2 research outputs found

    A simple encoder scheme for distributed residual video coding.

    Get PDF
    Rate-Distortion (RD) performance of Distributed Video Coding (DVC) is considerably less than that of conventional predictive video coding. In order to reduce the performance gap, many methods and techniques have been proposed to improve the coding efficiency of DVC with increased system complexity, especially techniques employed at the encoder such as encoder mode decisions, optimal quantization, hash methods etc., no doubt increase the complexity of the encoder. However, low complexity encoder is a widely desired feature of DVC. In order to improve the coding efficiency while maintaining low complexity encoder, this paper focuses on Distributed Residual Video Coding (DRVC) architecture and proposes a simple encoder scheme. The main contributions of this paper are as follows: 1) propose a bit plane block based method combined with bit plane re-arrangement to improve the dependency between source and Side Information (SI), and meanwhile, to reduce the amount of data to be channel encoded 2) present a simple iterative dead-zone quantizer with 3 levels in order to adjust quantization from coarse to fine. The simulation results show that the proposed scheme outperforms DISCOVER scheme for low to medium motion video sequences in terms of RD performance, and maintains a low complexity encoder at the same time

    Wyner-Ziv video coding for wireless lightweight multimedia applications

    Get PDF
    Wireless video communications promote promising opportunities involving commercial applications on a grand scale as well as highly specialized niche markets. In this regard, the design of efficient video coding systems, meeting such key requirements as low power, mobility and low complexity, is a challenging problem. The solution can be found in fundamental information theoretic results, which gave rise to the distributed video coding (DVC) paradigm, under which lightweight video encoding schemes can be engineered. This article presents a new hash-based DVC architecture incorporating a novel motion-compensated multi-hypothesis prediction technique. The presented method is able to adapt to the regional variations in temporal correlation in a frame. The proposed codec enables scalable Wyner-Ziv video coding and provides state-of-the-art distributed video compression performance. The key novelty of this article is the expansion of the application domain of DVC from conventional video material to medical imaging. Wireless capsule endoscopy in particular, which is essentially wireless video recording in a pill, is proven to be an important application field. The low complexity encoding characteristics, the ability of the novel motion-compensated multi-hypothesis prediction technique to adapt to regional degrees of temporal correlation (which is of crucial importance in the context of endoscopic video content), and the high compression performance make the proposed distributed video codec a strong candidate for future lightweight (medical) imaging applications
    corecore