2 research outputs found

    XHX - A Framework for Optimally Secure Tweakable Block Ciphers from Classical Block Ciphers and Universal Hashing

    Get PDF
    Tweakable block ciphers are important primitives for designing cryptographic schemes with high security. In the absence of a standardized tweakable block cipher, constructions built from classical block ciphers remain an interesting research topic in both theory and practice. Motivated by Mennink\u27s F[2] publication from 2015, Wang et al. proposed 32 optimally secure constructions at ASIACRYPT\u2716, all of which employ two calls to a classical block cipher each. Yet, those constructions were still limited to n-bit keys and n-bit tweaks. Thus, applications with more general key or tweak lengths still lack support. This work proposes the XHX family of tweakable block ciphers from a classical block cipher and a family of universal hash functions, which generalizes the constructions by Wang et al. First, we detail the generic XHX construction with three independently keyed calls to the hash function. Second, we show that we can derive the hash keys in efficient manner from the block cipher, where we generalize the constructions by Wang et al.; finally, we propose efficient instantiations for the used hash functions

    Generic Attack on Iterated Tweakable FX Constructions

    Get PDF
    International audienceTweakable block ciphers are increasingly becoming a common primitive to build new resilient modes as well as a concept for multiple dedicated designs. While regular block ciphers define a family of permutations indexed by a secret key, tweakable ones define a family of permutations indexed by both a secret key and a public tweak. In this work we formalize and study a generic framework for building such a tweakable block cipher based on regular block ciphers, the iterated tweakable FX construction, which includes many such previous constructions of tweakable block ciphers. Then we describe a cryptanal-ysis from which we can derive a provable security upper-bound for all constructions following this tweakable iterated FX strategy. Concretely, the cryptanalysis of r rounds of our generic construction based on n-bit block ciphers with κ-bit keys requires O(2 r r+1 (n+κ)) online and offline queries. For r = 2 rounds this interestingly matches the proof of the particular case of XHX2 by Lee and Lee (ASIACRYPT 2018) thus proving for the first time its tightness. In turn, the XHX and XHX2 proofs show that our generic cryptanalysis is information theoretically optimal for 1 and 2 rounds
    corecore