36 research outputs found

    On the Peak-to-Mean Envelope Power Ratio of Phase-Shifted Binary Codes

    Full text link
    The peak-to-mean envelope power ratio (PMEPR) of a code employed in orthogonal frequency-division multiplexing (OFDM) systems can be reduced by permuting its coordinates and by rotating each coordinate by a fixed phase shift. Motivated by some previous designs of phase shifts using suboptimal methods, the following question is considered in this paper. For a given binary code, how much PMEPR reduction can be achieved when the phase shifts are taken from a 2^h-ary phase-shift keying (2^h-PSK) constellation? A lower bound on the achievable PMEPR is established, which is related to the covering radius of the binary code. Generally speaking, the achievable region of the PMEPR shrinks as the covering radius of the binary code decreases. The bound is then applied to some well understood codes, including nonredundant BPSK signaling, BCH codes and their duals, Reed-Muller codes, and convolutional codes. It is demonstrated that most (presumably not optimal) phase-shift designs from the literature attain or approach our bound.Comment: minor revisions, accepted for IEEE Trans. Commun

    Decomposing generalized bent and hyperbent functions

    Get PDF
    In this paper we introduce generalized hyperbent functions from F2nF_{2^n} to Z2kZ_{2^k}, and investigate decompositions of generalized (hyper)bent functions. We show that generalized (hyper)bent functions from F2nF_{2^n} to Z2kZ_{2^k} consist of components which are generalized (hyper)bent functions from F2nF_{2^n} to Z2kβ€²Z_{2^{k^\prime}} for some kβ€²<kk^\prime < k. For odd nn, we show that the Boolean functions associated to a generalized bent function form an affine space of semibent functions. This complements a recent result for even nn, where the associated Boolean functions are bent.Comment: 24 page
    corecore