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Generic Attack on Iterated Tweakable FX
Constructions
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Inria, France
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Abstract. Tweakable block ciphers are increasingly becoming a com-
mon primitive to build new resilient modes as well as a concept for
multiple dedicated designs. While regular block ciphers define a family
of permutations indexed by a secret key, tweakable ones define a fam-
ily of permutations indexed by both a secret key and a public tweak.
In this work we formalize and study a generic framework for building
such a tweakable block cipher based on regular block ciphers, the it-
erated tweakable FX construction, which includes many such previous
constructions of tweakable block ciphers. Then we describe a cryptanal-
ysis from which we can derive a provable security upper-bound for all
constructions following this tweakable iterated FX strategy. Concretely,
the cryptanalysis of r rounds of our generic construction based on n-bit
block ciphers with κ-bit keys requires O(2

r
r+1 (n+κ)) online and offline

queries. For r = 2 rounds this interestingly matches the proof of the par-
ticular case of XHX2 by Lee and Lee (ASIACRYPT 2018) thus proving
for the first time its tightness. In turn, the XHX and XHX2 proofs show
that our generic cryptanalysis is information theoretically optimal for 1
and 2 rounds.

1 Introduction

Tweakable block ciphers have been the focus of many recent works in the field of
symmetric cryptography as it provides a very interesting flexibility compared to
regular block ciphers. Formally, a block cipher is defined as a family of permu-
tations indexed by a secret key, thus an n-bit block cipher E indexed by a κ-bit
key is an application E : {0, 1}κ×{0, 1}n → {0, 1}n. Whereas a tweakable block
cipher is a family of permutations indexed by both a secret key and a public
tweak, thus an n-bit tweakable block cipher Ẽ indexed by a κ̃-bit secret key and
a τ -bit public tweak is an application Ẽ : {0, 1}κ̃ × {0, 1}τ × {0, 1}n → {0, 1}n.
They have been formalized by Liskov, Rivest and Wagner [LRW11].

On the other hand, regular block ciphers benefit from a longer history of
research which gave birth to many designs and implementations notably includ-
ing the DES [DES77] and the AES [AES01]. Therefore a natural question is:
how can we build a tweakable block cipher out of regular block ciphers? In fact



this line of study inspired new modes of operations like OCB [RBBK01] and
PMAC [BR02] that benefits from a relatively easy two-step proof: first we show
that the main construction is secure when used along with a tweakable block
cipher then we construct such tweakable block cipher with a regular block cipher
to fully describe the mode. A first approach can be to append a tweak with the
secret key such that the concatenation becomes the effective key to the regular
block cipher. Given security under related key attacks this can work but at the
cost of security: the size of the secret key will have to be reduced to make space
for the tweak.

To go around this limitation Liskov et al. described two constructions LRW1
and LRW2 [LRW11]. In particular LRW2 is somehow remindful of the FX construc-
tion that adds an n-bit key before the input and another after the output of
the underlying block cipher. The FX construction has been proposed by Kil-
lian and Rogaway [KR96] in a different context: they investigated DESX, an
easy solution to protect DES against an exhaustive key search. FX consists in
adding one n-bit subkey before and another one after the block cipher. With such
strategy they proved that the time complexity of the best generic cryptanalysis
goes from O(2κ) to O(2κ+n/D) where D is the data or online query complexity.
The FX construction has since been notably used in PRINCE [BCG+12] and
PRIDE [ADK+14]. We can naturally iterate r rounds of the FX construction
which requires to have r κ-bit subkeys along with (r + 1) n-bit subkeys. Then
the idea to build a tweakable block cipher is to blend the tweak and the master
key together in a predefined key schedule to obtain all the required subkeys for
the computation.

1.1 Notations

First we formally describe the r-round tweakable iterated FX construction (Fig-
ure 2) on which our results apply. Let E1,2,...,r(u, ·) be r block ciphers with κ-bit
key u and n-bit input and output. Let k be the κ̃-bit master key of the tweakable
block cipher construction. Let t be a tweak of arbitrary length. Let γi(k, t) be
the subkey for the ith block cipher of length κ-bit for 1 ≤ i ≤ r and λi(k, t) the
n-bit subkeys to XOR in the state for 0 ≤ i ≤ r. For example the r = 2-round
tweakable FX construction (Figure 1) Ẽk(t, m) is described as:

Ẽk(t, m) = E2
(
γ2(k, t), E1

(
γ1(k, t), m⊕ λ0(k, t)

)
⊕ λ1(k, t)

)
⊕ λ2(k, t)

We will focus on generic key recovery attacks. The goal of the cryptanalysis of
Ẽk(t, m) is to recover k by doing offline queries to E1,2,...,r(·, ·) and online queries
to Ẽk(·, ·). We don’t count the number of calls to the γ and λ functions generating
the subkeys as queries because we don’t assume any security property for them.
In fact it is common for the subkeys to assume some almost uniformity, almost
universality or almost XOR-universality property with respect to the tweak (See
Definition 1). This makes the analysis proper for most of the constructions we cite
except for F̃ [2] by Mennink [Men15] which can be seen as a 1-round tweakable
FX where the subkey functions reuse the block cipher itself.
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Definition 1. Let δ > 0 and a function λ : K × T → Y for non-empty sets
K, T ,Y.

– λ(k, t) is said to be δ-almost uniform if for any t ∈ T and any y ∈ Y,

Pr
(
k ←$ K : λ(k, t) = y

)
≤ δ .

– λ(k, t) is said to be δ-almost universal (AU) if for any distinct t and t′ ∈ T ,

Pr
(
k ←$ K : λ(k, t) = λ(k, t′)

)
≤ δ .

– λ(k, t) is said to be δ-almost XOR-universal (AXU) if for any distinct t and
t′ ∈ T and any y ∈ Y,

Pr
(
k ←$ K : λ(k, t)⊕ λ(k, t′) = y

)
≤ δ .

While our results do not depend on the repartition of the tweak space, having
arbitrary long tweaks is justified by the XTX transformation of Minematsu and
Iwata [MI15]. Indeed XTX transforms a tweakable block cipher with a tweak
of limited length to one with a tweak of arbitrary length without, in our case,
affecting the general iterated tweakable FX structure as it simply affects the
subkey functions.

m E1 E2 Ẽk(t, m)

γ1(k, t) γ2(k, t)
λ0(k, t) λ1(k, t) λ2(k, t)

Fig. 1. 2-Round Tweakable FX.

1.2 Previous Works

In the same paper where they formalize the concept of tweakable block ciphers,
Liskov, Rivest and Wagner proposed two constructions often known as LRW1
and LRW2 [LRW11]. LRW1 consists in adding the tweak between two calls of
the block cipher while LRW2 evaluates a keyed universal hash function on the
tweak and adds it twice: before the input and after the output of the block
cipher. These modes are described as Ẽk(t, m) = Ek(t⊕Ek(m)) and Ẽk(t, m) =
Ek(m⊕h(t))⊕h(t) respectively with the requirement that h be an almost XOR-
universal function. They also provide security proofs roughly up to 2n/2 for both
schemes. Matching attacks on LRW1 and LRW2 are trivial as they both allow
for an easy distinguisher after the first collision at the birthday bound. Other
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constructions of tweakable block cipher related to LRW2 include XE and XEX by
Rogaway [Rog04] and used in the OCB mode of operation.

In the quest for optimal security Mennink proposed the constructions F̃ [1]
and F̃ [2] [Men15]. The latter reaches a provable security of 2n queries which
is the optimal security in the standard model for regular block ciphers. Other
works tried to build a tweakable block cipher based solely on public permutations
in the style of Even-Mansour [EM93]. Such tweakable block ciphers includes
TEM [CLS15] and XPX [Men16] that are also subject to a tight birthday bound
security of O(2n/2). Then Jha, List, Minematsu, Mishra and Nandi described
a framework called XHX [JLM+17] and proved its security up to 2(n+κ)/2. They
also describe generalised XHX, GXHX. In particular this means that a provable
security beyond 2n is reachable but in the ideal cipher model where rekeying is
possible. This framework uses a single-round FX framework where all 3 subkeys
are derived from a universal hash function on the secret master key and an
arbitrarily long tweak.

So far, with the exception of GXHX, the proofs of all schemes cited can be
shown to be tight. However, things become more involved when trying to iterate
those constructions. Landecker et al. [LST12] proposed to iterate two indepen-
dent evaluations of LRW2 and proved a security up to 22n/3 queries. An attack
on cascaded LRW2 (or CLRW2) has been later proposed by Mennink [Men18] in
query complexity O(23n/4) not completely closing the gap. Then, recently, Lee
and Lee proposed XHX2 [LL18] by iterating two independent rounds of XHX. They
managed to prove a query security lower bound of min{2 2

3 (n+κ), 2n+κ/2} and left
the tightness of this bound as an open question which we will be able to answer
positively in this work.

On the other hand, a generic cryptanalysis of the r-round iterated FX con-
struction has already been made with the original attack by Gaži [Gaž13] in
query complexity O(2 r−1

r n+κ). Obviously this attack can be used against our
tweakable version when we fix the tweak to a single value. As it is written, the
attack starts by querying all the code books of the secret cipher that makes
the maximum possible 2n calls. However this natural limitation of regular block
ciphers has no ground in the presence of tweaks. Much like one can have security
proofs beyond 2n calls, one could attack a tweakable cipher using more than 2n

tweak/plaintext/ciphertext triples.

1.3 Results

Our generic iterated tweakable FX framework is pertinent to all cited construc-
tions as shown in Table 1. Using a single-round FX to blend in the tweak is
the most common approach and may be considered as well understood. However
there seem to be additional security to be gained in iterating those construc-
tions. Some works [LST12] [LL18] tend to do and prove just that. The focus on
2 rounds is justified by the fact that we don’t know of any constructions based
on block ciphers using more than 2 rounds and the single-round ones mostly
have already well understood matching attacks. However we believe it is also
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Table 1. Some previously proposed schemes and description of how it fits in our
iterated tweakable FX generic framework.
Multiplications (×) are over the finite field GF(2n).

Ref Scheme r Subkey functions

[LRW11] LRW2 1 λ0(k, t) = λ1(k, t) a uniform and AXU function.
γ1(k, t) = k

[Men15] F̃ [1] 1 λ0(k, t) = λ1(k, t) = t× k γ1(k, t) = t⊕ k

[Men15] F̃ [2] 1 λ0(k, t) = λ1(k, t) = E1(2× k, t) γ1(k, t) = t⊕ k

[Men16] XPX 1 κ = 0 so E1(·, m) = P (m) t = t11 ∥ t12 ∥ t21 ∥ t22
λ0(k, t) = t11k ⊕ t12P (k) λ1(k, t) = t21k ⊕ t22P (k)

[JLM+17] XHX 1 γ1(k, t) a uniform and AU function.
λ0(k, t) = λ1(k, t) a uniform and AXU function.

[LRW11] LRW1 2 λ0(k, t) = λ2(k, t) = 0 λ1(k, t) = t
γ1(k, t) = γ2(k, t) = k

[LST12] CLRW2 2 λ0(k, t) and λ2(k, t) two uniform and AXU functions.
λ1(k, t) = λ0(k, t)⊕ λ2(k, t) γ1(k, t) = γ2(k, t) = k

[LL18] XHX2 2 γ1(k, t) and γ2(k, t) two uniform and AU functions.
λ0(k, t) and λ2(k, t) two uniform and AXU functions.
λ1(k, t) = λ0(k, t)⊕ λ2(k, t)

interesting to know what kind of security bounds we might hope to achieve by
iterating even further.

So in this paper we ask ourselves what is the best security bound attain-
able when using the iterated FX paradigm for building tweakable block ciphers
from regular block ciphers. To do this we improve on the attack described by
Gaži [Gaž13] to apply it in the tweakable block cipher setting.

First we show an information theoretic attack for r = 2 rounds when κ ≤ 2n
with offline and online query complexity of:

Q = O(2 2
3 (n+κ) · 3

√
κ̃/n) .

Note that Q = O(2 2
3 (n+κ)) under the reasonable assumption that the size of the

master secret key is linear with respect to the state size, that is, κ̃ = O(n).
The recent construction XHX2 by Lee and Lee [LL18] is a particular case of

our setting where λ1(k, t) = λ0(k, t) ⊕ λ2(k, t). Their provable security bound
is 2 2

3 (n+κ) whenever κ ≤ 2n and therefore matches our attack. Thus our results
prove the tightness of their bound and their bound proves the optimality of the
attack.

We then extend the attack to multiple rounds of the same construction. This
gives an attack on r rounds when κ ≤ rn with query complexity:

Q = O(2
r

r+1 (n+κ) · r+1
√

κ̃/n) .

Again note that Q = O(2
r

r+1 (n+κ)) under the assumption that κ̃ = O(n).
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Table 2. Some previously proposed schemes with their known asymptotic bounds.

Ref Scheme r Proof Known Attack Our Generic Attack

[LRW11] LRW2 1 2n/2 2n/2 2
1
2 (n+κ)

[Men15] F̃ [1] 1 2
2
3 n 2n 2n (as κ = n)

[Men16] XPX 1 2n/2 2n/2 2n/2 (as κ = 0)
[JLM+17] XHX 1 2

1
2 (n+κ) 2

1
2 (n+κ) 2

1
2 (n+κ)

[JLM+17] GXHX 1 2
1
2 (n+κ) none 2

1
2 (n+κ)

[Men15] F̃ [2] 1 2n 2n N.A.

[LRW11] LRW1 2 2n/2 2n/2 2
2
3 (n+κ)

[LST12] CLRW2 2 22n/3 23n/4 2
2
3 (n+κ)

[LL18] XHX2 2 2
2
3 (n+κ) none 2

2
3 (n+κ)

2 Cryptanalysis of 2-Round Tweakable FX

In this section we give an algorithm to extract the master key of a 2-round
tweakable FX construction, Algorithm 1, then we show how it works by deriving
the constants used and thus deriving the total query complexity.

2.1 The Algorithm

This cryptanalysis of Algorithm 1 is a key recovery attack and follows the idea
of the original cryptanalysis by Gaži [Gaž13]: we want just enough data to con-
struct contradictory paths for each wrong key. First we do all the required offline
computations under all possible κ-bit key. Input values are the sets S1 and S2
which can be chosen randomly and the input/output pairs under the key j are
stored in Lj,1 and Lj,2 for E1 and E2 respectively. Then we store all observable
tweak/plaintext/ciphertext triples in L0. We don’t need to choose the set S0 of
inputs to the tweakable block cipher as the attack works in the known plaintext
setting. At last we can test all the κ-bit keys; potential master keys k only using
the stored values by reconstructing the paths round by round.

Indeed sets A and B reconstruct the paths under the current key guess and
the condition ∀(t, m, b) ∈ B : (t, m, b ⊕ γ5(k, t)) ∈ L0 is checking whether there
is a contradictory path (if not satisfied) or not (if satisfied). The additional
condition |B| ≥ ν is simply here to ensure a good reduction.

For completeness we provide Algorithm 2 to show how to construct the sets A
and B. To construct A is to apply Algorithm 2 with inputs S0,Lγ1(k,t),1, λ0(k, t).
It is basically looking over all elements of the first set and checking if a shifted
version of a value exists somewhere in the second set then, if found, it records
the starting and ending values.

The constants ν and Q are derived in Section 2.2 and the algorithm already
ensures that the total query complexity is of magnitude Q. Indeed once we
construct the sets Lj,i and L0 we will have all the necessary queries to perform
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Algorithm 1 Cryptanalysis of 2-round tweakable FX construction.
Input: κ̃, n, κ ≤ 2n, Ẽ, E1, E2, γ1, γ2, λ0, λ1, λ2
Output: k : the master key of Ẽ

ν ← κ̃/n

Q← 2
2
3 (n+κ) · 3

√
ν ▷ Constants derived in Section 2.2

Randomly sample S1 ⊂ {0, 1}n with |S1| = Q/2κ = 2
2n−κ

3 3√ν .
Randomly sample S2 ⊂ {0, 1}n with |S2| = Q/2κ = 2

2n−κ
3 3
√

ν .
for all j ∈ {0, 1}κ do
Lj,1 ←

{(
m, E1(j, m)

)
: m ∈ S1

}
Lj,2 ←

{(
m, E2(j, m)

)
: m ∈ S2

}
▷ Offline Queries Sets

end for

Let S0 ⊂ {0, 1}∗ × {0, 1}n with |S0| = Q be an observable tweak/message set.
L0 ←

{(
t, m, Ẽ(t, m)

)
: (t, m) ∈ S0

}
▷ Online Queries Set

for all k ∈ {0, 1}κ̃ do
A ←

{(
t, m, a

)
: (t, m) ∈ S0, (m⊕ λ0(k, t), a) ∈ Lγ1(k,t),1

}
B ←

{(
t, m, b

)
: (t, m, a) ∈ A, (a⊕ λ1(k, t), b) ∈ Lγ2(k,t),2

}
▷ by Algorithm 2

if |B| ≥ ν and ∀(t, m, b) ∈ B : (t, m, b⊕ λ2(k, t)) ∈ L0 then
return k

end if
end for
return ∅ ▷ No proper key in the set

the attack. Since |Lj,i| = |Si| = Q/2κ and there are 2κ different possible subkeys
then the total number of queries to E1 and E2 is Q. Then we also construct L0
so the number of online queries will also be |L0| = |S0| = Q.

2.2 Deriving The Constants

The Query Complexity. To derive the constant Q used in Algorithm 1 we first
focus on what happens when we guess the correct master key k. In that case
we want to make sure that |B| ≥ ν happens with good probability as the other
constraint is always true by construction of the scheme.

First let’s look at the set A:

A ←
{(

t, m, a
)

: (t, m) ∈ S0, (m⊕ λ0(k, t), a) ∈ Lγ1(k,t),1
}

By construction there are Q values (t, m) ∈ S0 and, as S1 is chosen randomly
and independently, there is a |S1|/2n probability that (m ⊕ λ0(k, t)) ∈ S1 for
each (t, m) observed and thus that there exists an a such that (m⊕λ0(k, t), a) ∈
Lγ1(k,t),1. Therefore in expectation we have |A| = Q2/2n+κ.

We do the same reasoning for B:

B ←
{(

t, m, b
)

: (t, m, a) ∈ A, (a⊕ λ1(k, t), b) ∈ Lγ2(k,t),2
}
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Algorithm 2 Set construction.
Input: S1,S2, ℓ
Output: S3 ←

{(
e, s3

)
: (e, s1) ∈ S1, (s1 ⊕ ℓ, s3) ∈ S2

}
S3 ← ∅
for all (e, s1) ∈ S1 do

if ∃s3 : (s1 ⊕ ℓ, s3) ∈ S2 then
S3 ← S3 ∪ {(e, s3)}

end if
end for
return S3

to find that in expectation |B| = Q3/22n+2κ.
With some regularity assumptions, if |B| = ν in expectation then |B| ≥ ν

with constant probability. Therefore we put:

Q3/22n+2κ = ν =⇒ Q = 2 2
3 (n+κ) · 3

√
ν

The Number of Paths. The constant Q was derived so that we don’t have false
negatives, that is, we succeed with good probability when we guess the good key
k. Now we derive the constant ν so that we don’t have any false positive that
means the test fails with good probability for all the wrong guesses of k.

First notice that the fact that |B| = ν in expectation is true for all guesses of k,
good or wrong. If |B| < ν then the test fails as it should. If |B| ≥ ν then we need
to look at the second condition that is ∀(t, m, b) ∈ B : (t, m, b⊕λ3(k, t)) ∈ L0. If
the guess is wrong then for a given (t, m, b) ∈ B we have (b⊕ λ3(k, t)) = Ẽ(t, m)
with a 2−n probability. Since |B| ≥ ν then the second condition is satisfied with
probability (2−n)ν = 2−ν·n. The test must fail for all the wrong guesses and
there are 2κ̃ − 1 such wrong guesses so all the tests should fail at least with
constant probability when:

2κ̃ · 2−ν·n ≤ 1 =⇒ κ̃− ν · n ≤ 0 =⇒ ν ≥ κ̃/n

thus we take ν = κ̃/n.

2.3 Constraints

For all of this to work there are some constraints that need to be spelled out.
First we require that:

1 ≤ |Si|

⇐⇒ 1 ≤ 2 2
3 n− 1

3 κ · 3
√

ν

⇐⇒ κ ≤ 2n + log(ν)

which limits to possible size of κ to a multiple of the state size n. Very few block
ciphers admit a key larger than 2n so this is not a strong limitation in practice.
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We also need to have diverse tweakable subkeys. Indeed so far we did not
require that the functions γi(k, t) depends on t which means that the tweak can
be put, or not, at any stage of the construction but we still require that the
tweak changes something. Therefore we can deduce such requirement:

∀k ∈ {0, 1}κ̃ ∀(t, m) ∈ S0 ∀(t′, m′) ∈ S0 :
t ̸= t′ =⇒ ∃i : γi(k, t) ̸= γi(k, t′) OR λi(k, t) ̸= λi(k, t′)

which means that for every pairs of two different observed tweaks at least one
of the respective implied subkeys must be different. This condition mostly en-
sure that this is a reasonable tweakable block cipher construction. Indeed in
the case where two tweaks imply the exact same subkeys then one can quickly
realise that it gets the same permutation for two different tweaks which is a
near zero probability event for a perfect tweakable block cipher and hence it’s a
distinguisher.

3 Cryptanalysis of r-Round Tweakable FX

Starting from the attack of Section 2 we show how to generalise it to attack
r ≥ 1 rounds of the same construction in Q = O(2

r
r+1 (n+κ) · r+1

√
κ̃/n) query

complexity. The strategy is the same, we begin by doing all the necessary queries
before reconstructing paths round by round to finally check whether there is a
contradictory path or not. This is Algorithm 3.

m E1 E2 ... Er Ẽk(t, m)

γ1(k, t) γ2(k, t) γr(k, t)
λ0(k, t) λ1(k, t) λ2(k, t) λr(k, t)

Fig. 2. r-Round Tweakable FX.

3.1 Constants and Complexity

The Query Complexity. We derive the constant Q used in Algorithm 3 in the
same way as we did for the 2-round version. First we focus on what happens
when we guess the correct master key k. In that case we want to make sure
that |B| ≥ ν happens with good probability as contradictory paths cannot exist
under the correct key.

Let’s look at the set A1:

A1 ←
{(

t, m, a
)

: (t, m) ∈ S0, (m⊕ λ0(k, t), a) ∈ Lγ1(k,t),1
}

9



Algorithm 3 Cryptanalysis of r-round tweakable FX construction.
Input: κ̃, n, κ ≤ rn, Ẽ, E1, E2, ..., Er, γ1, γ2, ..., γr, λ0, λ1, λ2, ..., λr

Output: k : the master key of Ẽ
1: ν ← κ̃/n

2: Q← 2
r

r+1 (n+κ) · r+1√ν

3: for all i ∈ {1, ..., r} do
4: Randomly sample Si ⊂ {0, 1}n with |Si| = Q/2κ = 2

rn−κ
r+1 r+1√ν .

5: end for
6: for all j ∈ {0, 1}κ do
7: for all i ∈ {1, ..., r} do
8: Lj,i ←

{(
m, Ei(j, m)

)
: m ∈ Si

}
▷ Offline Queries Sets

9: end for
10: end for

11: Let S0 ⊂ {0, 1}∗ × {0, 1}n with |S0| = Q be an observable tweak/message set.
12: L0 ←

{(
t, m, Ẽ(t, m)

)
: (t, m) ∈ S0

}
▷ Online Queries Set

13: for all k ∈ {0, 1}κ̃ do
14: A1 ←

{(
t, m, a

)
: (t, m) ∈ S0, (m⊕ λ0(k, t), a) ∈ Lγ1(k,t),1

}
15: for all i ∈ {2, ..., r} do
16: Ai ←

{(
t, m, a

)
: (t, m, ā) ∈ Ai−1, (ā⊕ λi−1(k, t), a) ∈ Lγi(k,t),i

}
17: end for ▷ by Algorithm 2
18: if |Ar| ≥ ν and ∀(t, m, a) ∈ Ar : (t, m, a⊕ λr(k, t)) ∈ L0 then
19: return k
20: end if
21: end for
22: return ∅ ▷ No proper key in the set

By construction there are Q values (t, m) ∈ S0 and, as S1 is chosen randomly and
independently, there is a |S1|/2n probability that ∃a : (m⊕λ0(k, t), a) ∈ Lγ1(k,t),1
for all observed tweak/message pairs (t, m). Therefore, in expectation, we have
|A1| = Q2/2n+κ.

Then we can easily prove by induction that |Ai| = Qi+1/2i(n+κ) as it is true
for |A1| and |Ai+1| = |Ai| · |Si+1|/2n. Thus we get |Ar| = Qr+1/2r(n+κ).

With some regularity assumptions, if in expectation |Ar| = ν then |Ar| ≥ ν
with constant probability. Therefore we put:

Qr+1/2r(n+κ) = ν =⇒ Q = 2
r

r+1 (n+κ) · r+1
√

ν

The Number of Paths. The constant Q was derived so that we avoid false negative
when we guess the good key k. Now we derive the constant ν to avoid false
positives.

If |Ar| < ν then the test fails as it should. If |Ar| ≥ ν then the second
condition is satisfied with probability (2−n)ν = 2−ν·n. The test must fail for
all the 2κ̃ − 1 wrong guesses so all the tests should fail at least with constant
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probability when:

2κ̃ · 2−ν·n ≤ 1 =⇒ κ̃− ν · n ≤ 0 =⇒ ν ≥ κ̃/n

thus we take ν = κ̃/n.
For all of this to work there are again some constraints. First we require that:

1 ≤ |Si|
⇐⇒ κ ≤ rn + log(ν)

which limits to possible size of κ to a multiple of the state size n.
Then we have the condition that the tweak changes something:

∀k ∈ {0, 1}κ̃ ∀(t, m) ∈ S0 ∀(t′, m′) ∈ S0 :
t ̸= t′ =⇒ ∃i : γi(k, t) ̸= γi(k, t′) OR λi(k, t) ̸= λi(k, t′)

Notice that this condition prevents the known matching attack on XHX. Indeed,
as for XHX r = 1 and λ0 = λ1, a collision on the full subkeys is expected after
trying O(2(n+κ)/2) different tweaks. Our attack has the same complexity and
also work on the generalised setting GXHX that doesn’t enforce λ0 = λ1. This
shows that the security cannot improve even if a collision on the full subkeys
is made hard by, for example, choosing many different subkey functions or by
using a mode of operation that limits the amount of different observable tweaks.

3.2 Discussion

Using Tweakable Block Ciphers. If instead of regular block ciphers we use tweak-
able block ciphers then it is not trivial to adapt this attack. Indeed we use the
fact that the master key and the tweak must be blended before computation
and not separately plugged in a tweakable block cipher. Such construction of a
tweakable block cipher based on another tweakable block cipher could be used
to increase security and/or the size of the tweak in a way that the original FX
construction builds a stronger block cipher from another block cipher. However
on the cryptanalysis side what can always be done is to fix a single tweak and
apply the original attack by Gaži [Gaž13] in query complexity O(2 r−1

r n+κ) or
O(2

r
r+1 (n+κ)) when κ ≤ n

r .

Weaker Constructions. This attack is generic given any reasonable key schedule
represented by the λ and γ functions. However they are particular cases where
better attacks are possible. In particular the cascaded LRW2 construction is a
2-round tweakable FX construction where the key in the block cipher does not
vary with the tweaks (γ1 and γ2 don’t depend on t). This construction permits
an attack in O(2 3n

4 ) by Mennink [Men18] using only two different tweaks which
beats our generic attack as soon as κ > n

8 .
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Tweak-rekeying. In fact our generic attack being a key recovery attack it will
require at least 2κ calls to the underlying block cipher. As soon as k ≥ n this
implies a complexity above 2n. Mennink [Men17] showed that provable 2n secu-
rity is unattainable in the standard block cipher model used for the proofs of
schemes without tweak-rekeying. Therefore our generic attack can only hope to
be tight for schemes that use tweak-rekeying and thus that are proved in the
ideal block cipher model.

Key recovery and distinguisher. The fact that the complexity of this cryptanal-
ysis depends on the size of the master key, even if a little, makes it hardly
comparable to distinguishers that are independent of the master key size. In-
stead of waiting for some bad event to occur we collect just enough information
to completely determine the master key. In the case of XHX the known distin-
guisher has the same asymptotic complexity but the widely different approaches
make them hard to combine: a bad event for the known distinguisher gives no
information on the master key. However for XHX2, and generally for r ≥ 2 rounds
of the tweakable FX construction proved in the ideal cipher model, it may well
be the case that a key recovery approach is more relevant than looking for a
suitable bad event for a distinguisher.

Towards Simplicity. The attack on generic 2-round tweakable FX is also tight
since Lee and Lee could prove with XHX2 [LL18] that we can reach this level of
security even when λ1(k, t) = λ0(k, t) ⊕ λ2(k, t) with some conditions on those
functions. Moreover the previously known matching attack on XHX [JLM+17]
exploited the fact that λ0(k, t) = λ1(k, t) but our generic attack shows that it
cannot be made more secure without this simplification. Another way to say it
is that enforcing λ0(k, t) = λ1(k, t) does not affect the provable security bound.

Using this iterated tweakable FX paradigm, one can therefore wonder how
much it is possible to simplify the subkey functions while maintaining an optimal
provable security with respect to the generic security upper bound shown in this
work.
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