336,734 research outputs found
Augmented Cystine–Glutamate Exchange by Pituitary Adenylate Cyclase-activating Polypeptide Signaling via the VPAC1 Receptor
In the central nervous system, cystine import in exchange for glutamate through system xc- is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc- activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuronally derived peptide that has already been demonstrated to modulate multiple aspects of glutamate signaling suggesting PACAP may also target activity of cystine–glutamate exchange via system xc-. In this study, 24-h treatment of primary cortical cultures containing neurons and glia with PACAP concentration-dependently increased system xc- function as measured by radiolabeled cystine uptake. Furthermore, the increase in cystine uptake was completely abolished by the system xc- inhibitor, (S)-4-carboxyphenylglycine (CPG), attributing increases in cystine uptake specifically to system xc- activity. Time course and quantitative PCR results indicate that PACAP signaling may increase cystine–glutamate exchange by increasing expression of xCT, the catalytic subunit of system xc-. Furthermore, the potentiation of system xc- activity by PACAP occurs via a PKA-dependent pathway that is not mediated by the PAC1R, but rather the shared vasoactive intestinal polypeptide receptor VPAC1R. Finally, assessment of neuronal, astrocytic, and microglial-enriched cultures demonstrated that only astrocyte-enriched cultures exhibit enhanced cystine uptake following both PACAP and VIP treatment. These data introduce a novel mechanism by which both PACAP and VIP regulate system xc- activity
Prediction of the derivative discontinuity in density functional theory from an electrostatic description of the exchange and correlation potential
We propose a new approach to approximate the exchange and correlation (XC)
functional in density functional theory. The XC potential is considered as an
electrostatic potential, generated by a fictitious XC density, which is in turn
a functional of the electronic density. We apply the approach to develop a
correction scheme that fixes the asymptotic behavior of any approximated XC
potential for finite systems. Additionally, the correction procedure gives the
value of the derivative discontinuity; therefore it can directly predict the
fundamental gap as a ground-state property.Comment: 5 pages, 4 figure
How tight is the Lieb-Oxford bound?
Density-functional theory requires ever better exchange-correlation (xc)
functionals for the ever more precise description of many-body effects on
electronic structure. Universal constraints on the xc energy are important
ingredients in the construction of improved functionals. Here we investigate
one such universal property of xc functionals: the Lieb-Oxford lower bound on
the exchange-correlation energy, , where
. To this end, we perform a survey of available exact or
near-exact data on xc energies of atoms, ions, molecules, solids, and some
model Hamiltonians (the electron liquid, Hooke's atom and the Hubbard model).
All physically realistic density distributions investigated are consistent with
the tighter limit . For large classes of systems one can obtain
class-specific (but not fully universal) similar bounds. The Lieb-Oxford bound
with is a key ingredient in the construction of modern xc
functionals, and a substantial change in the prefactor will have
consequences for the performance of these functionals.Comment: 10 pages, 3 figure
Many-body diagrammatic expansion in a Kohn-Sham basis: implications for Time-Dependent Density Functional Theory of excited states
We formulate diagrammatic rules for many-body perturbation theory which uses
Kohn-Sham (KS) Green's functions as basic propagators. The diagram technique
allows to study the properties of the dynamic nonlocal exchange-correlation
(xc) kernel . We show that the spatial non-locality of is
strongly frequency-dependent. In particular, in extended systems the
non-locality range diverges at the excitation energies. This divergency is
related to the discontinuity of the xc potential.Comment: 4 RevTeX pages including 3 eps figures, submitted to Phys. Rev. Lett;
revised version with new reference
Transport through correlated systems with density functional theory
We present recent advances in Density Functional Theory (DFT) for
applications to the field of quantum transport, with particular emphasis on
transport through strongly correlated systems. We review the foundations of the
popular Landauer-B\"uttiker(LB)+DFT approach. This formalism, when using
approximations to the exchange-correlation (xc) potential with steps at integer
occupation, correctly captures the Kondo plateau in the zero bias conductance
at zero temperature but completely fails to capture the transition to the
Coulomb blockade (CB) regime as temperature increases. To overcome the
limitations of LB+DFT the quantum transport problem is treated from a
time-dependent (TD) perspective using TDDFT, an exact framework to deal with
nonequilibrium situations. The steady-state limit of TDDFT shows that in
addition to an xc potential in the junction, there also exists an xc correction
to the applied bias. Open shell molecules in the CB regime provide the most
striking examples of the importance of the xc bias correction. Using the
Anderson model as guidance we estimate these corrections in the limit of zero
bias. For the general case we put forward a steady-state DFT which is based on
the one-to-one correspondence between the pair of basic variables steady
density on and steady current across the junction and the pair local potential
on and bias across the junction. Like TDDFT, this framework also leads to both
an xc potential in the junction and an xc correction to the bias. Unlike in
TDDFT, these potentials are independent of history. We highlight the universal
features of both xc potential and xc bias corrections for junctions in the CB
regime and provide an accurate parametrization for the Anderson model at
arbitrary temperatures and interaction strengths thus providing a unified DFT
description for both Kondo and CB regimes and the transition between them.Comment: 29 pages, 22 Figure
Quantum-classical phase transition of escape rate in biaxial spin system with an arbitrarily directed magnetic field
We investigate the escape rate of a biaxial spin particle with an arbitrarily
dierected magnetic field in the easy plane, described by Hamiltonian . We derive an effective particle
potential by using the method of particle mapping. With the help of the
criterion for the presence of a first-order quantum-classical transition of the
escape rate we obtained various phase boundary curves depending on the
anisotropy parameter and the field parameters : , and . It is found from and
that the-first-order region decreases as and (or ) increase. The phase boundary line \alpha_{xc} \to 0\alpha_{zc}T_c(b_c), T_c(\alpha_{xc}, \alpha_{zc})$.Comment: 17pages, 8figure
A minimal model for excitons within time-dependent density-functional theory
The accurate description of the optical spectra of insulators and
semiconductors remains an important challenge for time-dependent
density-functional theory (TDDFT). Evidence has been given in the literature
that TDDFT can produce bound as well as continuum excitons for specific
systems, but there are still many unresolved basic questions concerning the
role of dynamical exchange and correlation (xc). In particular, the role of the
long spatial range and the frequency dependence of the xc kernel
for excitonic binding are still not very well explored. We present a minimal
model for excitons in TDDFT, consisting of two bands from a one-dimensional
Kronig-Penney model and simple approximate xc kernels, which allows us to
address these questions in a transparent manner. Depending on the system, it is
found that adiabatic xc kernels can produce a single bound exciton, and
sometimes two bound excitons, where the long spatial range of is
not a necessary condition. It is shown how the Wannier model, featuring an
effective electron-hole interaction, emerges from TDDFT. The collective,
many-body nature of excitons is explicitly demonstrated.Comment: 12 pages, 11 figure
Transport of BMAA into Neurons and Astrocytes by System x\u3csub\u3ec\u3c/sub\u3e-
The study of the mechanism of β-N-methylamino-l-alanine (BMAA) neurotoxicity originally focused on its effects at the N-methyl-d-aspartate (NMDA) receptor. In recent years, it has become clear that its mechanism of action is more complicated. First, there are certain cell types, such as motor neurons and cholinergic neurons, where the dominate mechanism of toxicity is through action at AMPA receptors. Second, even in cortical neurons where the primary mechanism of toxicity appears to be activation of NMDA receptors, there are other mechanisms involved. We found that along with NMDA receptors, activation of mGLuR5 receptors and effects on the cystine/glutamate antiporter (system xc-) were involved in the toxicity. The effects on system xc- are of particular interest. System xc- mediates the transport of cystine into the cell in exchange for releasing glutamate into the extracellular fluid. By releasing glutamate, system xc- can potentially cause excitotoxicity. However, through providing cystine to the cell, it regulates the levels of cellular glutathione (GSH), the main endogenous intracellular antioxidant, and in this way may protect cells against oxidative stress. We have previously published that BMAA inhibits cystine uptake leading to GSH depletion and had indirect evidence that BMAA is transported into the cells by system xc-. We now present direct evidence that BMAA is transported into both astrocytes and neurons through system xc-. The fact that BMAA is transported by system xc- also provides a mechanism for BMAA to enter brain cells potentially leading to misincorporation into proteins and protein misfolding
Blunted Cystine–Glutamate Antiporter Function in the Nucleus Accumbens Promotes Cocaine-induced Drug Seeking
Repeated cocaine alters glutamate neurotransmission, in part, by reducing cystine–glutamate exchange via system xc−, which maintains glutamate levels and receptor stimulation in the extrasynaptic compartment. In the present study, we undertook two approaches to determine the significance of plasticity involving system xc−. First, we examined whether the cysteine prodrug N-acetylcysteine attenuates cocaine-primed reinstatement by targeting system xc−. Rats were trained to self-administer cocaine (1 mg/kg/200 μl, i.v.) under extended access conditions (6 h/day). After extinction training, cocaine (10 mg/kg, i.p.) primed reinstatement was assessed in rats pretreated with N-acetylcysteine (0–60 mg/kg, i.p.) in the presence or absence of the system xc− inhibitor (S)-4-carboxyphenylglycine (CPG; 0.5 μM; infused into the nucleus accumbens). N-acetylcysteine attenuated cocaine-primed reinstatement, and this effect was reversed by co-administration of CPG. Secondly, we examined whether reduced system xc− activity is necessary for cocaine-primed reinstatement. To do this, we administered N-acetylcysteine (0 or 90 mg/kg, i.p.) prior to 12 daily self-administration sessions (1 mg/kg/200 μl, i.v.; 6 h/day) since this procedure has previously been shown to prevent reduced activity of system xc−. On the reinstatement test day, we then acutely impaired system xc− in some of the rats by infusing CPG (0.5 μM) into the nucleus accumbens. Rats that had received N-acetylcysteine prior to daily self-administration sessions exhibited diminished cocaine-primed reinstatement; this effect was reversed by infusing the cystine–glutamate exchange inhibitor CPG into the nucleus accumbens. Collectively these data establish system xc− in the nucleus accumbens as a key mechanism contributing to cocaine-primed reinstatement
Reduction in Phencyclidine Induced Sensorimotor Gating Deficits in the Rat Following Increased System Xc − Activity in the Medial Prefrontal Cortex
Rationale: Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc −, a cystine–glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis.
Objectives: Our goal was to determine whether increased system xc − activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating.
Methods: In situ hybridization was used to map messenger RNA (mRNA) expression of xCT, the active subunit of system xc −, in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3–3 mg/kg, sc). N-Acetylcysteine (10–100 μM) and the system xc − inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 μM) were used to increase and decrease system xc − activity, respectively. The uptake of 14C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc − activity.
Results: The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of 14C-cystine in prefrontal cortical tissue punches, intraprefrontal cortical infusion of N-acetylcysteine (10–100 μM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-Acetylcysteine was without effect when coinfused with CPG (0.5 μM), indicating an involvement of system xc −.
Conclusions: These results indicate that phencyclidine disrupts sensorimotor gating through system xc − independent mechanisms, but that increasing cystine–glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine
- …
