :/ Mdhd —|—/O wdhdv

o PAAF=0) ¢ 1+~

pa(a )PB(B) pala)ps(B)
_ Pal@PBP) 40q PAIPBLY) 4
/Ai,,(m preFre £ ph 6+/§b<p> 4o 0

where we have defined Ag(p) = A1 (p) U Az2(p), and A;(p) characterizes O; in terms of

« and B, and is given by

Au(p) £ {(h) s Bz glog(l+ W) = (f@8) 7 2 14 942,
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and similarly for Oy we have

92(Rs+Ro—€) _ 1
log| 1+ ————
()

Q—errs+rc
1+ p(=5) } :

N =

1
Al 2 {(h2)  Re < Jlog(1-+1), R <
= {(a,ﬂ) e <14p T ple <1+

Using similar bounding techniques to the ones used in Appendix C, it is not hard to

show that in the high SNR regime, we have

ED(Re, Ry) = / —If;“if‘)ff(f_)ﬁ}dad5+ / pi"‘(g)_%‘?fﬂ ) dads,
AgnAg PR AUA, P

where the equivalent outage sets in the high SNR are

Ay 2 {(a, ) :re < (1 —a)T,re < (rg+7re— (1= B)T) T}

Let r = [r.,7,]. Applying Varadhan’s lemma, the distortion exponent of each integral

term are found as

A (r) = i}fr{gfmax{rc +7rs,1 — B} + Sala) + Se(B)

st.re<(l=a)t, re>(re+re—(1-8)9)7,
and

Auo(e) = nf(1 — §)* + Sa(0) + S5(9) (C.22)
st. e > (1—a)f,
orre < (l1—a)t, re<(rg+r.—(1-p)"".

We can limit the optimization to 0 < a, 5 < 1 without loss of optimality. First, we find
the distortion exponent for Ly > 1. We start with Ay (r). If r. + 75 > 1 — 8, we have

A (r) = ai}go rs +7e+ Lea+ LS (C.23)

st.a<l—rey 1—(re+r.)<B<1l—rs

The minimum is achieved by 8* = (1 — (15 + r.))* and o* = 0 and we have Ay (r) =
Ts+7re+ Ls(1— (rs+7))t forre <1, 7y <1. If1— 8> r.+7s,

Ag(r) = in£ 1+ Lea+ (Ls—1)8 (C.24)

«,3>0

st.a<l—r., B<l—(rs+r.).
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The minimum is achieved by a* = * = 0, and is found to be A;(r) =1 for . < 1 and
re+7rs < 1. Then, putting all together, the infimum is given by A (r) = max{1,rs+r.},
forrs < 1and r. < 1.

For A4 (r), we first consider the case with constraint 7. > (1 — a)™. The minimum
is easily seen to be given by a* = (1 —r.)" and * = 0. Then A (r) =1+ L.(1—7)7.
If r. < (1 —a)*, the second constraint is active. If rs +r. < (1 — B)7, Az (r) has no
solution since this would require r. < 0. If ry + 7. > (1 — 3)", the minimum is achieved
for a* =0 and * = (1 —r,)T, and is given by Ag(r) =14 (Ls—1)(1—rs)T forrs >0
and r. < 1.

The optimal distortion exponent of SSCC is found by maximizing over the rates as

Ag(Ls, L) = max min{A; (r), Asa(r)}.
The distortion exponent is maximized when rs +1r. > 1, r. < 1 and ry < 1. Then,
we have Ag(r) = 15 + 1o, Aga(r) = min{l + L.(1 —7.)", 1+ (Ls — 1)(1 —rs)*}. The
maximum is achieved by r. and 74 for which the left and right terms in the minimization
in Aga(r) are equal, ie., 14+ Lo(1 —r.) =14 (Ls — 1)(1 — ry), and As(r) = Asa(r).

Solving this, we have

* (Lc + 1)(Ls _ 1) * L.Lg

T L Lot -1 T L L.yl -1
which satisty rs < 1, 7. < 1 and rs + r. > 1. Note that for Ly = 1, we have r; = 0, i.e.,
no binning is optimal, as expected from Lemma 4.

Now we consider the case Ls < 1. In this regime, the gamma function is monotoni-
cally decreasing, and hence, ¥ = 0 and from Lemma 4 we have R} = 0, i.e., no binning
achieves the minimum distortion for SSCC. Next, we derive the distortion exponent
when no binning is considered, for general L, to account for ED,.

Letting Ry = 0, the outage event A5 is empty. Then, we find the distortion exponent
of EDpp(R.) as

Awp(re) = inf max{re, (1= 8)"} + Lea + LB

st.re < (1—a)t,
and

Anb2(Tc) = inf (1 - /6)+ + o+ Lsﬁ

a,$20
st. e >(1—a)t.

By solving the cases for r. < 1 — f and r. > 1 — 8, we find that A,;1(r.) attains its
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infimum at a* =0 and 8* = (1 —r.)" as Appi(re) =1+ (Ls — 1)(1 — 1)t if Ly < 1. If
L, > 1, then the minimum is achieved by o* = 0 and 8* = 0, and is given by A,p1(re) =
1. On the other hand, A,p2(7.) is minimized by o* = (1—7,)" and 8* = 1 when L, < 1,
and $* = 0 when Lg > 1. Then we have Appa(r.) = min{L,, 1} + L.(1 — r.)*. The
distortion exponent is found as App(Ls, Le) = min,. {App1(re), App2(re) . The optimal

distortion exponent without binning is achieved by setting

L.
=1L, 4z, o lesth and re=tforLo>1.

Tc

C.4.3 Joint Decoding Scheme (JDS)

Here, we consider the distortion exponent for JDS. Applying the change of variables,
Hy=p=4,To=pP and Rjq = Zelogp for r, > 0, form (4.11) we have

pr(h)pr(v) / pu (h)pr(v)
EDj(Rjq) = | 2PV hdy [ PEEUPTYY
i (Rja) /O; 92(Rya—0) +,ydhd’y " 14 dhdry

- pa(a)ps(B) pA(a)pB )
- /A praxtra-g)y 0 [T sy dadp,

J

c
J

where we define the outage event in the high SNR regime as
Aj 2 {(,B): (rja—(1-8)")" =1 -a)"}.
The distortion exponent for each term is found applying Varadhan’s Lemma as

Aji(rja) = ij‘qumax{rjd, (1=8)"}+ Sale) + Ss(B),

J

and
Ajo(rja) = {alf(l — B)" + Sale) + Sp(B).

First we note that in both Aji(rjq) and Ajs(rjq) we can restrict to 0 < o, 8 < 1
without loss of optimality since Sa(a) = Leav and Sg(8) = LS. Now we solve Aj1(75q4).
If rjg <1— 74, we have A; = {(a,8) : (1 — )" > 0,7j¢ < 1— 5} and it is easily seen
that @* = 0. Then if Ly > 1, we have * =0 and Ajy(r;jq) =1 for rjq < 1. If L, < 1,
then 8* = (1 — ;)" and Ajy(rja) =1+ (Ls — 1) (1 —rjq) " for rjqg < 1. If rjg > 1 -8,
we have

Ajl(rjd) = 0<ian£<1 Tjd + LCOé + Lsﬁ

P>

st.a+p8<2—-r54, B>1-r1jq. (C.25)
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The minimum is achieved by a* = 0 and 8* = (1 — rjq)" if 7j4 < 2 and is given by
Aji(rja) = rja + Ls(1 — rjq)" and has no feasible solutions if rj4 > 2. Then, the

exponent Aji(r;q) is given by the minimum of these solutions, given by

1+ (Ls — 1)+(1 — Tjd) if 0 <rjq <1,

Aji(rja) = (C.26)

Tjd if 1< Tjd < 2,

where we have used that for Ly < 1and 0 < rjq <1, we have rjg+Ls(1—7;4)t = 14+(1—
L)t (1—7rjq)", and for Ly > 1 and 0 < rjq < 1, we have min{r;q+ Ls(1—7;q)", 1} = 1.
Now, we solve Ajo(rjq). If r; <1 — 3, the problem has no feasible solution due to

the constraints. If 7; > 1 — 3, we have

Ajg(’l"jd) = 1nf 1 + (LS — 1)6 + LcOé

0<a,8<1
st.a+p8>2— Tid, B>1-— Tid- (027)

The minimum is achieved by o* = (2—rjq—/8)", which satisfies «* < 1 due to 8 > 1—rjq.
Then, if 8 > 2 — ;4 and Ly > 1, we have 8* = (2 —rj4)" for rj4 > 1 and the minimum
is given by Ajo(rjq) =1+ (Ls—1)(2—7rjq)T. f § > 2—rjqg and Ly < 1 we have f* =1
and Ajo(rjq) = Ls forrjg > 1. If § < 2—rjq and Ly > 1+ L., the minimum is achieved
by * = (1 —rja)t ifrjg <2and Ajo(rja) =1+ (Ls —1—Lo)(1 —7ja) T + Le(2 — 754).
If Ly < 1+ L, the solution is found as Ajo(7jq4) = Ls+ Le(1 —1jq) if rjqg < 1 for g* =1
and by Ajo(rjq) =1+ (Ls —1)(2—rjq) if rjg > 1 for f = (2 —1r;q)" — 0, for arbitrarily
small 6 > 0.

Finally, Ajs(r;q) is found by the minimum of these solutions in each regime. If

0 <rjq <1, we have

Lg+ Lo(1—1jq) if Ly < L.+1,
Aja(rja) = ! (C.28)
1+ Lc+(Ls—1)(1—rjq) if Ly > L.+ 1.
If 1 <7jq <2, we have
Ls if LS < 1,
Aja(rja) = (C.29)

1+ min{L., Ls —1}(2 —rjq)" if Ly > 1,

where for the case Ly < 1 we have that Ly < Ly + L.(1 — rjq), and in the case Ly > 1,
we have that 1+ L.(2 —1;q) < 14 (Ls —1)(2 —r;q) for Ly > 1+ L. Finally, for r;q > 2
we have Ajo(rjq) = min{1, L}.

The distortion exponent can be maximized over rjq. If Ly < 1, the maximum is

found by using a rate 0 < r;4 < 1 and equating Ajq(rjq) = 1+ (Ls — 1)(1 — rjq) and
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Ajo(rja) = Ls + Lo(1 — rjq). The optimal rate is found as i = 1+LL77L < 1. If

1< Lg < L.+ 1, the maximum distortion exponent is found with a rate 1 < r;q < 2
such that Aj1(rjq) = rjq and Ajo(rjq) = 1+ (Ls — 1)(2 — 7jq) are equal, given by
Tig = 2— % Finally, if Ly > L. + 1, the distortion exponent is maximized when
1 <rjq < 2. By equaling Aji(rjq) = rjq and Aja(rjq) =1+ Lc(2 — rjq), the distortion

‘e . . x Lc
exponent is maximized by rig =1+ T

C.4.4 Superposed Hybrid Digital-Analog Transmission (SHDA)

The performance of the SHDA scheme in Section 3.3.6 can be optimized over Py, P,
and n?. From the distortion exponent perspective, we have observed that it suffices to
allocate all the power to the digital component, which reduces SHDA to HDA. Therefore,
we let P; =1, P, = 0. Applying the change of variables, we have from (3.30)-(3.32),

EDshda(]-v 77) = EOh [D;)Lut(na 1)] + -E(’),CL [Dh(% 1)}

pu(h)pr(v) / pu(h)pr(v)
= —————~dhdy + dhdry
/Oh 147y o: 1+y+n*(1+h)

pa(a)ps(B) / pa(a)ps(B)
= —————dadf+ dadp,
/Ah(ﬂ) L+pt=? A (p) L PP 2 (14 plme)

where Oy, in (3.28) is found, in terms of o and § as

An(o) 2 {0 8) s Lo ) < P

In the high SNR regime, we let n? = p™, for r, € R ,and the outage event Ay (p) is

equivalent to

A2 {(a,8): (1= 8" —(a-1)" <r}. (C.30)
Then, we have
EDshda(laprh) (031)
:/A p_(1—5)+pA(a)pB<ﬁ)dad6 + /‘AC o Inax{(l_ﬁ)+’(1_a)++rh}p,4(a)pg(ﬁ)dadﬁ.

Using Varadhan’s Lemma, the distortion exponent for the first integral in (C.31) is

found as

Ana(ra) £ inf(1 = B) + Sa() +S5(5).
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and for the second integral as
Apa(rp) £ lffllf max{(1—B)*, (1 —a)* +rn} + Sa(a) + Sp(A).
h
The distortion exponent for HDA can be optimized over the parameter r, as

Ahda(LS,Lc) = mgﬁmin{Ahl(rh),Ahg(m)}. (032)
Th
First, we obtain the achievable distortion exponent when rp < 0. To solve Ay (1),

note that if 0 < o < 1, there are no feasible solutions. Then, for a > 1, we have

Api(rp) £ a>ifl£>0(1 —B)T + Lea+ Ly

st.a> (1= +1—r, (C.33)

We can constrain the optimization to 0 < 8 < 1 without loss of optimality, and the
minimum is achieved by a* =2 - —ry,. If Ly > 1+ L., the minimum is achieved by
B* =0, and is given by Ap1(rn) =14 Le(2 — rp). On the other hand, if Ly < 1+ L.,
B* =1, and Ap1(rp) = Ls + Le(1 — ). Putting all together, we have Apq(ry) =
min{Ls, 1+ L.} + L.(1 — 7p).

Now, we solve Apa(rp). Without loss of optimality, we can assume 0 < o, 8 < 1, as
otherwise the feasible grows and a > 1 or § > 1 can only increase the objective function.

Then, the constraint is always satisfied, since 1 — 8 > rp, for any 0 < 5 < 1. We have

Apa(ry) = Oérg%xgl{l —B,1—a+r,}+ LS+ Lea. (C.34)
If1—-—p8>1—-a+ r,, the minimum is achieved by a* = 8* = 0 when L, > 1 and
Apo(rp)=1. ULy <1, =a—r,ifa—r, <1,and o* =0 when Ly + L. > 1
and we have Apa(rp) =1 — (Ls — 1)rp. When Ly + L. < 1, we have a* = 1+ r, and
Apa(rn) = Ls + Le(1 4+ 1), —1 <7, < 0 and, when o > 1 + rp, we have f* = 1 and
Apa(rp) = Ls+ Le(1+7p)T. If 1 — 8 < 1 -+, we have 3* = o + §, which has to
satisfy g* <1, i.e., it is feasible whenever a < 1+ rp,. Then, a* =0 if Ly + L. > 1 and
the minimum is given by Apa(rp) =1 —rp(Ls—1). If Ly+ L. < 1, we have o* = 1+ 1y,
and Apa(ry) = Ls+ L.(1+1ry), for r, > —1. Putting all together, we have Apa(rp,) =1
when Ly > 1 and Apa(rp) = min{l — (Ls — 1)rp, Ls + Le(1+7p)} for Ly < 1.

If Ly <1, we have Apy1(rn) > Apa(rn), and the distortion exponent is maximized
by letting r, — 0 and we get Apga(Ls,Le) = min{Ls + L.,1}. If Ly > 1, we have
Apdga(Lg, L) = 1 for any r, < 0.

In the following, we derive the distortion exponent achievable by SHDA when r;, > 0.
First, we solve Ap1(ry). We can limit the optimization to 0 < § < 1 without loss of
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optimality. Then, for 0 < a < 1 the minimum is achieved by a* = 0, and if Ly > 1, the
minimum is achieved by 8* = (1 —rp)" and Api(rp) = 1+ (Ls — 1)(1 — 7)™, and if
Ly <1, 8*=1and Apy(rn) = Ls. If @ > 1, the constraint becomes o > 2 — 3 —ry,, and
the minimizing « is given by o™ = 2 — 3 —rj,, which is feasible provided that § < 1—r,.

Then, we have
A = inf 1+(Ls—1—1L L.(2—
1 (rn) odnf 1+ (Ls )B+ Le(2—13)
s.t. B<1—rp. (C.35)

If Ly > 14 L., we have 8* = 0 and Ap(rp) = 1+ Lo(2 — rp) for r, < 1, and if
Lys <14 L., we have 8* =1—rp, and Api(rp) =1+ Lo+ (Ls — 1)(1 — rp,). Putting all
together, Ap1(ry,) is found as

L, if Ly <1,

Api(ry) = C.
) L4 (L= 1)(1 = ra)* if L, > 1. (€59

Next, we solve Apa(ry). First, we note that we can constrain to 0 < 8 < 1, since
the optimization set is empty if 8 > 1. Similarly, we assume 0 < a < 1, since any o > 1

achieves a larger exponent. Then,

Apa(ry) = 0<(i]n£<lmax{1 -8, 1—a+rm}+ L+ L

st. B<1—ryp. (C.37)

If1—-08>1—a+r,, we have a* = § 4 rp, which satisfies a* < 1 since 8 < 1 — 7.
Then, f* =0if Ly+ L. > 1 and Apa(rp) = 1+ Lerp, and if Ly+ L. <1, 8* =1—1rp —¢
for an arbitrarily € > 0 and the infimum is found as Apa(rp) =1+ Lo+ (Ls — 1)(1 — 1)
forr, < 1. If 1 = B <1 —a+rp, the infimum is given by 8* = (o — 7). If @ > r and
L+ L. > 1, the minimum is found as a* = rp, and Apa(ry) = 1+ rp L., while a* = 1 if
L+ L. <1,and Apo(ry) =14+ Lo+ (Ls—1)(1—rp). Ha < rp, wehave o* = 0if L, > 1
and Apa(rp) =141, and if L. < 1, we have a* = rj, + € for an arbitrarily small € > 0
and Apa(ry) = 1+ rpL.. Putting all together, we have Apa(r,) = 1 4 min{l, L.}r, for
rp < 1.

We optimize over 1, to solve (C.32). For L, < 1, we have Ap1 (1)) < Apa(rp) for any
rp, > 0 and Apgq(Ls, L.) = L. Then, the achievable distortion exponent is maximized,
by using rp, < 0 and rp, — 0, for which we obtain Apgq(Ls, Le) = min{Ls; + L., 1}. On
the contrary, when Ly > 1, the distortion exponent is maximized for an r, > 0 such
that Ap1(rp) = Apa(ry), e,

(Ls — 1)

TR = LS 1 min{17 Lc} (C38)

Putting all together we obtain the achievable distortion exponent in (3.44).
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Proofs for Chapter 4

D.1 Proof of Theorem 6

The exponential integral can be bounded as follows [95, p.229, 5.1.20]:

1 2 1
iln <1+t> <e'Ey(t) <In <1+t>, t>0. (D.1)
Then, EDJ; in (4.6) is lower bounded by
EDy > [ w1y 2 H)dH D.2
pi = Hﬂ n + W ph( ) . ( . )

Consider the change of variables A\; = p~%, with a3 > ... > ap;, > 0. The joint
probability density function (pdf) of & £ [y, ..., apz,] is given by [73]:

M, M,
pale) = Kyl o, (log p)™ T oMMt T (0% = p%)? | exp (—Z p“")(D-?»)
i=1 i<j i=1

where K 1;11, r, 1s a normalizing constant.
We define the high SNR exponent of pa(a) as Sa(e), that is, we have pa(a) =

p~54(@) where

S (20— 1+ M* = Mooy if a, >0,

Sa(a)2 (D.4)

00 otherwise.

Following [73], the capacity of the MIMO channel is upper bounded as

CH)=  sup  logdet (I + ]\ZHCIHH) < log det (1 + pHHH) ,
C,:Tr{C,} <M, t

148
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where the inequality follows from the fact that M, I — C, = 0 subject to the power
constraint Tr{C,} < M;, and the function logdet(-) is nondecreasing on the cone of

positive semidefinite Hermitian matrices. Then, from (D.2) we have

1 2ps
ED*iz/ —In(l+—""" | p,(H)dH
P Ju 20 ( I <1+pAi>”> L

B /a 228 In (1 + f(@)) pa(a)da

> [ 5+ f@)patalia (D.5)

1 flo
> /a+ 20 Tf(a)pA(a)da’ (D.6)

where we define f(a) 2 2p, Hiﬂi"l (1+ pl_ai)_b and

1 flo

Gl % 30, T flay

A

and the set a™ £ {a € RM : 1 > a; > ... > ayp, > 0} in (D.5). Inequality (D.6)
follows from the lower bound In(1 +t) > 5, for t > —1.
Then, in the high SNR regime we have,

b T (1ot

log p=* £ s -
1 w—b 30 (et
Gle) & Tim 128G _ Ltp :
p—oo  logp p—00 log p
—x it 2> b3 M (1—a;)t,

_bzij\i*1(1 - ai)-&- if x < bzi\i*lﬂ _ Oéi)+7

where we have used the exponential equalities 1 + p' = = p(l_("i)+, and ps = p”~.

Therefore, for sufficiently large p, we have
log G,(ax)
ED; 2/ exp (plog pala)da
iz oz p p | pala)
= / exp (G(a)log p) pa(a)dex.
ot
log ED};

log p
formed encoder is upper bounded by

Defining Ay, (b,z) = —lim, o0 , the distortion exponent of the partially in-

AZ;(b,z) < lim

p—oo log p log /Q‘+ exp (G(a)log p) pa(a)da.

From Varadhan’s lemma [94], it follows that the distortion exponent of EDg; is upper
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bounded by the solution to the following optimization problem,
Ayp(b,z) & inf[—G(a) + Sa(a)]. (D.7)

In order to solve (D 7) we divide the optimization into two subproblems: the case when
x < bz 1 (1 — ;), and the case when z > bz (1 — ;). The solution is then given
by the minimum of the solutions of these subproblems.

If x > bzij\i"l(l — «;), the problem in (D.7) reduces to

M., M.,
AL (b,z) = x+gl+f2(2¢ —1+M* =M, st > (1-a) <
i=1 =1

(D.8)

@\H

The part inside the optimization in 8) can be identified with the DMT problem in

(D.
% Next, we give an explicit solution for complete-

(4.1) for a multiplexing gain of r =
ness.
First, if bM, < x, the infimum is given by Al p(bz) = x for @ = 0. Then, for

k<i<k+1 fork=0,..,M.—1,ie. < b < %, the infimum is achieved by

iy
1 fori=1,.,M,—k—1,
o =qk+1-% i=DM, —k,
0 fori=M,—-k+1,...,M,.

Substituting, we have, for kK =0, ..., M, — 1,
1 _ _ T « (L
AL (b,z) =z + @y Tk(b k) z+d (b)

where @5 and T, are defined as in (4.3).
Now we solve the second subproblem with x < bziﬂi*l(l —q;). Since 1 > a1 > ... >

apg, > 0 we can write (D.7) as
M. .
AL (b,) = inf bM, — Zozlqzﬁ s.t. Zai <M. -7, (D.9)

where we define ¢(i) = [b— (2i — 1 + M* — M,)]. Note that ¢(1) > --- > ¢(M,).

First, we note that for bM, < x there are no feasible solutions due to the constraint
n (D.9).

Now, we consider the case x < M,(1 + M* — M,). If ML <b<1l+M*—- M,
all the terms ¢(i) multiplying «;’s are negative, and, thus, the infimum is achieved by
a* =0, and is given by Aip(b,x) =bM,. If 1+ M*— M, <b< 3+ M*— M,, then
¢(1) multiplying oy is positive, while the other ¢(i) terms are negative. Then af =0
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for i = 2,..., M,. From (D.9) we have a1 < M, — 7. If b > ﬁ, the right hand side

(r.h.s.) of (D.9) is greater than one, and smaller otherwise. Then, we have

1 ifb> A~
ay = . M. -1
M*—% 1fb<Mf_1.

Note that aj > 0 since b > ML

When 2k — 14+ M* — M, <b<2k+1+M*— M, for k = 2,...,M, — 1, the
coefficients ¢(i), ¢ = 1, ..., k, associated with the first k& «; terms are positive, while the
others remain negative. Then,

af =0, fori=k+1,..,M,. (D.10)

Since ¢(i), i = 1,...,k, are positive and ¢(1) > --- > ¢(k), we have of = 1 for
i=1,..,k—1, and the constraint becomes ay < M, — (k —1) — . If b > 3%, then
the r.h.s. is greater than one, and smaller otherwise. In order for the solution to be
feasible, we need M, — (k —1) — ¥ > 0. Then we have

1 ifb> A2,
of = - Mok (D.11)
M. —(k=1)—§ if == <b< 5~

Ifb < m, the solution in (D.11) is not feasible. Instead, we have af = 0,
since ¢p(k) < ¢p(k—1), af =0fori =k+1,...M,,and af =1, for i = 1,...,k — 2.
Then, the constraint in (D.9) is given by a1 < M, — (k—2) — £. Since b < TG
the r.h.s. is always smaller than one, and for the existence of a feasible solution, it is

required to be greater than zero. Then, we have

x . x x
if —— = <b<

In general, iterating this procedure, for

T T
7§b< ) jzla'aka
M, —(j—1) M. —j
we have
1 fori=1,...,5—1,
=M, —(j—1)—% fori=yj, (D.12)

0 fori=j5+1,..., M,.

Note that for the case j = 1, we have oy = M, — ¥, which is always feasible.
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We now evaluate (D.9) with the optimal a* for 2k — 1+ M* — M, < b < 2k +

1+ M*—M,, k=2,...M, —1. For b > ﬁ, we have a; = --+ = o = 1 and
Qg1 = -+ = aypy, = 0 and then
M.
A2, (b,x) =Y min{b, 2 — 1+ M* — M.} = Ayuwo ().
i=1
For ;- <b < 575, substituting (D.12) into (D.9) we have
Aip(b,x):x+(M*—M*—1+j)(j—1)+(M*—(j—l)—%) (2j — 1+ M* — M,),
for
x x
— <b< -, j=1,..,k.
M, — (] - 1) M, —j

Note that with the change of index j = M, — j/, we have, after some manipulation,

* - 3 x -/ * -
AZ, (b a) =2+ (M* =) (M. = ) = (T =) (M + M. =27 — 1),

in the regime

x .

This is equivalent to the value of the DMT curve in (4.2) at multiplexing gain r = .

T X
Then, for /- < b < 375 we have

A2 (byx) =z +d* (%) .

If b > M* + M, — 1, the infimum is achieved by of =1, fori =1,..., M, — 1, and
ay, =1—Fifb >z If b <, this solution is not feasible, and the solution is given by
(D.12). Therefore, in this regime we also have

T
A%, (ba) =z +d (7))

Putting all these results together, for x < M, (M*—M,+1) and 2k — 14+ M* — M, <
b<2k+1+M*—M,, for k=1,.., M, — 1, we have

bM, forMi*§b<M*fM*+l,
5 a:—i—d*(%) f01rM*—M,.<—&—1§b<ﬁ7
Aup(xab):
AMIMO(b) for M*z—k: <b< M*+ M, — 1,

z+d () forb>M*+ M, —1.
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Now, we solve (D.9) for M,(M* — M, +1) <z < M, (M*+ M, —1). Let 2(1 - 1) —
1+M*— M, < Mi <2l -1+ M* — M,, for some [ = 2, ..., M. The first interval of b
in which a feasible solution exists is given by 7/~ < b <2l -1+ M* — M, + 1. From the
sign of the coeflicients ¢(i) in this interval we have o = 0 for i = (I + 1), ..., M., and
aj =1fori=1,...,[— 1. Substituting, the constraint becomes a; < M, — (I — 1) — 7.
Ifo> ﬁ the r.h.s. is larger than one, and of = 1. On the contrary, if b < ﬁ, it
is given by of = M, — (1 —1) - §if b > ﬁ(l_l), so that the r.h.s. of the constraint is
larger than zero, and the solution is found following the techniques that lead to (D.12).

The problem is now solved as for the case © < M,(M* — M, + 1) in each interval
2k —14+M*— M, <b<2k+1)—1+M*— M, with k =1,..., M, — 1 instead of
k=1,..., M, — 1 and, thus, we omit the explicit resolution.

Putting all together, if x satisfies 2(l —1) — 1+ M* — M, < ﬁ <2l—1+ M*—M,,
=2, .M, for2k—1+M*"—M, <b<2k+1+M*—M,, for k=1,..., M,—1, we have

r +d* (%) for ML <b< 7M*‘T_k,
Aip(x,b) = 9 Avmo(b) for T SO< M+ M, -1,
:c—i—d*(%) for b> M*+ M, — 1.

=

Finally, the case x > M,(M* 4+ M, — 1) can be solved as before. Notice that if
aj = 1,4 =1,.., M, — 1 we have the constraint ap;, <1 — %, that is, we never have

the case o, = 1. Then, the optimal o are given as in (D.12), and we have

<b.

Aip(x, b) =z +d" (%) for

x
M,

Now, Ayp(b,x) is given by the minimum of A} (b,z) and AZ (b,z). First, we
note that Agy,,(b, ) has no feasible solution for bM, < z, and we have A,,(b,z) =
Al (b,x) = z in this region. For bM, > x, both solutions Al (b, z) and A2 (b, z) coin-
cide except in the range 7= < b < M* + M, — 1. We note that A}, (b,z) in (D.8) is
linear and increasing in o, and hence, the solution is such that the constraint is satisfied
with equality, i.e., z = Zf\il b(1—a;). That is, A% (b,x) < Al (b, x) whenever both so-
lutions exist in the same a region. Then, the minimizing a will be one such that either
A}, (b,x) < AZ (b, x), or the one arbitrarily close to the boundary x = b Z?i*l(l —ao;)T,
where A} (b,z) = A2 (b,x). Consequently, min{A} (b,z),A} (b,x)} = Al (b,z),

whenever they are defined in the same region. Putting all the results together we com-

plete the proof.
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D.2 Proof of Theorem 7

To derive the distortion exponent of SSCC we first study the exponential behavior of
Er[D4(R,T)] in (4.9). We consider the change of variables v = p~#, with pdf pg(3)
given as in (D.3) and Sg(8) = g, for 8 > 0, and R = rlogp. Then,

Er[Da(R,T)] = / (7)dy = / exp(log(p** + p*") " )pi(B)db.

Yo + 228"

In the high SNR regime, we have

M — maxq(xr— + T

Be[Da(rlog p 1)) = [ p =" 2y 5)ap,
R

where we have used (14 p® 8+ p2r)~1 = p=max{(@=8)".2r}  Applyving Varadhan’s lemma

we have
Er[Dy(R,T)] = ﬁir}l{i max{(z — 8)T, 2r}+3 = max{z, 2r}.
€
For a family of codes with rate gRC = grc log p, (4.9) is exponentially equivalent to

ED,(brlog p) = (1 — Po(H))Ec[Da(bre/2log p,T)] + Po(H)Er[Da(0, T)]

_ pfd*(ru))pf max{z,br.} +P7d*(TC)P7I

(
(

= p max{z,br.} + p—(d*(Tc)""w)
p— min{max{z,br.},d*(r.)+z}

9

where we have used that the outage probability is exponentially equivalent to the prob-
ability of error [73], i.e., P,(H) = p=% (") "and d*(r.) is the DMT curve in (4.2).
The best distortion exponent achievable by SSCC, A (b, x), is found by maximizing

over r. as follows
Ag(b,z) = mg}é{min{max{x, bret,x +d*(re)}} (D.13)

The maximum achieved when the two terms inside min{-} are equal, i.e., max{br.,z} =
x+d*(r.). We chose a rate 7. such that br. > x and r. < M,, as otherwise, the solution
is readily given by Ag(b, z) = x. Note that for bM, < z this is never feasible, and thus,
Ag(b,z) = x, and if @ > bd*(M,), the intersection is always at br. = x. Assuming
E<r.<k+1, k=0,..,M,—1, the optimal r. satisfies at « + br. = d*(r.), or,
equivalently, br. = x + @ — (r. — k) Tk, and we have

. QL+ kY +x

. O+ KT+
€ YT+ ’

As(byx)=bri =0 T, 10
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Since solution 7} is feasible whenever k£ < r} < k + 1, this solution is defined in

(I>k+1+l‘ P+
E+1 7k

) , fork=0,..,M, —1, (D.14)

where we have used @41 = @ — T(. Notice also that, we also need br) < z, which
holds whenever Ag(b,2) < z in (D.14). Under these conditions, we have Ag(b, z) = x.
Remember that for bM, < x we also have A4(b, z) = . Gathering all results completes
the proof of Theorem 7.

D.3 Proof for distortion exponent for JDS

In this section we derive the distortion exponent of JDS, and show that it coincides
with the distortion exponent of SSCC. Applying the change of variables A\; = p~%¢ and
v = p~#, and considering a rate R; =rjlogp, rj > 0, the outage event in (4.10) can be

written as

2- pbrji
O, =<H,y): 1+ ——— > |1+ p\)
i {( ) o] H p }

= 01 27cptrs — 1 (1 aib
= (@) 1+ 25 ﬁ>+1—H +0' :

For large p, we have

27 pbTi 1 vt
1+ PP 1 - 1+ plrip=(® A = ri—(@=B) )T b3 (1—ai) T
[5G+ pEmmes =

Therefore, at high SNR, the achievable expected end-to-end distortion for JDS is

found as,
ED;(brjlog p) = / Dy(brj/2log p, p~ 7 )pa(e)pp(B)dads
o7

+ / Da(0, p~)pa()ps(B)dadp
O;

= / - max{(@=A) by} = (S@)+6) gy 3

n / =B ;=58 jaap.
A

- p—A;(Tj) + p—A?(Tj)
=p min{Aj(r;),A5(r;)}

= p~Ri(rs) (D.15)
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where Dy(R,~) is as defined in (4.8), and we have used Dg(rlog p, 8) = p~max{(@=5)".2r}
We have also defined the high SNR equivalent of the outage event as

M,
A & {(a,ﬁ) D(bry = (x =BT > bZ(l — ai)+} .
i=1
We have applied Varadhan’s lemma to each integral to obtain
Al(ry) Zinf max{(z — )", brj}+ 5 + Sa(e), (D.16)

and
A3 (r)) éi}f(»@—ﬁfr + B+ Salc). (D.17)

Then, the distortion exponent of JDS is found as
Aj(ry) = min{A; (r5), A?(rj)}. (D.18)

We first solve (D.16). We can constrain the optimization to a > 0 and 8 > 0 without
loss of optimality, since for o, 8 < 0 we have Sa(a) = Sp(8) = +oc. Then, Al(r;)
is minimized by a* = 0 since this minimizes Sa(c) and enlarges Aj. We can rewrite
(D.16)

A;(rj) = ér;fo max{(z — B)",br;} + 3 st. (br; — (x — B)T)" < bM,.

If brj < (x — )™, the minimum is achieved by any 0< B <z — r;b, and thus Aj(r;) =z
for z > brj. If br; > (x — B)T, then

Ajlry) = infbrj+ 8 st by —bM. < (v = Bt < br;. (D.19)

If 8 > «, the problem is minimized by 8* = z +¢€, € > 0, and Aj(r;) = brj +x + ¢,
for rj < M. For 0 < 8 < x, we have 8* = (x — r;b)", and Aj(r;) = max{br;, z} if
br; < bM, + x. Putting all these together, we obtain

Al(r;) = max{br;, z} if brj <z + bM,. (D.20)

If br; >z + bM,, Aj is empty, and there is always outage.
Next we solve the second optimization problem in (D.17). With § = z, A%(r;) is

minimized and the range of « is enlarged. Then, the problem to solve reduces to

S

A3(r;) =infz + S(c) stor; >y (1—ay)t,

i=1
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which is the DMT problem in (D.8), and Ay;(r;,b) = 4+ d*(r;). Bringing all together,
Aj(b,z) = H_lg)g{min{max{x, brit,x+d*(r;)}} (D.21)

Since d*(r;) = 0 for r; > M., the constraint in (D.21) can be reduced to 0 < r; < M,
without loss of optimality since Aj(b,xz) = x for any r; > M,. Then, (D.21) coincides
with (D.13), and thus, SSCC and JDS achieve the same distortion exponent.

D.4 Proof Of Distortion Exponent for HDA-WZ

In this Appendix we derive the outage region Oy, in (4.14) and the distortion in (4.15).
Then, using these we obtain the distortion exponent achievable by HDA-WZ.

D.4.1 Owutage region for HDA-WZ

From joint typicality arguments similarly to [34], the decoding of W2 s successful
with high probability if

I(WFE; §m) < %Rh < (W= Un= o Y T™). (D.22)

For the r.h.s. of (D.22) we have

3

2 M«
I(Wzit s §™) = Z I(W;;S;) =
i=1

2|

m
2M,

I(W;S) = mI(W;8) < %Rh, (D.23)

due to the i.i.d. distribution of the source, Q; and X;. Note that the Lh.s. of (D.22)
always holds since Ry, is chosen such that % =I(W;S) +e.
The r.h.s. of the decoding condition (D.22) is given by
ﬁ n
(W2 U2 Yy ) @ Z I(Wi; Yw,T;) + Z (Ui Yy,)
i=1 =g +1
m

2M.,

m
I(W; Y T)+ <n T

*

) I(U;Yy), (D.24)

where (a) follows from the i.i.d. distribution of the implied variables.

Substituting (D.23) and (D.24) into (D.22) and dividing both sides by m/2M.,, the
outage condition in (4.14) follows.

Next, we evaluate the outage region in (4.14) for Gaussian codewords. We have
I(W;YwT) = HYwT) - HYwWT) + HW). Let G & [W, Yy, T]?. Since G

is a complex multivariate Gaussian random vector, its differential entropy is given by
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H(G) = log((2me)*M+ det(Cqg)), where Cq = E[GG*] is given by
I+ UéI \/aUéHH Y/Ps1
Cc = |VaociH I+ackHHY 0 |,
Y/ PsI 0 €I

with a £ p/M; and ¢ £ 1+ pyy. By using properties of the determinant of a block
matrix and some algebra, we have

M, p
_ 2 H 27\ _ 2
det(Cg) = det (I +acpHHY + faQI) = H (1 + &0 + M/\i) :

=1

Similarly, we have

H(YwT) = log ((271'6)2M*§M* det (I + ]\ZHHH)> ,
H(W) = log((2me) (1 +03)""),

I(Yy;U) = log (det (I n ]\ZHHT>> .

*

Substituting in (4.13) we have the outage region (4.14) .
D.4.2 Expected distortion achieved by HDA-WZ

We use a MMSE estimator to reconstruct each source block S;, i =1, ..., 57, with the

available information, which can be modeled by the linear model as follows:

T; 1 Z;

H H
Let B £ {I 0 'yI} and S; £ |Q; aHQ; +N; Zl} . Then, the distortion for
each source block is found to be given by Tr{D} = ﬁ Zi\il Tr[I+BCsBf |71, where

D is the distortion matrix in the reconstruction of each block, and

I VaH? 0
Cs £ E[S;S{"] = |V/oH ac HH? +1 0
0 0 I

Using the block inverse properties,the singular value decomposition of H we obtain the
expected distortion expression in (4.15).

D.4.3 Distortion exponent achieved by HDA-WZ

In this section we derive the distortion exponent for HDA-WZ. The outage region in
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(4.14) is given by

- bM.,
Oh:{(HW)(ng) > (((1+ p) (1 + o)™ — L1, (1+ 50 >}
7Q

[L2 (I + A+ (1 + psy)od)

Similar to the analysis for the other schemes, we consider the change of variables
N =p~ %, and v = p~?, and a rate R, = 3, log p, for r;, > 0. Then, we start by finding
the equivalent outage set in the high SNR regime. We have,

M, p bM. EZW ( )+
A = WM. M (-
};[1 < T ) p :

and
M., M.,
(1 + —A +(1+ psv)aé) = H (L+p"% + (1+p" P)p~™)
=1 =1
= piima{(1—a) T @=f)F —rn},

where we use 03 = (2fr 7<= 1)~ = (279%™ — 1)~ = p="». From the outage condition

n (D.25), we have

M, M,
(1 + %) Hi:l(l + ML*)\Z + (1 + ps’y)aé) ) pM*’rhpii*l max{(1—a)",(z—B) =}
(14 o) (1 o) TLL (L g7 )M pMeamd) b i (et

S (rn— (2= )+ (=)t —bM, S (1—a)

=p
Therefore, in the high SNR regime, the set O}, is equivalent to the set given by

M. M.,
A = {(a,ﬁ)+ Y = (@ =BT+ (1 —a)t > MY (1 O‘i)}'

i=1 =1

On the other hand, in the high SNR regime, the distortion achieved by HDA-WZ is

equivalent to

—1
1
Di(03,H,7) = MZ<1+P3'7+ (Hﬁ&))
* Q *
M.,

Z(pr By = m))

=1
—mini—1,....m, {max{(z—B)* ,rp+1-0a;}}

<

~p
=p- max{(z—B)",rn+1—01}

where the last equality follows since oy > ... > apy, > 0. Then, in the high SNR regime,
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the expected distortion for HDA-WZ is given as
EDy(rplogp) = / Dy (03, H,7)pn(H)pr(v)dHdy
o5

+ ; Dg(0,)pn(H)pr(v)dHdy

- / pmmax{@=A) it (0-o0} ) | (@)pps(8)dad

J
—(r—pB)t
[ pa(pa(B)dads.
A;
Similarly to the proof of Theorem 9, applying Varadhan’s lemma, the exponent of

each integral is found as
A} (rp) = iAn]cfmax{(x - B+ 1—a1}+ Sala) + 3,
and
Af(rp) = E{‘lhf(x —B)" + Sala) + 5, (D.25)

First we solve A} (r;). The infimum for this problem is achieved by a* = 0 and

B* =0, and is given by
A} (rp) = max{z,r), +1}, for rp, < Myb—1+x.

Now we solve A?(rp,) in (D.25). By letting 8* = z, the range of a is enlarged while the
objective function is minimized. Thus, the problem to solve reduces to
M.

. bM, —1
A}%(Th) =infz 4+ S(a) s.t. T > T Zl(l N ai)"v" (D26)

Again, this problem is a scaled version of the DMT curve in (D.8). Therefore, we have

bM, — 1\
A?(rp) =z +d* ((M) T‘h> .

The distortion exponent is given by optimizing over r, as

Ap(b,z) = maxmin{A} (1), A% (1)}

Th

The maximum distortion exponent is obtained by letting A} (rp) = AZ(ry). We as-

sume 7, + 1 > x since otherwise Ay(b,x) = z, and then, we have r, + 1 = = +
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d* ((b - Mi*)’lrh). Let r}, = ra(b — 5-)~'. Using (4.2), for k < r, < k+1,
k=0,...,M, — 1, the problem is equivalent to 7}, (b - ﬁ) +1=a+ P, — (r, — k)T,
where @ and T}, are given as in (4.3). The r}, satisfying the equality if given by

_q)k+kq)k—1+x
b— 3 + i

/%

Th

and the corresponding distortion exponent is found as

(OM, — 1)(Pp, + kY — 1+ 2)

A =1
h(b7x) + bM*—l-l-M*Tk 3

for

(I)k+1—1+l' 1 (I)k—1+(L'+ 1)

P TR v for k=0,..., M, — 1.

Note that we have rj + 1 > = whenever Ay(b,x) > z. Otherwise, 7 is not feasible
and Ay (b,z) = z. Note also that if x > bM,, the distortion exponent is given by
Ap(byz) = x.

D.5 Distortion exponent achieved by LS-JDS

D.5.1 Successively refinable codebooks

Consider a successively refinable codebook [38] at rate tRy = I(S; W;|W'! 1) +e for each

codebook layer, where t > 0. Then, we have

168 Walwi) & 1(ss W) — 1055wl

© 18, Wr) = 1(S; Wie_y), (D.27)

where (a) is due to the chain rule, and (b) holds form the Markov chain S — W; — Wllfl.
We have

l l
> (tRi—e) = > I(S;Wi[wih)
=1 i=1

l
WSS W) — I(S: W)
=1

= IES§WZ)

1 1
= -1 1+ ———],1=1,..,L
20g<+ZL 02); 3 eeey M

i=l"1

where (a) follows from (D.27) and Wy = () for the case [ = 1. Substituting ¢t = %, i.e.,
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allocating equal channel accesses per layer, equation (4.16) follows.

D.5.2 Distortion exponent achievable by of LS-JDS

In this section we obtain the distortion exponent for LS-JDS. Let us define R} =
22:1 R;. First, we consider the outage event. For the successive refinement codebook
we have that the L.h.s. of (4.17) is given by

1(S;Wiwi=, 1) @ 1(8; WiIT) — 1(S;Wi_i|T)
© HWIT) - H@Q)) - HWi_A|T) + HQ,_,)

L
— Zlog (Zf_z—1 of 1+ (1+7ps) Zj:l 032' )
) L L )
2 i 0f L+ (L+7ps) Z]’:l—l ‘732‘
where Q, £ Zf:l Q1, (a) is due to the Markov chain T'— S — Wi — ... — W1, and (b) is
due to the independence of Q; with S and 7', and H(W,|T) = % log (Zf:l o + 1+}7p5 )
We also have
I(S; W1 |T) 1log 1+ !
’ 1 =3 .
2 (1+7p5) X1y 0
Substituing (4.16) with Ry = 0, we have
1 2551 £ R 4y
1(S: Wi, 7) = L log | 2y 1002
2 9221 T Ri + vps
Then, the outage condition in (4.17) is given by
222:1 %Ri —+ Yp b M. P
log [ L2 " TOPs ) o 2 1 A D.28
Og(gEiiﬁRi +yps) L ogH( +M* ) (D-28)
Therefore, in the high SNR regime, we have, for [ =1,..., L
225’,:1(%1%1'75) —+ YPs ngzl %Ti —+ prﬁ
s = (D.29)

225;}(%121_5) + vps pzi;} Zri + pI*B
i drie@B) 4

)

= ot zri—(@=P) 11
o pEim Erim@=B)*
C (i R =Bt

and

M.
b T p L LS Me(1—an*
Zlog};[1 <1+M*)\i> = pL Zvi=t .
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The outage set (4.17) in the high SNR is equivalent to

b M,
Aéfé{( B p -0

Now, we study the high SNR behavior of the expected distortion. It is not hard to
see that (4.18) is given by

ED;S(R)zzL:EOFH [Dd (;’LR377)] — Egrs [Dd (2bLR )] ., (D.31)

=0

where O £ () and O, | £ RM-T1. For each summing term in (D.31), we have

b
Eoiy {Dd (2LR3’7>} /A pm et B @) p=Sa(@) p=Badp,

where the outage set in the high SNR regime is given by (D.30).
Applying Varadhan’s lemma to (D.32), the exponential behavior for [ = 0,...,L — 1

and I’ = 1,1+ 1, is found as the solution to

AL & inf max{b/ L7, (x — B)T} + Sa(a) + B,

where we define 7 = 22:1 r;. Note that since ri < rp < ... we have A* C A%, and
therefore A'*(1,1) > A*(l,1 + 1). Then, we have from (D.31)

L L
. _Als _Als . _Als
EDls(R):ZP A1) _ =A@ :Zp Al (L1+1).
=0 =0

We define Al(r) £ A'*(1,1 + 1), where r £ [r,...,7;]. The distortion exponent of
LS-JDS is given as follows:

A}, (b, 2) = maxmin A¥(r).

For I=0, i.e., no codeword is successfully decoded, we have

M, +
A¥(r) =inf(z — B)F + B+ Sa(a) .t. 22 (zrl_(m_ﬁ)) )
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The infimum is achieved by 8 = z and using the DMT in (4.1), we have
Al (r) =z +d* (r1).

The distortion exponent for [ layers decoded is found as

Al (r) = inf max{zri, (z — ,8)*} + B+ Sa(a) (D.32)
M, + +
s.t. %Z (1-a)t < (zrlﬁl —(x— B)) - (Zrll —(x— B)) .

If 27} > z, the infimum of (D.32) is obtained for 8* = 0 and
b M.,
Al (r) = inf Zfll + Ss(a) s.t. Z (& — )" <rpg. (D.33)
1

Using the DMT in (4.1), (D.33) is minimized as

b
AP (r) = Efi +d* (rig1).

If 27} <z, we have that the minimum of (D.32) is achieved by 8* = (z — %Fll)Jr if

2l > (2 — B) and is given by

Afs(r) =x+d" (ri41).

If 27l < (2 - B) < %fﬁ“, problem (D.32) is equivalent to
Al (r) = inf(z — B)T + B+ Sa(e) (D.34)
b b *
s.t. 7 i:1(1 o) < <Lrl1+1 (x B)) ,
b_ b _
Erll <(z-p)< Zrllﬂ.

The infimum of (D.34) is achieved by the largest 3, since the range of a increases. Then,

B* = (z— £7t)*, and we have,

A (r) =2+ d" (r4)

Finally, if %Fllﬂ < (z — f3), there are no feasible solutions for (D.32). Therefore,
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putting all together we have
ls : b =l *
A;®(r) = inf max T +d*(ri41).
Similarly, at layer L, the infimum is achieved by a* = 0 and 8* = 0 and is given by
ls b =L
A7 (r) = max 7T for r, < M,.
Note that the condition on r;, always holds.

D.5.3 Solution of the distortion exponent

Assume that for a given layer [ we have fifl% <xz< Fli% Then, Al¥(r) = 2 + d(r41)
for [ =0,...,l—1. Using the KKT conditions, the maximim distortion exponent is given
when all the distortion exponents are equal.

From Af(r) = ... = Aéil(r) we have r; = ... = r; and thus, 7"{ = Iry. Then, the

exponents are given by

Al (r) =+ d ()

s ! .
A% (r) = bz’l"l +d (’I“[+1)

I Loy .
Al (r) = b+ bZFiLHl +d*(rr)
. I 1_
Al (r) = bzrl + bfr[L+1'

Equaling all these exponents, we have

b7y, = d*(rp)

1
d(?“L) +bZTL_1 = d*(T‘L_l)

1
bzm+1 +d*(ri42) = d*(ri41)

l
bfrl +d*(ri41) = x +d*(r1).

Next, we adapt Lemma 3 in [15] to our setup. Let ¢ be a line with equation y =
—a(t — M) for some o > 0 and M > 0 and let ¢; = 1, ..., L be the set of lines defined
recursively from L to 1 as y = (b/L)t + d; 41, where b > 0, dr4+1 = 0 and d; is the y
component of the intersection of ¢; with q. Then, sequentially solving the intersection
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points for i = [+ 1, ..., L we have:

b o L—i+1
i —dig =M~ [ ———— .
¢ — div1 L(a+b/L>

Summing all the terms for i = [+ 1, ..., L we obtain

4 Mo ll . (afb/L)] |

In the following we consider a continuum of layers, i.e., L — co. We let [ = kL be
the numbers of layers needed so that b[/Lrl = bkry = z, that is, from [ =1 to [ = kL.
When M, =1, the DMT curve is composed of a single line with « = M* and M = 1.

In that case we have that, with layers from <L + 1 to L the distortion increases up to

d(rpes1) = Ma [1 - (afb/Ly(l_ﬁ)] .

In the limit of infinite layers, we obtain
A 4. _b(d=r)
dres1 = lim d(rpey1) = Ma (1 —e " a ) .
L—oo

We still need to determine the distortion achieved due to the climb with layers from
I =1tol = kL by determining r1. Value, 1 is found as the solution to AL (r) = Al*(r),

i.e.,
bery +d*(ri41) =z —a(rn — M), (D.35)
Since x = bkry, then 11 = x/bk and (D.35) is equal to

d*(rip1) = —a ( * M),

v

. M en=T
K= bW<M*>’

where W(z) is the function W of Lambert, which gives the principal solution for w in
z = we™. The distortion exponent in the MISO/SIMO case is then found as

which solves for

Al (byx) =z 4+ M* (1 et >>.

For MIMO channels, the DMT curve is formed by M, linear intervals k = 1, ..., M,
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between M, — k and M, — k + 1. From the value of the DMT at M % —k to the value
at M, — k + 1, there is a gap of M* — M, + 2k — 1 in the y abscise. The increase in
each curve can be characterized by y = —a(t — M) where for the k-th interval we have
a = ay and M = My, as in (4.19). Note that at t = M, — i + 1 we have y = 0, that is,
each curve is shifted and each interval starts at y = 0.

We consider a continuum of layers, i.e., L — oo and we let | = Lk be the number
of lines required to have bkr; = x. Then, from the remaining lines from [ 4+ 1 to L, let
L(1 — k)k; be the number of lines with slope b/L required to climb all the interval i. So

that the whole interval is climbed with L(1 — k)&, lines we need
dL—L(l—KZ)K)k =M — M, + 2k — 17

where

a L(1—r)kk+1
dL—L(l—K)IQk =Ma|l- (CV‘Fb/L) .

In the limit we have

. _bA—m)my
Lh_{l’;o dL*L(l*Ii)Hk =M« |:1 — € @ i| .

Then, each required proportion is found as

R =

M*—M*+2k—11 M,—-k+1
b(1 — k) M,—-k )’

This gives the proportion of lines required to climb up the k-th segment of the DMT
curve. In the MIMO case, to be able to go up exactly to the k-th segment with lines
from I+1 to L we need to have Zf;ll kj <1< Z?Zl ;. This is equivalent to the
requirement cx—1 < b(1 — k) < ¢, using ¢; as defined in the theorem. To climb up each
line segment we need ki (1—k) L lines (layers) for k = 1, ..., M,—1 and for the last segment

. k—1 . . S
climbed we have (1—3 7" ;)L lines remaining, which gives an extra ascent of
b1—0) (=25 )
Ma|l—e" « .

Then, we have that the distortion exponent has climbed up to

k—1
i1 = (M* = M, +2i— 1)
i=1

j=

b(1-m) (1=K k)
+ My —k+1)(M*—M,+2k—1)|1—e i1 |,
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With the remaining lines, i.e., from | = 1 to [ = kL, the extra climb is given by solving
Al (r) = Al (v), ie.,

x4+ d*(r1) = bery + dpg1,

The DMT curve d*(rq) is given at segment k by
k—1
d*(r1) = —a(ry — M)+ > (M* — M, +2i —1).
i=1

Since we have bkr; = x, then this equation simplifies to

d* (%) =dret1-

. k—1
Therefore, using cx_1 = b(1 — k) >_j—1 K, we solve & from

€T b(l—r)—cp_1
—a(—M)zMa(l—e_ o )
bk

b—cp—1
P e o T
K= bW (Ma ) .

The range of validity for each k is given by cx—1 < b(1 — k) < ¢,. Since for a given

which is given by

¢, the solution to ¢ = b(1 — k*) is found as

b refk-17¢
=~ te

when ¢ = ¢;_1, we have

b> oy = cpg
M T N T T

When ¢ = ¢, since cx—1 — ¢, = aln(M/(M, — k)) we have

b refk—1"Ck T
< ——M + =ci + .
> M Ck = Ck M, — k

Putting all together, we obtain the condition on the theorem and the distortion exponent.

D.6 Distortion exponent achievable by BS-JDS

Here, we derive the distortion exponent for BS-JDS. We consider the usual change of
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variables, \; = p~®¢, and v = p~”. Let r; be the multiplexing gain of the I-th layer and

r £ [ry,...,rz] such that R; = r;log p, and define 7 £ Zi=1 ;.

First, we derive the outage set O at high SNR regime of for each layer, which we

call £;, and is found as

M,

L= {(a,ﬁ) by (61— @) — (G —a)]
i=1

-1

. + +
< (Zbri—(m‘—ﬁ)> - (Zbri—(x—ﬁ)>

For the power allocation p; = p$-1 — p&, we have that the Lh.s. of Olml is then given

as follows

IXpYIXyh) = IXE Y X)) — I(X s YIXT)
det (T+ - HH')

= log o o
det (T+ £ HH)
M E1—1
=1+ PM i
= log -
E 1+ 25N
- pi\iﬁ(fzq—mﬁ—(&—mﬁ. (D.36)

The r.h.s. of the condition in O can be calculated as in (D.29). Then, from (D.36)
and (D.29), £, follows. Since O}”l are mutually exclusive, in the high SNR we have

L l
EDm(R, &) = / Dy (Z b/2R;, 7) pr(H)pr(y)dHdy
=0 Y Ot i=0

L
=y / - max(T_g bri.(2-5) }+6+54(@) g3
L

1=0" Fit1
L

=3y
=0

= p A, (D.37)
where applying Varadhan’s lemma, the exponent for each integral term is given by

AP (r, €) = inf max {brb, (x = B)T} + B+ Sala). (D.38)



Appendix D. Proofs for Chapter 4 170

Then, the distortion exponent is found as

AL (b,2) = nﬁzle}(l)linL {AM(r, )} (D.39)

yeeey

Similarly to the DMT, we consider the successive decoding diversity gain, defined in
[15], as the solution to the probability of outage in the successive decoding at each layer,

given by
M,
das(r1,&-1,&) = glf Sale) st > Z[(&A — ;)" = (& — ;)] (D.40)
i=1

Without loss in generality, consider the multiplexing gain at layer, r;, to be given
by r = k(§—1 — &) + 0; where k € [0,1,..., M, — 1] and 0 < ¢; < &_1 — &. Then, the
infimum for (D.40) is found as

das(r1,&-1,&) = Pu&—1 — Yidy, (D.41)
for
&1, 1<i<M, —k,
Qg = 51_1751, i =M, —k,
0, M, —k<i<M,.

Now, we solve (D.38) using (D.41) for each layer in function of the power allocation
&—1 and & and the rate r;.

When no layer is successfully decoded, i.e., I = 0, we have
A (r,€) = inf(z — B) + 5+ Sa(e)
M,
st b [(&— )T = (& —a)t] < (bry — (x = B))T.

i=1

The infimum is achieved by 8* = = and using (D.40), we have

AGH(r,&) = =+ dgs (11,0, 61) -
At layer [, the distortion exponent is given by the solution to
A (r,¢) = inf max{bit, (z — B)T} + B+ Sa(a)

M,
st by [(gl —a)t = (e — ai)ﬂ <P — 2+ B)T — (bt — a4 B).
1=1
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If bfll > x, the infimum is obtained for 8* = 0 and

M.,

A (r,€) = inf max{bFt, x} + Sa(a) s.t. Z [(fl — o))" = (41 — ai)q < Thg1-

Z‘l

using (D.40) it solves as

A7 (r, &) = max{z,bF} } + das (ri41, &, §41) -

If b7} < 2, the infimum is given by 8* = (x — br!)* and again, we have a version of
(D.40) with the distortion exponent

A;nl(r’ 5) =x+ dds ('rl+17 517 §l+1) .

At layer L, the distortion exponent is the solution to the optimization problem
AT (r,¢) = inf max {bff, (z — B)+} + 08+ Sa(a)
s.t.b fm_l e M (T M N e CRe)) R (e G )
i=1
The infimum is achieved by a* =0 and $* =0 and given by
ATl (r, ) = max {bflL,x} , forrp < M.(§p—1 —&L)-

Note that the condition on r, always holds.
Gathering all results, the exponent distortion problem in (D.39) is found as the
minimum of each layer exponent A}”l(r, &), which can be formulated as

AL (b, 2) = max t
r.g

)

st. t<ax+dsq(r1, &, 61),
t <max{bi\, z} + dsaq (11, &, &)
forl=1...L—1,
t < max{br, z}. (D.42)

If # > brf, then max{x, bt} = x for all I and the minimum exponent is given by
APH(r,€) = x, which implies AL (b, x) = . If 2 < bry, then max{z, b} = b} for all
I. In general, if b7 < o < bF?™', ¢ =0,...,L and 7 £ 0, L1 £ 5o, then (D.42) can be

formulated, using 7, = k(&1 — &) + 6, 6 = [01,--- ,0z] and &, as the following linear
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optimization program:

AL (b,z)= min min —t
’ 1<q<L, 8¢
0<k<M.-1.

st.  t<x+ P&y — Tro,

t§x+¢k§l_’rk6l+1a for lzl?"'aQ7
l

t<bY [k(Gio1 — &) + 6]+ ®p& — Tadpyr, for I=gq,...,L—1,
=1

L
t<bY [k(&io1— &) +6il,
i=1
0<& <&1—-&, for I=1,...,L,
0<&L<..<6 <=1,
l/

> k(&1 — &) + 0] < . (D.43)

=1

The linear program (D.43) can be efficiently solved using numerical methods. In
Figure 4.4, the numerical solution is shown. However, in the following we provide an
analytical result by fixing the multiplexing gains r. We fix the multiplexing gains r; to
7 by fixing 6; £ (§_1 — &) — €1, such that 7 = [(k+ 1)(&_1 — &) — 1], e > 0 for
k=0,...,M, — 1 in the bandwidth regime

o o,
1T Dk +z> . (D.44)

E+1 7k
Note that by fixing 7, the solution might be suboptimal. In fact, single layer JDS

transmission in Section 4.5.2, is excluded from the set of feasible solutions.

Assume bry >x. Then, each distortion exponent is found as

A (r, &) = & + P& — Tibipa,
A (r &) = bt + ®p& — Trbpyq, forl=1,...,L—1,
AT (r, €) = bk (D.45)

Similarly to the other schemes, for which the distortion exponent is maximized by
equaling the exponents, we look for the power allocation £, such that all distortion
exponent terms A™(£,€) in (D.39) are equal.

Equaling all distortion exponents A;”l(f‘,ﬁ) forl =2,..,L —1, ie., Aﬁll(f‘,f) =
ATL(#, ), we have

dsa (71, €121, &) = bry + dsq (P11, &, §141) - (D.46)
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Since 7 = [(k + 1)(&-1 — &) — €1], we have

dsa (71,&1-1,&1) = Pr&—1 — Yi(&i-1 — & —e1).

Substituting in (D.46) we obtain that the power allocations for [ > 2 need to satisfy,

(& = &i1) = me(&-1 — &) + 7(er),

where 7y, is defined in equation (4.20) and O(e;) — 0 for €; — 0.
Then, for [ = 2,...,L — 1 we have the following recursion for each power allocation

in terms of (£ — &2):

G- &=y & — &) +7(a), (D.47)

and each power allocations & can be found as
1-&=01-6&) +Z —&itv1)
=(1-¢&) —|—Z77 — &) +m(er)

=(1—&)+ (& — &) — B ‘"'f + ().
— Nk

From A7 (#, &) =brk = b3 (k+1)(&_1 — &), we have

L
ATHE,€) = bk +1)(S0 — &) + bk + 1)(& = &) Yy +7(er)
i=1
L—1
=b(k+1) | (6o — &) + (&2 — 51) 77’:% +7(er). (D.48)

Putting all together, from (D.45) we obtain the following determined linear system

ATHE,E) = o+ Dby — Ti(6o — & — @),
AT, €) = b(k + 1) (& — &1) + Ppér — Ti(&1 — & + 1),
ATHEE) = b(k + 1)[(&0 — &) + (&2 — E)Tw]+7(er). (D.49)

By solving AL (b,z) = APL(E, &) = AT(E,€) = APU(#,€), the solution to the linear
systems and letting €; — 0 is given in (4.21), (4.22) and (4.23). So that this solution is
feasible, the power allocation sequence has to satisfy 1 > & > ...&p, > 0, i.e.,&—& 41 > 0.

From (D.47) we need n; > 0 and & — & > 0. We have i, > 0if b > i’j:ll, which holds
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in the regime given by (D.44). Then, & — & > 0 holds if Yy +b(k+1) =P — 2 >0
and (Tp +0(1 + k)(Tk + (1 + K)T',) — b(k + 1)@, > 0. It can be shown that
(T +b0(14+k))(Ti+b(1+k)Tx) —b(k+1)P,I';, is monotonically increasing in b > 0 and
to be positive for k = 0, ..., M, —1. Therefore, we need to check Ty +b(k+1)—Pp—2a > 0,

which holds since this condition is equivalent to

b > Qpi1t+x
- k41

Note that in this regime, we have & > 0. In addition, & = & + (& — &)Tx > 0.
Therefore, for each k the power allocation is feasible in the regime given by (D.44). It
can also be checked that br; > x is satisfied. This completes the proof.

D.6.1 Convergence for L — oo.

In the continuum infinity of layers, i.e., by letting . — oo, this scheme converges to
A (b, x) = max{z,b(k+ 1)} when 0 < < 1, ie.,

Ppi1+x Dy
he |Zk1 T
E[ k1 ’k+1)’

and it converges to

A (b, ) :<I>k+x( bk +1) — 2 )

b(k+ 1) — ®pyy

when 7 > 1, that is, for

P, Op+x
b .
E[lﬂ—i—l’ K )
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Proofs for Chapter 5

E.1 Proof of Lemma 20

In the rate expression and joint pmf in Theorem 15, we set X" = (X7, X3), Y" =
(Y, Y5, Z™), V =0, and generate X} and X{* independent of the rest of the random
variables with distributions p*(z ) and p*(z1), which maximize the mutual information
terms in (5.5), respectively. Under this set of distributions we have
I(X;YYR|XRU) = I(X1X; V1Yo YRZ|XR,U)
@ I(X1X2; Y2YR|XRrUZ)
2 1(Xa: Y2l 2) + 1(X4; Vel U 2)
= Ry + I(X1;YR|UZ),
I(U3YR|XRV) = 1(U3YalXn) © 1(U3 V),
I(XXpY) = I(X1 XoXp; Y1Y22)
D I(X, X5 V1Y2|2)
= I(Xp; Y1)+ I[(X2;Y2|Z) = Ro + Ry,
I(YR; Y| XXRUY) = I(Vg; Yr|XpX 1 XoUY1Y52)
(Yr; YRIXrX1X2UY22)
(Yr; Yr|X1UZ),
(Vs YRl VY2 ZXrU) & (Vs YrlU 2),
(Xr;Y1Y2Z) = I(XR; Y1) = Ro,

I(Yi; YR|Y XRU) =
I(Xp;Y|V) =

where (a) is due to the Markov chain (X; Xo) — Xr —Y71; (b), (¢), (e), (f), (9), (k) are due
to the independence of (U, X;) and Xg, and (d) is due to the Markov chain (Y1Y3) —
(XoXpZ) — X

175
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Then, (5.8) reduces to the following rate
R =sup min{I(U;Yg) + Ry + I(X1;Yr|UZ), R1 + Ry — I(Yr; Yr| X 1UZ)},
P

s.t. Ry > I(Yp; Yr|UZ). (E.1)

By denoting by the joint distributions in P such the the minimum in R is achieved for

the first argument, i.e.,
Ro— I(Yr; Yr|X1UZ) > I(U; Yg) + I(X1; Yr|U Z), (E.2)

and arranging using the chain rule for the mutual information, we have that the rate

achievable by pDCF is lower bounded by

R >sup Ry + I(U; Yg) + I(X1; Yr|UZ)
P

st. Ry > I(U;YR) + I(X1Yg; Yr|UZ), (E.3)
Ry > I(Yi; Yr|U Z). (E.4)

From (E.3), we have

Ry > I(U;YR) + I(X1YR: Yr|UZ)
Y (U YR) + I(Ve; YR|UZ)
> I(Vis Ya|UZ), (E.5)

where (a) is due to the Markov chain Yz — (UYg) — (X1 Z). Hence, (E.3) implies (E.4),
i.e., the latter condition is redundant, and R > C. Therefore the capacity expression C
in (5.7) is achievable by pDCF. This concludes the proof.

E.2 Proof of Lemma 21

Consider any sequence of (2", n, v,,) codes such that lim,, ., v, — 0. We need to show
that R < Ry,.

Let us define U; £ (Yp ' X7, Z™\) and Ve & (Y{i,1). For such Yri and U, the
following Markov chain holds

Yri — (Ui, Yri) — (X1, Xoi, Zi, Yai, Yai, Xpi). (E.6)
From Fano’s inequality, we have

H(WI|YPYSZ™) < ney, (E.7)
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such that €, — 0 as n — oo.
First, we derive the following set of inequalities related to the capacity of the source-

destination channel.

nR = H(W)
@ WYY |2t + HWIYYS Z")

(®)
< I(XTX3 Y'Y Z™) + ney, (E.8)
where (a) follows from the independence of Z" and W and (b) follows from Fano’s

inequality in (E.7).

We also have the following inequalities:

[(X3:Y3'|2") = ) H(Yai| 2"Y31 ') — H(Yail 231 ' X)

&
H‘M:
fa

'Mz

N
Il
-

H(Y2;|Z;) — H(Y2|Z; X5;)

|

I(X2i§Y2i|Zi)

1
b
“menmm
()
< nl(Xaq/; Yoqr)

(d)
< 7’LR1, (Eg)

where (a) follows since conditioning reduces entropy, (b) follows by defining @’ as a uni-
formly distributed random variable over {1, ...,n} and (Xa¢, Ya¢’) as a pair of random
variables satisfying Pr{Xo; = z2,Y2; = yo} = Pr{Xaq = x2,Yaq = y2|Q = i} for
i=1,...,n, (c) follows from the Markov chain relation Q' — X2g' — Y2+ and (d) follows
from the definition of R; in (5.5).

Then, we can bound the achievable rate as,

WiYPYSZ") + HOW[YPYS 2™

IS INE

I(
I(W;YFYQ"Z") + nep
I(W; Y3NZ™M) + I(W; Y YS Z™) + ney,

—
INe

I(X3; Y5 | Z27) + I(W5 Y Y5 27) + nen

—
IN&

nRy + HY"Y3'Z™) — HY |WZ™) + ne,

—
N

nRy + HY"Z") — HY'|WXTZ™) + ne,
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@ nRy + I(X7; Y| Z™) + ney,

(9)
< nRy+ H(X) — HXTY"Z") + ne,
= nRi+ > H(XulX[,) — HXPY"Z") + ne,

i=1

(h) n ) )
SRS [I(YI@SZ"\% Yri) + H(Xmmm] — H(XJ[Y'Z") + ne,
=1

= nR; + Z {I(Yéle"\iXﬁ_H; Yri) — I(XTiiq; YRi|YéI1Z"\i)
i=1
HH (X3 |V 27V X ) + (X Y§1lzn\i|Xﬁ+1)] — H(XTY\"Z") + ne,

) n
@ nky +Z
i—1 L

_H(XP[Y"Z™) + nen

n
= nR; + Z
i=1

() i
< nR;+ Z
i=1

I(Y}glzn\ixﬁ'-ué Yri) + H(X11|Y£IIZH\iXﬁ+1)]

I(U;; Yri) + H(X14|U;) — H(XliIUiZiY/Ri):| + nep,

® Ry + > (Ui Yri) + I(Xas; Y/RiUiZi)} + .
i=1 L
where (a) is due to Fano’s inequality; (b) is due to the chain rule and the independence
of Z™ from W; (c) is due to the data processing inequality, (d) is due to the Markov
chain relation Y3* — (W, Z™) — Y{* and (E.9), (e) is due to the fact that conditioning
reduces entropy, and that X} is a deterministic function of W; (f) is due to the Markov
chain relation Y* — XJ* — W; (g) is due to the independence of Z™ and X7; (4) follows

because
n i . (l) n i— n 3
Z I( X145 Y IZ"\Z|X{L1‘+1) = Z (X345 Yy ' |X1’i+1Z”\7)
i=1 i=1

(m) - n i—1 r7n\i
= E :I(X1i+1§YRi|YRllz \)7 (E.10)
=1

where (1) is due to the independence of Z" and X7'; and (m) is the conditional version

of Csiszér’s equality [25]. Inequality (j) is due to the following bound,
H(XPY'Z") = Y H(X1| X, 27V
i=1

> > H(Xy|Vi ' X7, 207

=1
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()

ZH(XMYE?X{QHZ"YSH)

i=1

ZH(X1i|UiZiYRi)7 (E.11)
i=1

where (n) is follows from the Markov chain relation X1; — (Y, ' X7h, 2"V, ) — Y{,,
and noticing that Xg; = fT,i(YéIl). Finally, (k) is due to the fact that Z; independent
Of (Xh', Uz)

We can also obtain the following sequence of inequalities

nRo+ nR, @ (X Y7) + 1(X5: Y7 27)

HY|Z") — HOPIXEZ™) + HOYPYEZ") — HYTIX)
YR — HYPIXZ7) - HOPIXE)
HYPYP|Z") — HORIXPXPYRZ™) — H(YP | XpXPXPYRYD Z")
H(YPY|Z7) = HOPYEIXTX3YRZ")
YV XPXpYR|Z7)
= XX YPYRIZT) + TPV YRIXP XD 27

C
@

A
Vo

nR+ I YRIXTXEZ™) — ney

nR+I(Y]; YRIXPZ™) — ney,

nR+ Y I YRi| X1Y ' Z") = ney
=1

nR+Y IV YRl XPYETZ™) — ney
i=1

—~
[

)

v

> nR+ > 1Y Y| X1V Z7) — ney
i=1
= TLR + Z I(YRM YRZ|X11UZZ1) — NE€p,

i=1
where (a) follows from the definitions of Ry and R; in (5.5); (b) is due to the fact that
conditioning reduces entropy; (c) is due to the Markov chains Y3* — (X3 Z™) — (X7YE)
and Y" — X — (X7 XSYRYSZ™); (d) is follows since X7 is a deterministic function
of Y72; (e) is due to the expression in (E.8); (f) is due to the Markov chain (Y3Y") —
(X7Z™) — (X3Y3) and; (g) is due to the Markov chain (Y%, ) — (X7.Y5 ' Z™) — X7t
A single letter expression can be obtained by using the usual time-sharing random
variable arguments. Let () be a time sharing random variable uniformly distributed over

{1,...,n}, independent of all the other random variables. Also, define a set of random
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variables (X1¢, Yrqg, Ug, YRQ, Zgq) satisfying

Pr{Xig = =1, Yro = yr, Ug = u, Yrg = §r, Zg = #|Q = i}
=Pr{Xy=21,Yri=yr, Ui =, Yri = §p, Zi = 2}  fori=1,..,n

Define U = (Ug, @), Yr = Yro, X1 = X10, Yrg = Yr and Z = Zg. We note that the
pmf of the tuple (X1,Yr, U, Ya, Z) belongs to P in (5.6) as follows:

yUQH> T1Q5 YRQ» 2Q> yRQ)
q, UvalQ)p(zQyRQyRQm,UleQ)

p(uwxhyRVZagR) plq

7, uQ, 11Q)P(2q|0, uq, 71Q)P(YRQ, UrRQ|T UQ, T1Q; 2Q)
Q)r(2)p(Yrqle, uq, 1, 2Q)P(IRQIG: UQ, 21Q: 2@ YRQ)

= =

7,uQ, 1Q)P(2)p(Yrl™1, 2)p(IRQlT U@, T1Q, 2Qs YRQ)

)p(
)p(z
)p(
)p(

IS

q,uqQ,r1Q)p(2)p(yr|T1, 2)P(JRQ|T, U@, YRQ)
u, T ) ( )p(yR‘xlaz)p(gR|u7yR>7

(q
(
(
(q,uq, 1
(
(
(

p
p
p
p
p
p

where (a) follows since the channel state Z™ is i.i.d. and thus p(zg|g, ug,z1g) =

p(zqlq) = p(2), (b) follows since p(yrq ¢, uQ, ©10: 2@) = P(Yreld, 710, 2Q) = P(yrl21, 2),
(c) follows from the Markov chain in (E.6).

Then, we get the single letter expression,

1 — 5
R<Ri+ - Z[I(Ui§YRi) + 1( X143 YrilUi Zi)] + €n
i=1
= Ry + 1(Uq; Yrq|Q) + I(X10: YrolUgZqQ) + €n
< Ry + 1(UgQ; Yro) + I(X10; YroQ|Ug Zq) + €n
= Ry + I(U; Yg) + I(X1; YR|UZ) + €n,

and

1 N
Ry+Ri >R+ - ;I(Ym; Yri| X1:Ui Z;) — ne
= R + I(Y/RQ; YRQ|X1QUQZQQ) — NE€y,

= R+ 1(Yr; Yr|X1UZ) — ney,.

The cardinality of the bounds on the alphabets of U and Y can be found using the
usual techniques [25]. This completes the proof.
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E.3 Proof of Lemma 22

Now, we will show that the expression of Ry, in (5.9) is equivalent to the expression C
in (5.7). First we will show that C < R,,, as follows. Consider the subset of pmfs in P
such that

Ro+ Ry — I(Yr; YR|IX1UZ) > Ry + I(U; Yg) + I(X1; Yr|U Z) (E.12)
holds. Then, similarly to (E.5) in Appendix E this condition is necessitates
Ro > I(U;Yg) + I(Yr; YR|UZ). (E.13)

Hence, we have C < R,,,,.

Then, it remains to show that C > R,,,. As R; can be extracted from the supremum,
it is enough to show that, for each (X1,U, Z, YR,YR) tuple with a joint pmf p. € P
satisfying

R(pe) < I(U; YR) + 1(X1; YR|U Z),
where R(p.) 2 Ry — I(Yr; Yr|X1UZ), (E.14)

there exist random variables (X7,U*, Z, Y}, Y}g) with joint pmf p} € P that satisfy

R(pe) = I(U*;Yg) + I(X]; Y4|U*Z) and
R(pe) < Ro — I(Y3:; Yr|X{U*Z). (E.15)

This argument is proven next.

Let B denote a Bernoulli random variable with parameter A € [0,1], i.e., B = 1
with probability A\, and B = 0 with probability 1 — X\. We define the triplets of random
variables:

(UaXh)A/R) 1fB:17

(U, X,,Yg) = (E.16)
(X1, X1,0) if B=0,

and

" oA (Xl,X17®) ifB: 1’
(U, Xy, Yg) = (E.17)
0,0,0)  ifB=0.

We first consider the case R(p.) > I(X1;Yg). Let U* = (U',B), X; = X;, Y =
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(Yg, B). For A =1,
(U YR) + I(X{5YRIUZ) = I(U; Yr) + 1(X15 YR|UZ) > R(p.),
and for A =0,
I(U*YR) + I(X§; YR|U*Z) = I(X1;Yr) < R(pe).

As I(U*;YR) + I(X;; Y;|U*Z) is a continuous function of A, by the intermediate value
theorem, there exists a A € [0,1] such that I(U*; Yg) + I[(X];Y5|U*Z) = R(p.). We
denote the corresponding joint distribution by pZ.

We have

I(V3:; Y|X[U*Z) = I(Yy: Ye| X U ZB)
= M (Yg; Yr|X1UZ)
< I(Y; Yr| XU Z), (E.18)

which implies that p’ satisfies (E.15) since

R(pe) = Ro — I(Yg; YR|X1UZ)
< Ry — I(Y3; YR|IX;U*Z). (E.19)

Next we consider the case R(p.) < I(Xg;Y1). We define U* = (U, B), X} = X, and
Y7 = (Y, B). Then, for A = 1,

I(U*;YR) + I(X$; YAUZ) = I(X1; YR) > R(pe),

and for A =0,
I{U*YR) + I(X55 VAU Z) = 0 < R(pe). (E.20)

Once again, as I(U*; Yg)+I(X}; Y;|U*Z) is a continuous function of A, by the inter-
mediate value theorem, there exists a A € [0, 1] such that I(U*; Yg) +I(X}; Y5 U*Z) =
R(p.). Again, we denote this joint distribution by p%. On the other hand, we have
I(Y%; YRr|X{U*Z) = 0, which implies that

R(pe) = Ro — I(Yg; YR|X1UZ)
< Ry
= Ry — I(Y}; YR|X[U*Z). (E.21)

That is, p} also satisfies (E.15).
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We have shown that for any joint pmf p. € P satisfying (F.14), there exist another
joint pmf, p*, that satisfies (E.15). For a distribution satisfying (E.15) we can write

Ry > I(U*Yr) + [(X$3 VAU 2) + 1(Vi; Vel XU 2)
= I(U*;Yr) + I(YrX{; YU Z)
@ [U* YR) + IV Ya|U*Z)

where (a) is due to Markov chain X} — (YpZU*) — Y}. This concludes the proof.

E.4 Proof of Lemma 23

Before deriving the maximum achievable rate by CF in Lemma 23, we provide some
definitions that will be used in the proof.

Let X and Y be a pair of discrete random variables, where X = {1,2,...,n} and
Y ={1,2,....,m}, for n,m < oco. Let py € A,, denote the distribution of Y, where Ay
denotes the (k — 1)-dimensional simplex of probability k-vectors. We define T'xy as the
n X m stochastic matrix with entries Txy (j,7) = Pr{X = j|Y = i}. Note that the joint
distribution p(z,y) is characterized by Txy and py.

Next, we state the conditional entropy bound from [96], which lower bounds the
conditional entropy between two variables. Note the relabeling of the variables to fit
our model.

Definition 4 (Conditional Entropy Bound). Let py € A,, be the distribution of Y and
Txy denote the channel matriz relating X andY . Then, forq € A,, and0 < s < H(Y),
define the function

F = inf H(X|W). E.22
Txy (qas) p(w\y):l)ré—Y—W, ( | ) ( )

H(Y|W)=s, py=q.

That is, Frry, (q,s) is the infimum of H(X|W) given a specified distribution q and
the value of H(Y|W). Many properties of Fry, (q,s) are derived in [96], such as its
convexity on (q,s) [96, Theorem 2.3] and its non-decreasing monotonicity in s [96,
Theorem 2.5].

Consider a sequence of N random variables Y = (Y1, ..., Yx) and denote by q; the
distribution of Y, for i = 1,...,N, by q¥) the joint distribution of Y and by q =
% vazl q; the average distribution. Note that Y7, ..., Yy can have arbitrary correlation.
Define the sequence X = (Xq,..., Xx), in which X;, ¢« = 1,..., N, is jointly distributed
with each Y; through the stochastic matrix Txy and denote by T)((]\{,) the Kronecker
product of N copies of the stochastic matrix Txy .

Then, the theorem given in [96, Theorem 2.4] can be straightforwardly generalized
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to non i.i.d. sequences as given in the following lemma.
Lemma 35. For N=1,2,..., and 0 < Ns < H(Y), we have

FT(N)(q(N)7N5) 2 NFTxy(qa 8)7 (E23)
XY

where equality holds for i.i.d. Y; components following q.

Proof. Let W,X,Y be a Markov chain, such that H(Y|W) = Ns. Then, using the

standard identity we have

N
H(Y|W) =Y HY[Y{™ W), (E.24)
k=1
N
HX|W) =Y H(X, X}~ w). (E.25)
k=1
Letting s, = H(Y;|Y¥™1 W), we have
1 N
N Z Sp = 5. (E.26)
k=1

Also, from the Markov chain X}, — (YF~1, W) — X¥~1 we have

H(X,|Xy™ W) > H(X YT XEH W) (E.27)
= H(X,|Y1 w). (E.28)

Applying the conditional entropy bound in (E.22) we have
H(Xi[YT™H, W) > Fry, (ak, sk)- (E.29)

Combining (E.25), (E.27) and (E.29) we have

N
X|W ZZ Txy qusk >NFTXY(q7 )7
k=1

where the last inequality follows from the convexity of Fr(q,s) in q and s and (E.26).

If we let W,Y, X be N independent copies of the random variables W, X, Y, that
achieve Fr,, (q, s), we have H(Y|W) = Nsand H(X|W) = T(m( NY = NFry, (q,s).
Hence, FT)%) (V) < NFr,, (q, s) and the equality holds for i.i. d. components of Y. [

Now, we look into the binary symmetric channel Y = X & N where N ~ Ber(9).

Due to the binary modulo-sum operation, we have X =Y @& N, and we can characterize
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the channel T'xy of this model as

1-6 )
Txy = . E.30
Xy [5 1_(;] (E.30)

When Y and X are related through channel Txy in (E.30), Fr,, (q, s) is character-
ized as follows [96].
Lemma 36. Let Y ~ Ber(q), i.e., q=[q,1 —q|, and Txy be given as in (E.830). Then
the conditional entropy bound is

Fryy (4,8) = ha(0x hy'(5)),  for 0 < s < ha(q).
In the following, we use the properties of Fr.,.(q,s) to derive the maximum rate

achievable by CF in the parallel binary symmetric MRC-D. From (5.16), we have

I(Y}%’,vylngR|Z) = I(X11 &N & Z,X12 @NQ;YR|Z)

= I(X} ® Ny, X2 @ Ny; Vz|2).

Let us define Y& £

X{@® Ny and Yr £ (Y4,Y2), and the channel input X £
(X1, X?). Note that the distribution of Y, given by q(®), determines the distribution
of X via T)(?)),

, the Kronecker product of Txy in (E.30). Then, we can rewrite the
achievable rate for CF in (5.16) as follows

Rer = max I(X,Yr|Z
CF = L oporE o inlgne | TRIZ)
s.t. RO Z I(YR,YR|Z)

(E.31)
Next, we derive a closed form expression for Rop. First, we note that if Ry > 2, we

have H(YR) < Ry and Rop = 2(1 — h(6)), i.e., CF meets the cut-set bound.
For fixed ), if H(Yg) < Ry < 2, the constraint in (E.31) is satisfied by any Y&,

and can be ignored. Then, due to the Markov chain X — Yz — YRZ, and the data
processing inequality, the achievable rate is upper bounded by

Rop < I(X,Yr) = H(YR) — 2h(6) < Ro — 2h(9). (E.32)

(@)
CF =

For Ry < H(YR) < 2, the achievable rate by CF is upper bounded as follows.
max H(X) — H(X|ZYR)
p(x)p(2)p(YR[X)P(IRIVR:2)
s.t. H(Yg|ZYR) > H(YR) — Ro
(b)
<

max H(X)— H(X|W)
p(x)p(¥rIX)P(W|YR)
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D max  [H(X) - F

s.t. H(YRWV) Z H(YR) - R()

= max [HX)- p(rzilli;lR) H(X|W)]

P(X)P(S'RLX) w
s.t. H(YR|W) > H(YR) — Ry

= max [H(X) — FT;(Q; (q(z)’ S)]

p(x)p(¥r|%),0<s<H(YRr)
s.t. s > H(YR) — Ry
(@®, H(Yr) — Ro)]

(2)
P(x)p(¥ r|x) Ty

< max [H(X) - 2Fr, (q,(H(YRr) — Ro)/2)],

p(x)p(YRrIx)

L max  [H(X) —2ho(6 % hy '(H(YR) — Ro)/2))]

p(x)p(¥ r|x) -
st. 0< (H(Ygr) — Ro)/2 < ha(q)}

< max [H(X) —2ho(6xhy Y (H(YR) — Ro)/2))]

peOpyabo
s.t. Ry < H(YR) <24 Ry

where (a) follows from the independence of Z from X and Yg, (b) follows since op-

timizing over W can only increase the value compared to optimizing over (Z, YR), (¢)

follows from the definition of the conditional entropy bound in (E.22), (d) follows from

the nondecreasing monotonicity of F .2 (q?, 5) in s, and (e) follows from Lemma 35,
XY

and q £ [¢,1 — q] = 3(q1 + q2) is the average distribution of Y. Equality (f) follows

from the definition of Frry. (g, s) for the binary symmetric channel, and (g) follows since

we are increasing the optimization domain since ha(q) < 1.

Now, we lower bound H(Y ). Since conditioning reduces entropy, we have H(Y ) >
H(Yg|N;Ny) = H(X), and then we can lower bound H(YR) as follows:

Then, we have

Rcr

(@)

IIIE%X{.Z;I()()7 Ro} S H(YR) S 2.

max[H (X) — 2ha(8 « hy ' (H(Y r) — Ro)/2))]

p(x)

s.t. max{H(X),Ro} < H(YRr) <2

[ H(X) — 2ha(6 » iy (max{ H(X), Ro} ~ Ro)/2))
s.t. max{H(X),Ro} < H(YR) <2

Oglaagl[Qa — 2hy(6 % hy '((max{2a, Ry} — Ro)/2))]

s.t. _maX{RO, 2a} <2,

(E.33)
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where (a) follows since there is no loss in generality by introducing (E.33) since it is
satisfied by any (X, Y g) following p(x, ¥ r), (b) follows from (E.33) and Fr,, (q, s) being
non-decreasing in s, and (c) follows from defining H(X) £ 2a;, for 0 < a < 1.

Then, for 2a < Ry, we have

< - = J—
RCF*ogglgaz)zio/Q[?a 2h2(0)] = Ro — 2h2(0), (E.34)

and for 2a > Ry, we have

< - o —
RCF*RO}QE};QBO[ 2ha(6 % hy * (v — Ro/2))]. (E.35)

Now, we solve (E.35). Let us define f(u) £ ho(d % hy ' (u)) for 0 < u < 1. Then, we
have the following lemma from [97].
Lemma 37 ([97]). Function f(u) is convex for 0 < u < 1.

Then, we define g(a) £ a—ho(dxhy ' (a—Ry/2)), such that Rep < maxpg, /2<a<1 29().
We have that g(«) is concave in «, since is a shifted version by «, which is linear with

the composition of the concave function — f(u) and the affine function a — Ry /2.
Proposition 2. g(«) is monotonically increasing for Ro/2 < a <1+ Ry/2.
Proof. Using the chain rule for composite functions, we have

d*g(a)

T = —1"(a = Ro/2), (E.36)

where f"(u) 2 d?f/du®(u).

Since g(«) is convex and is defined over a convex region, it follows that its unique
maximum is achieved either for f”(a— Ro/2) = 0, or at the boundaries of the region. It
is shown in [97, Lemma 2] that f”(u) > 0 for 0 < v < 1. That means that the maximum

is achieved either at u = 0 or at u = 1, or equivalently, for & = Ry/2 or a« = 1+ Ry /2.
Since g(Rop/2) = Ry/2 — h2(0) and ¢g(1 + Ro/2) = Ry/2, i.e., g(Ro/2) < g(1 + Ro/2), it
follows that g(«) is monotonically increasing in « for Ry/2 < a <1+ Ry/2. O

From Proposition 2 if follows that for Ry/2 < o < 1, g(«) achieves its maximum at

a = 1. Then, for 2a > Ry, we have
Ror < 2(1— ha(6 % hy *(1 — Ro/2))). (E.37)
Thus, from (E.34) and (E.37), we have that for Ry < H(YR)

RCF < QmaX{R0/2 — hg(é), 1— h2(5*h2_1(1 — RQ/Q))}
=2(1— hao(§xhy ' (1 — Ro/2))), (E.38)
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where the equality follows from Proposition 2 by noting that the first element in the
maximum coincides with g(Ro/2) = Ro/2 — ha(d), and the second one coincides g(1).
Finally, Rcp is upper bounded by the maximum over the joint distributions sat-
isfying H(YRg) < Ry given in (E.32) and the upper bound for the joint distributions
satisfying Ry < H(YR) given in (E.38). Since (E.32) coincides with g(Ro/2), Rcr is
upper bounded when Ry < H(YR) as in (E.38).
Next, we show that the upper bound on the rate in (E.38) is achievable by considering

the following variables

X! ~Ber(1/2), X2?~ Ber(1/2), Yr = (Y3, Y3),
YA=YE®Qi, Qi~Ber(hy'(1—Ry/2)),
Y2=Y2®Qs, Q~ Ber(hy'(1—Ry/2)).

Let Q; ~ Ber(v) for ¢ = 1,2. Then from the constraint in (5.16) we have

I(YA, Y2 YR|Z) = H(YR|Z) — H(Yr|YAYEZ)
= HX{ &N ®Q1,X; ® N2 ®Q2) — H(Q1,Q2)
Wy ohy),

where (a) follows since X! ~ Ber(1/2), i = 1,2 and from the independence of Q; and
Q2. We have 2hy(v) > 2 — Ry, and thus, v > hy ' (1 — Ry/2).
Then, the achievable rate in (5.16) is given by
I(X;Yg|Z) = H(Yg|Z) — H(Yr|XZ)
= H(X{ &N ® Q1 X7 ® N2 @ Q) — H(N1 © Q1, N2 © Qo)
=2-—2h(d*xv)
<2—2hy(8 % hy ' (1 — Ry/2)),

where the last inequality follows from the bound on v. This completes the proof.

E.5 Proof of Lemma 24

From (5.7), the achievable rate for the proposed pDCF scheme is given by

Rypor = sup I(X];Yg) + [(X7; Y| 2)
st Ro > I(XL;YRE) + I1(YE:YR|Z).
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First, we note that the constraint is always satisfied for the choice of variables:

I(X15Yg) + 1(YE; YRIZ) = H(Y) — H(Ny) + H(X? & N2 © Q) — H(Q)

=1—hy(8) +1 — ha(hy ' (2 — h(5) — Ro))
:ROa

(E.39)

where H(Y3) = 1 since X| ~ Ber(1/2) and H(X? @& N2 ® Q) = 1 since X7 ~ Ber(1/2).
Then, similarly the achievable rate is given by

Rypcr = I(X1;YR) + (X1 YR|Z)

=HYR) -HN)+HXoN, Q) - H(V Q)
=1—ho(6) +1—ha(6%hy (2 — h(8) — Ry)),

which completes the proof.
E.6 Proof of Lemma 27

By evaluating (5.7) with the considered Gaussian random variables, we get

1 aP alP
R zog(+ap+1>(+(1 )

_p2)+0—§
1 aP aP+(1-p?)
.t > -1 1 1+ —7.
® R0_20g<+ap+1><+ o2
We can rewrite the constraint on Ry as,
P+1)(aP+1-p?)
2> £ ( ) E.4
O'q_f(Oé) 22R0(dp+1)—(P+1) ( 0)

Since R is increasing in o2

o it is clear that the optimal 03 is obtained by 03 fla),
where « is chosen such that f(a) > 0. It is easy to check that f(«) > 0 for
. —2R 1
a € |0,min ¢ (1 —27°70) 1+F 101 (E.41)

Now, we substitute o7 = f(«) in (E.40), and write the achievable rate as a function of
« as

R(a) = %log G(a), (E.42)
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where

o= (1 555) (' )

_ 22P(14 P)(1-p*+aP)
T - A2R(1+aP) + aP(l+ P) (E-43)

We take the derivative of G(a) with respect to «:

s 220P(1+ P) (1-p%) (P+1—22f0p?)

G' () — — 5
[P(1+ P)a + 2280 (1 + aP) (1 — p2)]

We note that if p?2 > 2750 (P + 1), then G'(a) < 0, and hence, G(«) is monotonically
decreasing. Achievable rate R is maximized by setting a* = 0. When p? < 270 (P +1),
we have G’(a) > 0, and hence o* = min {(1 —277) (1+ £),1} = 1, since we have
(1—27R) (1+5) > (1+13) > 1.

E.7 Proof of Lemma 28

In order to characterize the capacity of the binary symmetric MRC-D, we find the
optimal distribution of (U, X1, Yx) in Theorem 14 for Z ~ Ber(1/2). First, we note that

U is independent of Yg since
I(U;YRr) <I(Xy;YR) =0, (E.44)

where the inequality follows from the Markov chain U — X; — YR, and the equality follows
since for Z ~ Ber(1/2) the channel output of the binary channel Yz = X; ® N & 7 is
independent of the channel input X; [24]. Then, the capacity region in (5.7) is given by

C=sup {I(X;;Yr|UZ): Ry > I(Yp; Yr|UZ)},

over p(u, 21)p(2)p(yrl|e1, 2)p(GR|yR, 0)- (E.45)

Let us define Y £ X; @ N. The capacity is equivalent to

C=sup {I(X1;Yr|UZ): HY|YUZ) > H(Y|U) — Ry},

over p(u, z1)p(2)p(4l21)p(9rlY, u, 2), (E.46)

where we have used the fact that Y is independent from Z.
For any joint distribution for which 0 < H(Y|U) < Ry, the constraint in (E.46)
is also satisfied. In that case, we can find the following upper bound on the capacity.

It follows from the Markov chain X; — Y — Vi given U, Z, and the data processing
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inequality, that

€ < max {I(X:V120) : H(VIU) < Ro} (E.47)
= pg}%i){H(YW) ha(8) : H(Y|U) < Ro}
< Ry — ha(9).

We next consider the joint distributions for which Ry < H(Y|U). Let p(u) = Pr[U =

u] for u =1, .., |U|, and we can write

I(X1;YR|UZ) = H(X,|U) — Z p(u)H(X1|YrZu), (E.48)

and

I(Ye: ValUZ) Y 17 Ve iuz) Y H(Y|U) - Zp H(Y|YrZu),

where (a) follows from the definition of Y, and (b) follows from the independence of Z
from Y and U.

For each u, the channel input X; corresponds to a binary random variable X, ~
Ber(v,), where v, 2 Pr[X; = 1|U = u] = p(1|u) for u = 1, ..., [U|. The channel output
for each X, is given by Y, = X,, ® N. We denote by ¢, = Pr[Y,, = 1] = Pr[Yg = 1|U =

u). Similarly, we define Y, as Yz for each u value. Note that for each u, X, — Y, — Y,
form a Markov chain. Then, we have H(X1|u) = ha(r,) and H(Y |u) = ho(d * v,). We
define s, £ H(Y|YrZu), such that 0 < s, < H(Y,). Substituting (E.48) and (E.49) in
(E.46) we have

C = max (X1]0) — Zp H(X,|YrZu)]

p(u,z1 )p(@}RIyR-u)

st. Ry > H(Y|U) — Zp H(Y|YrZu)

@

p(u,x1),

max [H(X1|U) - ZP(U)FTXY (QUa Su)]

s.t. Ry > H(Y|U) —Zp )Su, 0 < sy < H(Y,)
® max. (H(X[U) - Zp Yha (6 % hy ' (s0))]
plu,r1

st. Ry > H(Y|U) — Zp w)sy, 0< s, < H(Y,),

p?;ajf)H(X”U) (5*’12—1 (ZMU)%))

st Y p(u)sy > HY|U) = R,

—
INS
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where (a) follows from the definition of Fr,, (g, s) for channel Y,, = X,, & N, which for
each u has a matrix Txy as in (E.30), (b) follows from the expression of Fr,., (g,s) for
the binary channel Txy in Lemma 36, (c) follows from noting that —ha(8 x hy ' (sy))
is concave on s, from Lemma 37 and applying Jensen’s inequality. We also drop the
conditions on s,, which can only increase C.

Then, similarly to the proof of Lemma 23, we have H(Y|U) > H(Y|UV) = H(X;|U),

and we can upper bound the capacity as follows

C< max) [H(X1|U) — hgy (5*h2_ (;p(u)su>>]

p(z1,u

s.t. Zp(u)su > max{H (X;1|U),Ro} — Ry

< max a — ho(d % hy ' (max{a, Ry} — Ry)), (E.49)

T 0<a<l

where we have defined o 2 H(X;|U).
The optimization problem can be solved similarly to the proof in Appendix E as
follows. If 0 < a < Ry, we have § > 0 and

C < max «a—ha(d) = Ry — ha(9). (E.50)

~ 0<a<Ro

For Ry < a <1, we have

C< R(I)I%zlxgla—hz(d*h;l(a—Ro)). (E.51)

Then, it follows from a scaled version of Proposition 2 that the upper bound is
maximized for & = 1. Then, by noticing that (E.50) corresponds to the value of the
bound in (E.51) for oo = Ry, it follows that

C<1—hy(§xhy'(1— Ry)). (E.52)
This bound is achievable by CF. This completes the proof.

E.8 Proof of the Cut-Set Bound Optimality Condi-

tions

Cases 1 and 2 are straightforward since under these assumptions, the ORC-D studied
here becomes a particular case of the channel models in [91] and [77], respectively.

To prove case 3 we use the following arguments. For any channel input distribution
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to the ORC-D, we have

[(X1;YR|Z) = H(X1|Z) — H(X\[Yz, Z)
> H(Xy) — H(X:|YR) (E.53)
= I(Xl, YR),

where we have used the independence of X; and Z and the fact that conditioning reduces
entropy. Then, the condition max,(,,) I(X1;Yr) > Ry, implies max,,,) [(X1; Yr|Z) >
Ry; and hence, the cut-set bound is given by Rcs = Ry + Ry, which is achievable by
DF scheme.

In case 4, the cut-set bound is given by Ry+min{ Ry, [(X1; Yr|Z)} = Ri+1(X1;Yr|Z)
since Ry > H(Yg|Z). CF achieves the capacity by letting X; be distributed with p(z1),
and choosing Yr = Y. This choice is always possible as the CF constraint

Ry > I(Yr;Yr|Z) = H(Yg|Z) — H(YR|Z,YRr) = H(Yr|Z),

always holds. Then, the achievable rate for CF is Rop = Ry + I()_(l;YR\Z) = Ry +
I(X1;YRr|Z), which is the capacity.
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