
Marquette University
e-Publications@Marquette
Biomedical Sciences Faculty Research and
Publications Biomedical Sciences, Department of

1-1-2018

Transport of BMAA into Neurons and Astrocytes
by System xc-
Rebecca Albano
Marquette University, rebecca.albano@marquette.edu

Doug Lobner
Marquette University, doug.lobner@marquette.edu

Accepted version. Neurotoxicity Research, Vol. 33, No. 1 ( January 2018): 1-5. DOI. © 2018 Springer
Nature Switzerland AG. Used with permission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213086674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/biomedsci_fac
https://epublications.marquette.edu/biomedsci_fac
https://epublications.marquette.edu/biomedsci
https://doi.org/10.1007/s12640-017-9739-4


 

Marquette University 

e-Publications@Marquette 
 

Biomedical Sciences Faculty Research and Publications/College of Health 
Sciences 

 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in the citation below. 

 

Neurotoxicity Research, Vol. 33, No. 1 (January 2018): 1-5. DOI. This article is © Springer and 
permission has been granted for this version to appear in e-Publications@Marquette. Springer does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from Springer.  

 

Transport of BMAA into Neurons and 
Astrocytes by System xc-.  
 

Rebecca Albano 
Department of Biomedical Sciences, Marquette University, Milwaukee, WI 
Doug Lobner 
Department of Biomedical Sciences, Marquette University, Milwaukee, WI 
 

Abstract 
The study of the mechanism of β- N-methylamino- l-alanine (BMAA) neurotoxicity originally focused on its 
effects at the N-methyl- d-aspartate (NMDA) receptor. In recent years, it has become clear that its mechanism of 
action is more complicated. First, there are certain cell types, such as motor neurons and cholinergic neurons, 
where the dominate mechanism of toxicity is through action at AMPA receptors. Second, even in cortical 
neurons where the primary mechanism of toxicity appears to be activation of NMDA receptors, there are other 
mechanisms involved. We found that along with NMDA receptors, activation of mGLuR5 receptors and effects 
on the cystine/glutamate antiporter (system xc-) were involved in the toxicity. The effects on system xc- are of 
particular interest. System xc- mediates the transport of cystine into the cell in exchange for releasing glutamate 
into the extracellular fluid. By releasing glutamate, system xc- can potentially cause excitotoxicity. However, 
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through providing cystine to the cell, it regulates the levels of cellular glutathione (GSH), the main endogenous 
intracellular antioxidant, and in this way may protect cells against oxidative stress. We have previously published 
that BMAA inhibits cystine uptake leading to GSH depletion and had indirect evidence that BMAA is transported 
into the cells by system xc-. We now present direct evidence that BMAA is transported into both astrocytes and 
neurons through system xc-. The fact that BMAA is transported by system xc- also provides a mechanism for 
BMAA to enter brain cells potentially leading to misincorporation into proteins and protein misfolding.  
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Introduction 
The mechanism of β-N-methylamino-l-alanine (BMAA) toxicity can be divided into two general categories: 
effects at the level of the cell membrane and effects through misincorporation into proteins. Actions at the cell 
membrane originally focused on excitotoxicity induced by activation of N-methyl-d-aspartate (NMDA) receptors 
(Ross et al. [32] ; Weiss et al. [39] ). However, more recent reports have cast doubt on that effect being the main 
mechanism of toxicity. The two most sensitive neuronal populations to BMAA toxicity are motor neurons and 
cholinergic neurons. The BMAA-induced death in both cases is largely blocked by α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptor antagonists, but not by N-methyl-d-aspartate (NMDA) antagonists 
(Rao et al. [30] ; Liu et al. [17] ). Interestingly, both motor neurons and cholinergic neurons express large 
numbers of calcium-permeable AMPA receptor channels (Yin et al. [40] ; Carriedo et al. [4] ). Additionally, even 
in conditions where NMDA receptor antagonists are protective, the protection is not complete (Ross et al. [32] ; 
Weiss et al. [39] ). Consistent with this, we found that the non-competitive NMDA receptor antagonist MK-801 
blocked about 50% of BMAA toxicity. We found that two other distinct mechanisms were also involved in the 
toxicity. The mGluR5 receptor antagonist 6-methyl-2-[phenylethynyl]-pyridine (MPEP), and the free radical 
scavenger, trolox, provided additional protection against BMAA toxicity beyond that provided by MK-801. 
Furthermore, the combination of these agents provided significantly greater protection than either alone, 
suggesting that they were acting through distinct mechanisms (Lobner et al. [19] ). One possibility for BMAA-
induced oxidative stress is competition by BMAA with cystine at system xc- leading to decreased cystine uptake. 
We found that BMAA toxicity did involve action on system xc-, causing decreased cystine uptake leading to 
depletion of cellular glutathione and increased oxidative stress (Liu et al. [16] ). These results indicate a complex 
set of mechanisms for BMAA toxicity. Action on system xc- appears to play a central role, both through causing 
oxidative stress and through releasing glutamate, which can act on various glutamate receptors to induce 
excitotoxicity. 

The other main mechanism of BMAA-induced toxicity is through misincorporation into protein. BMAA has been 
shown to be incorporated into protein in cultures of human fibroblasts (MRC-5 cells), neuroblastoma (SH-SY5Y 
cells), and umbilical vein endothelial cells (HUVECs) The incorporation is inhibited by l-serine, suggesting that the 
BMAA is misincorporated in protein in exchange for l-serine. Additionally, BMAA treatment induces 
autofluorescence indicative of protein aggregation and apoptosis that was blocked by l-serine (Dunlop et al. [10] 
). BMAA has also been shown to be incorporated into protein in a cell-free system (Glover et al. [12] ). 

An interesting point regarding the different general mechanisms of BMAA toxicity is that system xc- can play a 
role in both. Our previous studies suggest that BMAA is toxic by competing with cystine at system xc-, leading to 
both glutathione depletion and excitotoxicity. In addition, if BMAA is transported by system xc-, it could provide 
a method for BMAA to enter cells where it could be misincorporated into protein. In the current study, we 
directly assess the mechanisms by which BMAA enters astrocytes and neurons by measuring the uptake of 
radiolabeled BMAA. 
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Methods 
Materials 
Timed pregnant Swiss Webster mice were obtained from Charles River Laboratories (Wilmington, DE). Serum 
was from Atlanta Biologicals (Lawrenceville, GA). 14C-BMAA was from PerkinElmer (Waltham, MA). All other 
chemicals were obtained from Sigma (St. Louis, MO). 

Cortical Cell Cultures 
Cortical cell cultures containing glial and neuronal cells were prepared from fetal (15-16-day gestation) mice as 
previously described (Lobner [18] ). Dissociated cortical cells were plated on 24-well plates coated with poly-d-
lysine and laminin in Eagles’ Minimal Essential Medium (MEM, Earle’s salts, supplied glutamine-free) 
supplemented with 5% heat-inactivated horse serum, 5% fetal bovine serum, 2 mM glutamine, and glucose 
(total 21 mM). Neuron-enriched cultures were prepared exactly as previously described with the addition of 
10 μM cytosine arabinoside 48 h after plating to inhibit glial replication. In these cultures, <1% of cells are 
astrocytes (Dugan et al. [9] ; Rush et al. [33] ). Astrocyte-enriched glial cultures were prepared as described for 
mixed cultures except they were from cortical tissue taken from post-natal day 1-3 mice (Choi et al. [5] ; 
Schwartz and Wilson [36] ; Rush et al. [33] ). Cultures were maintained in humidified 5% CO2 incubators at 37 °C. 
All experiments were performed on cultures DIV 13-15; at that age, neuronal cultures are defined as being 
mature in that they are sensitive to excitotoxicity and astrocyte cultures have formed a confluent layer of 
astrocytes. Culture media are not changed between plating and the experimental procedures. Mice were 
handled in accordance with a protocol approved by our institutional animal care committee and in compliance 
with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. 

14C-BMAA Uptake 
To assess 14C-BMAA uptake, cultures were washed three times with a HEPES-buffered saline solution and then 
exposed to 14C-BMAA (0.025 μCi/mL) for the indicated period of time in the HEPES-buffered saline solution. 
Following 14C-BMAA exposure, all cultures were washed three times with HEPES-buffered saline solution and 
dissolved in 250 μL warm sodium dodecyl sulfate (0.5%). Following a 30-min period, the media were mixed by 
pipetting up and down several times and a 200 μL aliquot was removed and added to scintillation fluid for 
counting. For inhibition studies, values were normalized to 14C-BMAA uptake in untreated controls on the same 
experimental plate. 

Statistical Analysis 
Differences between test groups were examined for statistical significance by means of one-way ANOVA 
followed by the Bonferroni correction post hoc test, with p < 0.05 being considered significant. N values 
represent individual wells on 24-well plates; data represent two independent experiments. 

Results 
We directly measured BMAA uptake by exposing cultures to 14C-BMAA and assessed the uptake of radioactivity 
using scintillation counting. To determine the best time point to measure 14C-BMAA uptake, we exposed mixed 
neuronal and astrocyte cultures to 14C-BMAA for different periods of time. Uptake of 14C-BMAA increased rapidly 
over the first 2 h before plateauing (Fig. 1). Therefore, we choose a 2-h period of uptake for the inhibitor studies. 
We tested the effects of the system xc- inhibitor sulfasalazine (SSZ) and the excitatory amino acid transporter 
(EAAT) inhibitor threo-β-benzyloxyaspartic acid (TBOA) on both astrocyte-enriched and pure neuronal cultures. 
Inhibition of system xc-, but not EAATs, significantly decreased 14C-BMAA uptake in astrocyte cultures (Fig. 2a), 
while inhibition of either system xc- or EAATs significantly decreased the uptake in neuronal cultures (Fig. 
2b).14C-BMAA uptake into mixed neuronal and astrocyte cultures was measured for the indicated duration. 
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Results are in disintegrations per minute (DPM) and are expressed as mean ± SEM (n = 8)14C-BMAA uptake into 
astrocyte-enriched cultures was partially blocked by the system xc- inhibitor sulfasalazine (SSZ) but not by the 
EAAT inhibitor TBOA (a), while uptake into pure neuronal cultures was partially blocked by both sulfasalazine 
and TBOA (b). Cultures were exposed to 14C-BMAA for 2 h. Results are expressed as mean + SEM (n = 8) after 
normalizing to untreated control uptake and expressed as % control. Asterisk indicates significantly different 
from control 

Discussion 
This is the first report directly assessing the mechanisms by which BMAA is transported into astrocytes or 
neurons. Previous studies have addressed questions regarding transport of BMAA into the brain and the 
accumulation of BMAA in the brain. The transport of BMAA across the blood-brain barrier has been shown to be 
mediated by the large neutral amino acid carrier (Smith et al. [38] ). Subsequent studies showed that the 
accumulation of radiolabeled BMAA in the brain is primarily in the protein-bound fraction and that injection of 
radiolabeled BMAA into pregnant mice leads to the accumulation of the BMAA in the brains of fetal mice 
(Karlsson et al. [15] ). Since the central nervous system uses amino acids such as glutamate and glycine as 
neurotransmitters, the release and uptake of amino acids within the brain must be tightly controlled. Two 
important systems for the regulation of amino acids in the CNS are system xc- and EAATs. Therefore, it is not 
surprising that both of these systems play a role in BMAA uptake. Of particular interest is the role of system xc- 
in BMAA transport because of the complex role that it plays in regulating neuronal death. 

System xc- is a sodium-independent, chloride-dependent amino acid transporter system localized in the plasma 
membrane. First characterized in human fibroblast cell cultures, system xc- is an antiporter that mediates the 
uptake of cystine into cells in exchange for exporting glutamate from the cell in a 1:1 ratio (Bannai and Kitamura 
[3] ; Bannai [2] ). Inhibition of system xc- mediated cystine uptake can lead to GSH depletion, oxidative stress, 
and cell death (Miyamoto et al. [23] ; Murphy et al. [25] , [26] ; Sagara et al. [34] ; Ratan et al. [31] ). In contrast, 
upregulation of system xc- can protect cells against oxidative stress-induced cell death. For example, insulin-like 
growth factor 1 (IGF-1) and transforming growth factor-β (TGF-β) upregulate system xc- activity and protect 
dental pulp cells against oxidative stress induced by dental materials (Pauly et al. [27] ). Interleukin-1β (IL-1β) 
upregulates system xc- activity, which protects astrocytes from oxidative stress induced by FeSO4 or tert-butyl 
hydroperoxide (tBOOH) exposure (He et al. [13] ). The other main function of system xc- is the regulation of 
extracellular glutamate concentrations. In contrast to the possible neuroprotective mechanism of system xc- 
against oxidative stress, it has been shown that glutamate release via system xc- can cause excitotoxicity and 
lead to neuronal death (Piani and Fontana [28] ; Qin et al. [29] ; Domercq et al. [8] ; Fogal et al. [11] ; Jackman et 
al. [14] ). 

Oxidative stress and excitotoxicity are two of the key mechanisms involved in cell death in neurodegenerative 
diseases (Coyle and Puttfarcken [6] ; Simonian and Coyle [37] ; Doble [7] ). The dual nature of system xc- suggests 
that it may provide antioxidant protection during times of increased oxidative stress; however, by releasing 
glutamate into the extrasynaptic space, it also has the potential to contribute to neuronal death through 
excitotoxicity. Therefore, the role of system xc- in neurodegenerative disease is likely complex and the data 
suggest that this is in fact the case. 

Concerning amyotrophic lateral sclerosis (ALS), system xc- has been shown to be upregulated in two different 
mouse SOD1 mutant models of ALS (Albano et al. [1] ; Mesci et al. [22] ). Interestingly, deletion of xCT in the 
SOD1-G37R mouse led to an earlier onset of symptoms followed by a prolonged symptomatic stage; at end 
stage of the disease, there were more surviving motor neurons (Mesci et al. [22] ). 
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To date, there are only a couple of in vivo studies that have assessed system xc- in Alzheimer’s disease. In 18-
month-old AßPP23 mice, expression of xCT, as assessed by western blot, was increased in the cortex. At this 
same time point, GLT-1 expression was decreased and there were increased levels of extracellular glutamate 
(Schallier et al. [35] ). Transgenic mice expressing human APP and wild-type mice injected with Aβ1-40 had 
increased xCT mRNA levels in microglia in amyloid plaques (Qin et al. [29] ). 

Studies regarding the effects of system xc- in Parkinson’s disease models have provided mixed results. In a hemi-
Parkinson rat model, injection of 6-hydroxydopamine (6-OHDA) caused an ipsilateral increase in xCT protein in 
the striatum (Massie et al. [20] ) and dopaminergic neurons in the substantia nigra pars compacta were 
protected from 6-OHDA injection in xCT−/− mice compared to wild-type mice (Massie et al. [21] ). These results 
suggest that system xc- may contribute to the neurodegeneration seen in PD. However, the anti-epileptic drug 
levetiracetam increased xCT expression in striatal astrocytes and significantly decreased dopaminergic cell loss 
in mice injected with 6-OHDA (Miyazaki et al. [24] ). 

The mixed results regarding the beneficial or damaging effects of system xc- in neurodegenerative diseases are 
not surprising considering its dual effects. However, two factors are important concerning the role of system xc- 
in the toxicity of BMAA. First, in each of the diseases described earlier, there is an upregulation of system xc-. 
Whether the upregulation is beneficial or damaging under conditions where BMAA is not present appears to 
vary. Second, BMAA negates the beneficial effects of system xc- by blocking cystine uptake but promotes the 
damaging effect by driving glutamate release. Therefore, in conditions of upregulation of system xc-, the 
presence of BMAA is likely to be even more damaging than normal. 

Another important effect that we observed was that blocking EAATs also partially blocked BMAA uptake into 
neurons. This result is of interest in two ways. First, it provides another mechanism for BMAA to enter neurons. 
Second, it suggests the possibility that BMAA may competitively inhibit glutamate uptake. If BMAA both drives 
glutamate release by acting on system xc- and inhibits glutamate uptake by EAATs, this could lead to high 
extracellular glutamate concentrations and excitotoxicity. Therefore, there are a number of reasons to believe 
that BMAA acting at the level of amino acid transporters on astrocytes and neurons plays a role in its potential 
involvement in neurodegenerative diseases. 
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Figure 1. 14C-BMAA uptake into mixed neuronal and astrocyte cultures was measured for the indicated duration. 
Results are in disintegrations per minute (DPM) and are expressed as mean ± SEM (n = 8) 
 

 
 
Figure 2 14C-BMAA uptake into astrocyte-enriched cultures was partially blocked by the system xc- inhibitor 
sulfasalazine (SSZ) but not by the EAAT inhibitor TBOA (a), while uptake into pure neuronal cultures was partially 
blocked by both sulfasalazine and TBOA (b). Cultures were exposed to 14C-BMAA for 2 h. Results are expressed 
as mean + SEM (n = 8) after normalizing to untreated control uptake and expressed as % control. Asterisk 
indicates significantly different from control 
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