149 research outputs found

    Development of a Locomotion and Balancing Strategy for Humanoid Robots

    Get PDF
    The locomotion ability and high mobility are the most distinguished features of humanoid robots. Due to the non-linear dynamics of walking, developing and controlling the locomotion of humanoid robots is a challenging task. In this thesis, we study and develop a walking engine for the humanoid robot, NAO, which is the official robotic platform used in the RoboCup Spl. Aldebaran Robotics, the manufacturing company of NAO provides a walking module that has disadvantages, such as being a black box that does not provide control of the gait as well as the robot walk with a bent knee. The latter disadvantage, makes the gait unnatural, energy inefficient and exert large amounts of torque to the knee joint. Thus creating a walking engine that produces a quality and natural gait is essential for humanoid robots in general and is a factor for succeeding in RoboCup competition. Humanoids robots are required to walk fast to be practical for various life tasks. However, its complex structure makes it prone to falling during fast locomotion. On the same hand, the robots are expected to work in constantly changing environments alongside humans and robots, which increase the chance of collisions. Several human-inspired recovery strategies have been studied and adopted to humanoid robots in order to face unexpected and avoidable perturbations. These strategies include hip, ankle, and stepping, however, the use of the arms as a recovery strategy did not enjoy as much attention. The arms can be employed in different motions for fall prevention. The arm rotation strategy can be employed to control the angular momentum of the body and help to regain balance. In this master\u27s thesis, I developed a detailed study of different ways in which the arms can be used to enhance the balance recovery of the NAO humanoid robot while stationary and during locomotion. I model the robot as a linear inverted pendulum plus a flywheel to account for the angular momentum change at the CoM. I considered the role of the arms in changing the body\u27s moment of inertia which help to prevent the robot from falling or to decrease the falling impact. I propose a control algorithm that integrates the arm rotation strategy with the on-board sensors of the NAO. Additionally, I present a simple method to control the amount of recovery from rotating the arms. I also discuss the limitation of the strategy and how it can have a negative impact if it was misused. I present simulations to evaluate the approach in keeping the robot stable against various disturbance sources. The results show the success of the approach in keeping the NAO stable against various perturbations. Finally,I adopt the arm rotation to stabilize the ball kick, which is a common reason for falling in the soccer humanoid RoboCup competitions

    Dynamic walking stability of the TUlip robot by means of the extrapolated center of mass

    Get PDF
    The TUlip robot was created to participate in the teensize league of Robocup. The TUlip robot is a bipedal robot intended for dynamic walking. It has six degrees of freedom for each leg: three for the hip, one for the knee and two for the ankle. This paper elaborates on the algorithm for the sideways control during gait. The algorithm uses the extrapolated center of mass (XcoM) to achieve limit cycle stability. The algorithm is tested in simulation using a linear inverted pendulum and, then, experimentally applied to the TUlip robot. The result is an adaptive behavior of the TUlip robot, promising for future application to legged robot stability

    Humanoid Robot Soccer Locomotion and Kick Dynamics: Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot

    Get PDF
    Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose. The solution presented here is targeted towards the use of the Aldebaran walk for the Nao robot. The solution we develop involves the design of a central pattern generator to allow for controlled steps with realtime accuracy, and a phase locked loop method to synchronise with the Aldebaran walk so that precise step length control can be activated when required. An open loop trajectory mapping approach is taken to the walk that is stabilized statically through the use of a phase varying joint holding torque technique. We also examine the basic princples of open loop walking, focussing on the commonly overlooked frontal plane motion. The act of kicking itself is explored both analytically and empirically, and solutions are provided that are versatile and powerful. Included as an appendix, the broader matter of striker behaviour (process of goal scoring) is reviewed and we present a velocity control algorithm that is very accurate and efficient in terms of speed of execution

    FC Portugal 3D Simulation Team: Team Description Paper 2020

    Full text link
    The FC Portugal 3D team is developed upon the structure of our previous Simulation league 2D/3D teams and our standard platform league team. Our research concerning the robot low-level skills is focused on developing behaviors that may be applied on real robots with minimal adaptation using model-based approaches. Our research on high-level soccer coordination methodologies and team playing is mainly focused on the adaptation of previously developed methodologies from our 2D soccer teams to the 3D humanoid environment and on creating new coordination methodologies based on the previously developed ones. The research-oriented development of our team has been pushing it to be one of the most competitive over the years (World champion in 2000 and Coach Champion in 2002, European champion in 2000 and 2001, Coach 2nd place in 2003 and 2004, European champion in Rescue Simulation and Simulation 3D in 2006, World Champion in Simulation 3D in Bremen 2006 and European champion in 2007, 2012, 2013, 2014 and 2015). This paper describes some of the main innovations of our 3D simulation league team during the last years. A new generic framework for reinforcement learning tasks has also been developed. The current research is focused on improving the above-mentioned framework by developing new learning algorithms to optimize low-level skills, such as running and sprinting. We are also trying to increase student contact by providing reinforcement learning assignments to be completed using our new framework, which exposes a simple interface without sharing low-level implementation details

    Explainable robotics applied to bipedal walking gait development

    Get PDF
    Explainability is becoming an important topic in artificial intelligence (AI). A well explainable system can increase the trust in the application of that system. The same holds for robotics where the walking gait controller can be some AI system. We will show that a simple and explainable controller that enables an energy efficient walking gait and can handle uneven terrains, can be developed by a well structured design method. The main part of the controller consist of three simple neural networks with 4, 6 and 8 neurons. So, although creating a stable and energy efficient walking gait is a complex problem, it can be generated without some deep neural network or some complex mathematical model

    Gait generation via intrinsically stable MPC for a multi-mass humanoid model

    Get PDF
    We consider the problem of generating a gait with no a priori assigned footsteps while taking into account the contribution of the swinging leg to the total Zero Moment Point (ZMP). This is achieved by considering a multi-mass model of the humanoid and distinguishing between secondary masses with known pre-defined motion and the remaining, primary, masses. In the case of a single primary mass with constant height, it is possible to transform the original gait generation problem for the multi-mass system into a single LIP-like problem. We can then take full advantage of an intrinsically stable MPC framework to generate a gait that takes into account the swinging leg motion

    Current sensing feedback for humanoid stability

    Get PDF
    For humanoid robots to function in changing environments, they must be able to maintain balance similar to human beings. At present, humanoids recover from pushes by the use of either the ankles or hips and a rigid body. This method has been proven to work, but causes excessive strain on the joints of the robot and does not maximize on the capabilities of a humanlike body. The focus of this paper is to enable advanced dynamic balancing through torque classification and balance improving positional changes. For the robot to be able to balance dynamically, external torques must be determined accurately. The proposed method of this paper uses current sensing feedback at the humanoids power source to classify external torques. Through understanding the current draw of each joint, an external torque can be modeled. After being modeled, the external torque can be nullified with balancing techniques. Current sensing has the advantage that it adds detailed feedback while requiring small adjustments to the robot. Also, current sensing minimizes additional sensors, cost, and weight to the robot. Current sensing technology lies between the power supply and drive motors, thus can be implement without altering the robot. After an external torque has been modeled, the robot will undertake balancing positions to reduce the instability. The specialized positions increase the robot\u27s balance while reducing the workload of each joint. The balancing positions incorporate the humanlike body of the robot and torque from each of the leg servos. The best balancing positions were generated with a genetic algorithm and simulated in Webots. The simulation environment provided an accurate physical model and physics engine. The genetic algorithm reduced the workload of searching the workspace of a robot with ten degrees of freedom below the waist. The current sensing theory was experimentally tested on the TigerBot, a humanoid produced by the Rochester Institute of Technology (RIT). The TigerBot has twenty three degrees of freedom that fully simulate human motion. The robot stands at thirty-one inches tall and weighs close to nine pounds. The legs of the robot have six degrees of freedom per leg, which fully mimics the human leg. The robot was awarded first place in the 2012 IEEE design competition for innovation in New York
    • …
    corecore